JPS61230038A - Heat conductive vacuum gage - Google Patents

Heat conductive vacuum gage

Info

Publication number
JPS61230038A
JPS61230038A JP7089385A JP7089385A JPS61230038A JP S61230038 A JPS61230038 A JP S61230038A JP 7089385 A JP7089385 A JP 7089385A JP 7089385 A JP7089385 A JP 7089385A JP S61230038 A JPS61230038 A JP S61230038A
Authority
JP
Japan
Prior art keywords
gas
pressure
heat
heat receiving
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7089385A
Other languages
Japanese (ja)
Other versions
JPH0640046B2 (en
Inventor
Minoru Noguchi
稔 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60070893A priority Critical patent/JPH0640046B2/en
Publication of JPS61230038A publication Critical patent/JPS61230038A/en
Publication of JPH0640046B2 publication Critical patent/JPH0640046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect the pressure of a gas at high accuracy irrespective of the type of the gas by disposing an exothermic body and a heat receiving body with the specific position relationship so as to face each other and calculating pressure with the use of both temperature detection values. CONSTITUTION:The exothermic body (heating plate) 13 and the heat receiving body 10 are faced and installed in parallel in a vacuum chamber 23 whose pressure is measured. The interval between the exothermic body 13 and the heat receiving body 10 is set smaller than the average free travel of the gas at a vacuum degree in the vacuum chamber 23. Then temperature detectors 11 and 12 such as a thermo-couple are fitted on the exothermic body 13 and the heat receiving body 10, and respective detecting signals are led to an arithmetic unit 19 so as to execute the prescribed arithmetic processing, whereby the pressure in the vacuum chamber 23 can be detected. Thus the pressure can be detected irrespective of the type of the gas, and calibration in accordance with the type of the gas is made unnecessary.

Description

【発明の詳細な説明】 〔発明の利用分野j 本発明は、気体圧力を測定する圧力測定器にかかわ)、
特に、各種気体の圧力を簡単な操作で測定できる熱伝導
真空計に胸するものである。
[Detailed description of the invention] [Field of application of the invention j The present invention relates to a pressure measuring device for measuring gas pressure]
I am particularly interested in thermal conduction vacuum gauges that can measure the pressure of various gases with simple operation.

〔発明の背景j 半導体装置の製造過程では真空中での処理が必須であり
、種々の気体が単一に或は混合して用すられる。これら
の過程では通常数Paから103Pa  。
[Background of the Invention j In the manufacturing process of semiconductor devices, processing in a vacuum is essential, and various gases are used singly or in a mixture. In these processes, the pressure is usually from several Pa to 103 Pa.

程度の圧力測定が必要であり、又、それぞれの気体の圧
力は正確に制御される必要があるが、多くの場合、煩雑
な校正を必要としている。
Although the pressure of each gas needs to be accurately controlled, it often requires complicated calibration.

従来は、上記範囲の気体圧力は熱伝導真空計によp測定
されてきた。この熱伝導真空計は、気体の熱伝導率が圧
力に依存することを利用したもので、その原理等につい
ては、例えば、堀越源−著「真空技術」(東京大学出版
会1983年5月)P。
Conventionally, the gas pressure in the above range has been measured using a thermal conductivity vacuum gauge. This heat conduction vacuum gauge takes advantage of the fact that the thermal conductivity of gas depends on pressure.For the principle etc., for example, see "Vacuum Technology" by Gen Horikoshi (University of Tokyo Press, May 1983). P.

68〜69、あるいはRobert W、Berr7 
at aj!。
68-69, or Robert W. Berr7
At aj! .

[THIN FILM TECHNOLOGY J (
VAN N03TRANDRF!INHOLD COM
PANY、 196B ) 、 p、 82〜85に記
載されている。
[THIN FILM TECHNOLOGY J (
VAN N03TRANDRF! INHOLD COM
PANY, 196B), p. 82-85.

従来の熱伝導真空計は、゛上記文献忙も記載されている
ように、(a)出力が圧力に対して直線的でないこと、
(b〕フィラメントと気体分子との熱変換効率(熱的適
応係数で表わされる)がフィラメントの表面状態によっ
て変わるので、その結果感度が変わること、(o)熱伝
導率が気体の種類によって異なるので、熱伝導ゲージは
気体の種類によって感度が異なること、という問題点が
あった。
Conventional heat conduction vacuum gauges have the following problems: (a) The output is not linear with respect to pressure, as described in the above literature;
(b) The heat conversion efficiency (expressed by the thermal adaptation coefficient) between the filament and gas molecules changes depending on the surface condition of the filament, resulting in a change in sensitivity; and (o) The thermal conductivity varies depending on the type of gas. However, there was a problem in that the sensitivity of thermal conductivity gauges differed depending on the type of gas.

殊に、第5の点は種々の気体を用いる場合には大きな問
題であった。
In particular, the fifth point has been a big problem when various gases are used.

〔発明の目的j 本発明の目的は、各種の気体の圧力を気体種類ごとに較
正せずに測定できる熱伝導真空計を提供することにある
[Object of the Invention j An object of the present invention is to provide a heat conduction vacuum gauge that can measure the pressure of various gases without having to calibrate each type of gas.

〔発明の概要〕[Summary of the invention]

本願発明者らが行った実験の結果、真空雰囲気中に置か
れた固体平行2面間の熱の授受量の割合、すなわち単位
時間、単位温度差、単位面積あたりの2面間の熱の授受
量c以下、熱通過率と呼ぶ。
As a result of experiments conducted by the inventors of the present application, the ratio of the amount of heat exchange between two parallel surfaces of a solid placed in a vacuum atmosphere, that is, the exchange of heat between two surfaces per unit time, unit temperature difference, and unit area. The amount below the amount c is called the heat transfer rate.

単位: W/m”・dog )は、2面間の間@が介在
気体分子のもつその圧力下での平均自由行程よル小さい
場合、2面間忙介在する気体の種類にかかわシなく等し
h値となり、気体圧力に比例することが、判明した。
Unit: W/m"・dog) is the distance between two surfaces, regardless of the type of gas intervening between the two surfaces, if the mean free path of the intervening gas molecules under that pressure is smaller. It was found that the h value is proportional to the gas pressure.

本発明は、上記の性質を利用し、被測定気体分子の平均
自由行程よりも十分近づけて固体平行2面を設置し、該
固体2面間の熱通過率を測定することによって、異なる
気体の圧力を測定できるように熱伝導真空計を構成した
ものである。
The present invention makes use of the above-mentioned properties to measure the heat transfer rate of different gases by installing two parallel solid surfaces sufficiently closer than the mean free path of the gas molecules to be measured and measuring the heat transfer rate between the two solid surfaces. This is a thermal conduction vacuum gauge configured to measure pressure.

ここで、本発明の原理を第5図〜第5図により説明する
。第3図は本発明の詳細な説明するための模式図で、1
0は定温板、6は熱容量の小さい熱容量板、13は加熱
板である。また、T1、T。
Here, the principle of the present invention will be explained with reference to FIGS. FIG. 3 is a schematic diagram for explaining the present invention in detail.
0 is a constant temperature plate, 6 is a heat capacity plate with a small heat capacity, and 13 is a heating plate. Also, T1, T.

!、はそれぞれ定温板10、熱容量板6、加熱板15の
温度、K、は熱容量板6と加熱板13との間の熱通過率
である。また%Kl は、熱容量板6から定温板10お
よび加熱板13への放射忙よる伝熱に関係する係数であ
り、後に説明する。加熱板13からは、加熱板13と熱
容量板6との間に介在する気体分子によって熱が伝えら
れるが、このときの黙過ffl率は、測定の結果、第4
図に示し友ように、気体圧力Pに比例した。
! , are the temperatures of the constant temperature plate 10, the heat capacity plate 6, and the heating plate 15, respectively, and K is the heat transfer rate between the heat capacity plate 6 and the heating plate 13. Further, %Kl is a coefficient related to heat transfer from the heat capacity plate 6 to the constant temperature plate 10 and the heating plate 13 by radiation, and will be explained later. Heat is transferred from the heating plate 13 by gas molecules interposed between the heating plate 13 and the heat capacity plate 6, but the dead rate ffl at this time is determined to be the fourth
As shown in the figure, it is proportional to the gas pressure P.

第5図は、対向する固体2面間の熱通過率を、(a)気
体の種類、(b)2面間間@をパラメータとして、気体
圧力に対してプロットした実験結果を示したグラフであ
る。このグラフから、領域21では、気体の種類には依
存せず、熱通過率は気体圧力に比例しているのがわかる
。また、介在気体の平均自由行程が2面間間隔よp小さ
h場合(領域21のHe10#mとHe 150μm 
)は、2面間間隔にも依存しないことがわかる。従って
、上記の線形性が成立するためには、2面間に介在する
気体が自由分子運動を行って因る必要がある。すなわち
、この2面間間隔が介在気体の平均自由行程よ勺十分小
さい必要がある。
Figure 5 is a graph showing the experimental results of the heat transfer rate between two opposing solid surfaces plotted against the gas pressure using (a) the type of gas, and (b) the distance between the two surfaces as parameters. be. From this graph, it can be seen that in region 21, the heat transfer rate is independent of the type of gas and is proportional to the gas pressure. In addition, when the mean free path of the intervening gas is p smaller than the spacing between two surfaces (He10#m and He150μm in region 21
) is not dependent on the distance between the two surfaces. Therefore, in order for the above-mentioned linearity to be established, the gas interposed between the two surfaces must undergo free molecular motion. That is, the distance between the two surfaces needs to be sufficiently smaller than the mean free path of the intervening gas.

さて、熱容量板6と、定温板10および加熱板13との
間には、熱放射による熱の授受が存在する。こζで、熱
容量板6の温度Tはせいぜい10000程度であるから
、次式(1)に示すように、熱放射による熱容量板6と
定温板10との間の熱の授受量は温度差(T−T、)I
IC近似的に比例する。この比例係数をに、とする。す
なわち、両者の伝熱量は、 (伝熱量)、−、。−((273+T )’ −(27
3+T、 )’ )右6111  =275’i(1+
fi)’−(1+−Q)’)1>253  より 右辺ユ2754(4(1+、’7g)−4(1+、’:
〜月ユ4・273” (T −T、 ) 、°、(伝熱量ルIllユKt(T T+)    ・
・・・・・(1)一方、熱容量板6と加熱板13との間
には、上式(1)で示したような熱放射による伝熱量以
外に、気体分子による伝熱tが含まれる。この気体分子
による伝熱量も、2面の温度差釦比例するため、この比
例係数をに2とすると、熱容量板6と加熱板13との間
の伝熱量は、次式(2)のようになる。
Now, heat is exchanged between the heat capacity plate 6, the constant temperature plate 10, and the heating plate 13 by thermal radiation. Here, since the temperature T of the heat capacity plate 6 is about 10,000 at most, the amount of heat exchanged between the heat capacity plate 6 and the constant temperature plate 10 due to heat radiation is calculated by the temperature difference ( T-T,)I
IC is approximately proportional. Let this proportionality coefficient be . In other words, the amount of heat transfer between the two is (amount of heat transfer), -. -((273+T)' -(27
3+T, )' ) Right 6111 = 275'i(1+
fi)'-(1+-Q)')1>253, so the right side U2754(4(1+,'7g)-4(1+,':
~ Monthly 4.273" (T - T, ) , °, (Heat transfer amount Ill YuKt (T T +) ・
...(1) On the other hand, between the heat capacity plate 6 and the heating plate 13, in addition to the amount of heat transfer due to thermal radiation as shown in the above equation (1), heat transfer t due to gas molecules is included. . The amount of heat transferred by the gas molecules is also proportional to the temperature difference between the two surfaces, so if this proportional coefficient is set to 2, the amount of heat transferred between the heat capacity plate 6 and the heating plate 13 is expressed as in the following equation (2). Become.

(伝熱量)a−+s = (Kt +Kg ) (T 
T2 )  ・・・・・・(2)この系において、熱容
量板6の熱容量は十分小さ込ため、その温度は極めて短
時間で定常状態になる。また、熱容量板6と加熱板13
との間に介在する気体の圧力も、外部とのコンダクタン
スは小さiものの体積が小さいので、極めて短時間で外
部すなわち真空室内と等圧になる。
(Heat transfer amount) a-+s = (Kt +Kg) (T
(2) In this system, the heat capacity of the heat capacity plate 6 is sufficiently small, so that its temperature reaches a steady state in an extremely short time. In addition, the heat capacity plate 6 and the heating plate 13
Although the conductance with the outside is small, the pressure of the gas interposed between the inside and outside is small, so the pressure becomes equal to that of the outside, that is, the vacuum chamber, in a very short time.

上記の定常状態においては、熱容量板6と定温板10と
の間の伝熱量と、熱容量板6と加熱板13との間の伝熱
量とは等しくな)、式(1)、(2)から次式が成立す
る。
In the above steady state, the amount of heat transferred between the heat capacity plate 6 and the constant temperature plate 10 is not equal to the amount of heat transferred between the heat capacity plate 6 and the heating plate 13), from equations (1) and (2). The following formula holds true.

K+ (T+  T)=(K、十に2)(T  Tt)
=lゴこ二K。
K+ (T+ T) = (K, 2 in 10) (T Tt)
=l Gokoji K.

−T2 =五土五二五K。-T2 =Goto, 525K.

V−V。V-V.

ココに、vl s vl vlはそれぞれ温度T1 *
 Tt T2を熱電対で測って得られる電圧値である。
Here, vl s vl vl are each temperature T1 *
Tt This is the voltage value obtained by measuring T2 with a thermocouple.

前記したように、K2は圧力Pに比例するため となシ、式(3)の演算処理により、気体圧力Pが測定
できる。
As described above, since K2 is proportional to the pressure P, the gas pressure P can be measured by the calculation process of equation (3).

また、定温板13は省略することもできる。すなわち、
定温板15がない場合でも、熱容量板6からの熱放射は
、近似的に一定値(Qとする)と考えられる。このこと
から、次式(4)を用いて気体圧力Pを測定することが
できる。
Moreover, the constant temperature plate 13 can also be omitted. That is,
Even when there is no constant temperature plate 15, the heat radiation from the heat capacity plate 6 is considered to be approximately a constant value (assumed to be Q). From this, the gas pressure P can be measured using the following equation (4).

Q = K、 (T−T、) :に、=” T−T。Q = K, (T-T,) :に、=” T-T.

σ P       ・・・・・・(4)〔発明の実施
例) 以下、本発明による熱伝導真空計の一実施例を図面を用
りて説明する。第1図は該実施例のゲージ部断面および
信号処理部のプロ、り図を示した説明図、第2図はゲー
ジ部の斜視図である。本実施例は、第1図に示すように
、本体14と、本体14にスプリング2を介しとめねじ
3により取シ付けられ、内部に電源18によ)加熱され
るランプヒータ7を有する加熱板13と、加熱板15に
板ばね5で取り付けられた熱容量の小さい熱容量板6と
、定温板支持棒8に支持された定温板10と、熱電対4
.11.12と、熱電対およびランプヒータのリードM
を通すための絶縁体15とで構成される熱伝導真空計ゲ
ージ部、および演算器19、増幅器20、電圧計21と
で構成される信号処理部から成っている。本体14は、
真空チャンバ1に対し、コーンフラットリング17およ
びねじ22を用いて、シールされて固定される。なお、
符号23で示す側が真空室内であシ、24で示す側が大
気側である。
σ P (4) [Embodiment of the Invention] Hereinafter, an embodiment of the heat conduction vacuum gauge according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a cross section of the gauge section and a schematic diagram of the signal processing section of the embodiment, and FIG. 2 is a perspective view of the gauge section. As shown in FIG. 1, this embodiment includes a heating plate having a main body 14, a lamp heater 7 which is attached to the main body 14 via a spring 2 with a female screw 3, and is heated by a power source 18. 13, a heat capacity plate 6 with a small heat capacity attached to a heating plate 15 with a leaf spring 5, a constant temperature plate 10 supported by a constant temperature plate support rod 8, and a thermocouple 4.
.. 11.12 and thermocouple and lamp heater leads M
It consists of a heat conduction vacuum gauge gauge part made up of an insulator 15 for passing through, and a signal processing part made up of an arithmetic unit 19, an amplifier 20, and a voltmeter 21. The main body 14 is
It is sealed and fixed to the vacuum chamber 1 using a cone flat ring 17 and screws 22. In addition,
The side indicated by numeral 23 is inside the vacuum chamber, and the side indicated by 24 is the atmosphere side.

次に、各部の詳細と動作について説明する。加熱板13
は、ランプヒータ7によ、61oot程度に加熱される
。このとき、加熱板13とランプヒータ7は共に低圧雰
囲気内にあるため、熱的な接触は少なく、加熱板13は
主として高温に熱せられたランプヒータ7からの熱放射
によって熱せられる。また、加熱板13は、熱容量をで
きるだけ小さくかつ均一な温度分布にするため、熱伝導
が高く熱容量の小さh材料例えばアルミニウムなどで小
さく裏作する。さらに、加熱板13の熱容量板6と接す
る面9は、表面あらさ3.2S以上、平面度±2μm以
下に作られている。
Next, details and operations of each part will be explained. heating plate 13
is heated to about 61oot by the lamp heater 7. At this time, since both the heating plate 13 and the lamp heater 7 are in a low-pressure atmosphere, there is little thermal contact, and the heating plate 13 is heated mainly by heat radiation from the lamp heater 7 heated to a high temperature. The heating plate 13 is made small and made of a material with high thermal conductivity and small heat capacity, such as aluminum, in order to minimize the heat capacity and achieve uniform temperature distribution. Furthermore, the surface 9 of the heating plate 13 in contact with the heat capacity plate 6 is made to have a surface roughness of 3.2S or more and a flatness of ±2 μm or less.

熱容量板6は、剛性が高くかつ熱容1kを小さくするた
めに、セラミックス、ガラス、シリコンなどで淳さ′f
:0.5mm程度につくる。さらに、加熱板13と接す
る面9′は、鏡面仕上げをし、平面度は±2μm とす
る。この熱容量板6は板ばね5で加熱板15に接触固定
される。
The heat capacity plate 6 is made of ceramic, glass, silicon, etc. in order to have high rigidity and to reduce the heat capacity 1k.
: Make it about 0.5mm. Further, the surface 9' in contact with the heating plate 13 is mirror finished and has a flatness of ±2 μm. This heat capacity plate 6 is fixed in contact with the heating plate 15 by a leaf spring 5.

定温板10は、定温板支持棒8で本体14に固定される
。このとき、定温板10と熱容量板6との間に3〜5m
m程度の隙間を置く、また、定温板10は、黒色アルマ
イト処理を施した少、アルミニウムを研摩して農作する
場合がある。本!i!月例では、加熱板13と同じ条件
にしである。定温板10と定温板支持棒8および定温板
支持棒8と本体14は、熱的接触を良くするために、そ
れぞれろう付けなどにより固定される必要がある。その
結果、定温板10は外気温度に保たれることになる。
The constant temperature plate 10 is fixed to the main body 14 by a constant temperature plate support rod 8. At this time, the distance between the constant temperature plate 10 and the heat capacity plate 6 is 3 to 5 m.
A gap of about m is provided, and the constant temperature plate 10 is sometimes made of polished aluminum that has been subjected to black alumite treatment. Book! i! In the monthly test, the same conditions as the heating plate 13 were used. The constant temperature plate 10 and the constant temperature plate support rod 8 and the constant temperature plate support rod 8 and the main body 14 need to be fixed by brazing or the like in order to improve thermal contact. As a result, the constant temperature plate 10 is maintained at the outside temperature.

以上の構成において、定温板10、熱容量板6、加熱板
13の各温度はそれぞれ熱電対11.4.12で測定さ
れ、熱電対11.4.12はそれぞれ温度に比例した電
圧V、、V%v2を発生する。発生した電圧は、アナロ
グの加減算器、乗算器をもつ演算器19において、次の
式(5)により演算される。
In the above configuration, each temperature of the constant temperature plate 10, heat capacity plate 6, and heating plate 13 is measured by a thermocouple 11.4.12, and each thermocouple 11.4.12 has a voltage V, V, which is proportional to the temperature. Generate %v2. The generated voltage is calculated by the following equation (5) in an arithmetic unit 19 having an analog adder/subtractor and a multiplier.

上Hピの信号は、増lll1i器20により増幅され、
電圧計21に電圧として表示される。この電圧計21に
表示される電圧V、は、前に述べ之理由により、真空チ
ャンバ1内の圧力Pに比例するので、適尚な係数をかけ
ると、圧力Pf:表わすことになる。
The upper H-pi signal is amplified by the amplifier 20,
The voltage is displayed on the voltmeter 21 as a voltage. The voltage V displayed on the voltmeter 21 is proportional to the pressure P in the vacuum chamber 1 for the reason stated above, so when an appropriate coefficient is applied, the voltage V is expressed as pressure Pf.

〔発明の効果」 本発明によれば、熱伝導真空計たよる気体圧力の測定に
おいて気体の種類に依存しない平行2面間の熱通、iM
率を利用しているので、気体の種類に応じて較正をする
必要がなく、また、気体の種類が不明なとき、あるいは
2種以上の気体の混合気体の場合でも、簡単に高精度で
圧力測定を行うことが可能となる。
[Effects of the Invention] According to the present invention, heat conduction between two parallel planes that does not depend on the type of gas, iM
Since the ratio is used, there is no need to calibrate according to the type of gas, and even when the type of gas is unknown or a mixture of two or more gases, it is easy to calculate the pressure with high accuracy. It becomes possible to perform measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱伝導真空計の一実施例のゲージ
部断面と信号処理部ブロック図を併せて示した説明図、
f42図は該実施例ゲージ部の斜視図、第3図は本発明
の詳細な説明するための模式図、第4図は熱通過率と気
体圧力との関係を示す特性図、第5図は対向する固体2
面間の熱通過率と気体圧力との関係を、気体の種類およ
び2面間間隔をパラメータとしてプロットした実験結果
を示すグラフである。 符号の説明 1・・・真空チャンバ    4・・・熱電対5・・・
板ばね       6・・・熱容量板7・・・ラング
ヒータ    10・・・定温板11.12・・・熱電
対   13・・・加熱板14・・・本体      
 19・・・演算器20・・・増幅器     21・
・・電圧計才10 田 才Z図 す3図 O オ斗図 気イ本圧力     ′
FIG. 1 is an explanatory diagram showing a cross section of a gauge part and a block diagram of a signal processing part of an embodiment of a heat conduction vacuum gauge according to the present invention;
Figure f42 is a perspective view of the gauge part of the embodiment, Figure 3 is a schematic diagram for explaining the present invention in detail, Figure 4 is a characteristic diagram showing the relationship between heat transfer rate and gas pressure, and Figure 5 is a diagram showing the relationship between heat transfer rate and gas pressure. Opposing solid 2
It is a graph showing experimental results in which the relationship between the heat transfer rate between surfaces and gas pressure is plotted using the type of gas and the distance between two surfaces as parameters. Explanation of symbols 1...Vacuum chamber 4...Thermocouple 5...
Leaf spring 6... Heat capacity plate 7... Lang heater 10... Temperature plate 11.12... Thermocouple 13... Heating plate 14... Main body
19... Arithmetic unit 20... Amplifier 21.
...Voltmeter Sai 10 Ta Sai Z Diasu 3 Dia.

Claims (1)

【特許請求の範囲】 1、エネルギーの供給を受けてエネルギー・熱交換を行
う発熱素子を有する発熱体であって、該発熱体の温度を
電気信号に変換する素子を有するものと、 測定する真空度における気体の平均自由行程より小さい
間隙を隔てて前記発熱体に対向して配置された受熱体で
あって、該受熱体の温度を電気信号に変換する素子を有
するものと、 少なくとも前記発熱体からの電気信号と前記受熱体から
の電気信号とを入力し、所定の演算を行って圧力の表示
を行う圧力計とを有する熱伝導真空計。 2、特許請求の範囲第1項記載の熱伝導真空計において
、 前記発熱体は、該発熱体に密着する第2の受熱体であっ
て、該受熱体の温度を電気信号に変換する素子を有する
ものを伴設する熱伝導真空計。 3、特許請求の範囲第1項記載の熱伝導真空計において
、 前記発熱体及び前記受熱体は対向する面において平面で
あり、前記間隙は3mmないし5mmである熱伝導真空
計。
[Scope of Claims] 1. A heating element having a heating element that exchanges energy and heat when supplied with energy, which has an element that converts the temperature of the heating element into an electrical signal; and a vacuum to be measured. a heat receiving body disposed opposite to the heating element with a gap smaller than the mean free path of gas at a temperature of A heat conduction vacuum gauge comprising a pressure gauge that inputs an electric signal from the heat receiving body and an electric signal from the heat receiving body, performs predetermined calculations, and displays the pressure. 2. The heat conduction vacuum gauge according to claim 1, wherein the heating element is a second heat receiving element that is in close contact with the heating element, and includes an element that converts the temperature of the heat receiving element into an electrical signal. A heat conduction vacuum gauge that accompanies a device that has one. 3. The heat conduction vacuum gauge according to claim 1, wherein the heating element and the heat receiving element are flat on opposing surfaces, and the gap is 3 mm to 5 mm.
JP60070893A 1985-04-05 1985-04-05 Heat conduction vacuum gauge measuring device Expired - Lifetime JPH0640046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070893A JPH0640046B2 (en) 1985-04-05 1985-04-05 Heat conduction vacuum gauge measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070893A JPH0640046B2 (en) 1985-04-05 1985-04-05 Heat conduction vacuum gauge measuring device

Publications (2)

Publication Number Publication Date
JPS61230038A true JPS61230038A (en) 1986-10-14
JPH0640046B2 JPH0640046B2 (en) 1994-05-25

Family

ID=13444659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070893A Expired - Lifetime JPH0640046B2 (en) 1985-04-05 1985-04-05 Heat conduction vacuum gauge measuring device

Country Status (1)

Country Link
JP (1) JPH0640046B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE REVIEW OF SCIENTIFIC INSTRUMENTS=1963 *

Also Published As

Publication number Publication date
JPH0640046B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
CN100374839C (en) Apparatus and methods for heat loss pressure measurement
US6023979A (en) Apparatus and methods for heat loss pressure measurement
JPS63243885A (en) Flow velocity detector
US5303167A (en) Absolute pressure sensor and method
JP2001343302A (en) Heat loss pressure measuring device and its method
US3680377A (en) Fluid flow meter
US3787764A (en) Solid dielectric capacitance gauge for measuring fluid pressure having temperature compensation and guard electrode
US3266290A (en) Measurement of thermal conductivity
JPS61230038A (en) Heat conductive vacuum gage
US3534809A (en) Temperature measuring devices
US2460873A (en) Vacuum gauge
JP3171410B2 (en) Vacuum sensor
US3095743A (en) Apparatus for measuring elevated temperatures
US4812801A (en) Solid state gas pressure sensor
US2736200A (en) Pressure measuring apparatus
JP3042786B2 (en) Temperature measurement method and temperature control method and device for workpiece in vacuum
JP3188752B2 (en) Pirani vacuum gauge
Haacke et al. Method for thermal conductivity measurements on solids
SU1619079A1 (en) Pressure transducer
SE7610151L (en) ELECTRONIC MEASUREMENT METER
JPS5923369B2 (en) Zero-level heat flow meter
Robertson et al. An accurate surface temperature measuring system
JPS592486Y2 (en) Houshiya Senatsusakei Niokeru
JP4437336B2 (en) Capacitive vacuum sensor
US2315672A (en) Pressure gauge