JP3042786B2 - Temperature measurement method and temperature control method and device for workpiece in vacuum - Google Patents

Temperature measurement method and temperature control method and device for workpiece in vacuum

Info

Publication number
JP3042786B2
JP3042786B2 JP2174565A JP17456590A JP3042786B2 JP 3042786 B2 JP3042786 B2 JP 3042786B2 JP 2174565 A JP2174565 A JP 2174565A JP 17456590 A JP17456590 A JP 17456590A JP 3042786 B2 JP3042786 B2 JP 3042786B2
Authority
JP
Japan
Prior art keywords
temperature
processed
vacuum
holding table
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2174565A
Other languages
Japanese (ja)
Other versions
JPH0463276A (en
Inventor
秀樹 立石
一郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2174565A priority Critical patent/JP3042786B2/en
Publication of JPH0463276A publication Critical patent/JPH0463276A/en
Application granted granted Critical
Publication of JP3042786B2 publication Critical patent/JP3042786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空内被処理物の温度測定方法並びに温度制
御方法及び装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the temperature of an object to be processed in a vacuum and a method and apparatus for controlling the temperature.

〔従来の技術〕[Conventional technology]

従来のスパッタやCVDやドライエッチなどの真空内処
理において処理中の被処理物の温度は重要な処理条件の
ひとつであり、真空内被処理物(基板)の温度測定方法
としては熱電対などの温度センサを利用した接触式が簡
便であって多用されており、この従来測定法は特開昭62
−50462号公報に記載のように処理中の基板に温度セン
サを一定の力で押しつけ、センサ先端の測温部の温度を
基板温度に近づけて測温しようとするものが一般的であ
る。しかし同業者にはよく知られているように真空内で
は接触熱抵抗が大きく、温度センサの表示値と基板温度
とには大きな誤差がでることがあった。
The temperature of the workpiece during processing in conventional vacuum processing such as sputtering, CVD, and dry etching is one of the important processing conditions. As a method of measuring the temperature of the processing target (substrate) in vacuum, a thermocouple or the like is used. A contact type using a temperature sensor is simple and frequently used, and this conventional measuring method is disclosed in
As described in Japanese Patent Application Laid-Open No. -50462, generally, a temperature sensor is pressed against a substrate being processed with a constant force, and the temperature of a temperature measuring section at the tip of the sensor is approximated to the substrate temperature to measure the temperature. However, as is well known to those skilled in the art, the contact thermal resistance is large in a vacuum, and a large error may occur between the display value of the temperature sensor and the substrate temperature.

また従来の基板の温度制御方法としては、例えば特開
昭60−115226号公報に記載のように一定温度に保たれて
いる保持台に基板を静電吸着し、さらに保持台と基板間
に熱伝導用ガスを介在させることにより基板温度を制御
する方法が知られている。この方法は真空内被処理物の
温度制御方法として有効であるが、対象基板の温度を実
測していないため入射熱量などの熱条件が変動すると、
基板温度も変動してより正確な温度制御が望まれてい
た。
As a conventional method for controlling the temperature of a substrate, for example, as described in JP-A-60-115226, a substrate is electrostatically attracted to a holding table maintained at a constant temperature, and a heat is applied between the holding table and the substrate. A method of controlling a substrate temperature by interposing a conductive gas is known. This method is effective as a method for controlling the temperature of the object to be processed in vacuum, but when the thermal conditions such as the amount of incident heat fluctuate because the temperature of the target substrate is not actually measured,
The substrate temperature also fluctuates, and more accurate temperature control has been desired.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は対象基板の温度測定に際して基板と温
度センサとの間の熱抵抗が不明であるため、これによっ
て生ずる温度誤差を考慮できないという問題があった。
また基板ごとに温度制御条件を調節して正確に温度制御
することができないという問題があった。
In the above prior art, when measuring the temperature of the target substrate, since the thermal resistance between the substrate and the temperature sensor is unknown, there has been a problem that the temperature error caused by this cannot be taken into account.
In addition, there is a problem that the temperature cannot be accurately controlled by adjusting the temperature control conditions for each substrate.

本願発明者らは従来技術の問題点となる真空内での大
きな接触熱抵抗による温度センサ表示値と基板温度との
誤差について次のように計算検討している。第2図は基
板および測温部への熱の出入りを模式的に示す。ここで
保持台1の上に基板2が保持され、保持台1の一部に設
けられた穴3より温度センサ4が貫通し、一定の力で基
板2に押しつけられている。基板2には単位面積当りqb
の熱量が入射し、熱伝達率α(熱抵抗の逆数)に比例
して保持台1に流出した熱量の残余の熱量により基板2
は昇温する。一方の温度センサ4には基板2と温度セン
サ4との間の熱伝達率αに比例した熱量が流入し、温
度センサ4の測温部5が熱容量Yjに応じて昇温する。こ
こでqbは基板2内で一様で面方向への熱流がない1次元
流とする。またセンサ先端の測温部5は微小であって測
温部内は一様温度とし、さらに測温部5より下流の温度
センサ部は熱伝導率が低くて測温部より下流への熱流出
はないと仮定する。この仮定にもとづく計算は実際より
誤差の少ない結果を示す。
The inventors of the present application have calculated and studied the error between the temperature sensor display value and the substrate temperature due to a large contact thermal resistance in a vacuum, which is a problem of the prior art, as follows. FIG. 2 schematically shows the flow of heat into and out of the substrate and the temperature measuring unit. Here, the substrate 2 is held on the holding table 1, and the temperature sensor 4 penetrates through a hole 3 provided in a part of the holding table 1 and is pressed against the substrate 2 with a constant force. Per unit area q b is the substrate 2
Is applied to the substrate 2 in accordance with the remaining heat amount of the heat amount flowing out to the holding table 1 in proportion to the heat transfer coefficient α W (reciprocal of the thermal resistance).
Rises in temperature. The amount of heat proportional to the heat transfer coefficient α j between the substrate 2 and the temperature sensor 4 flows into one of the temperature sensors 4, and the temperature measuring unit 5 of the temperature sensor 4 rises in temperature according to the heat capacity Y j . Here, q b is a one-dimensional flow that is uniform in the substrate 2 and has no heat flow in the plane direction. The temperature measuring section 5 at the sensor tip is very small and the inside of the temperature measuring section has a uniform temperature. Further, the temperature sensor section downstream of the temperature measuring section 5 has a low thermal conductivity, and the heat flowing out of the temperature measuring section downstream is low. Assume not. Calculations based on this assumption show less error than in practice.

第3図に第2図の計算結果の基板2と温度センサ4の
指示温度の応答例を示す。この横軸に時間τで縦軸に温
度をとった時に、qb,TH,YJWの一定値の場合の
実線で示す基板温度変化に対して破線で示すセンサ温度
は基板温度との差が大きく、αが小さい程この差は大
きい。この第3図の温度センサ4の応答を経験的に判断
すると、αは150W/m2℃程度以下と考えられ、真空内
接触式温度測定は誤差が大きいことが判る。しかもこの
誤差は入射熱量や基板2と保持台1との接触状態などの
熱的条件が変動することにより変化するため、温度セン
サ指示値に誤差相当分として一定値を加えた値を真の基
板温度と考えることができない結果となる。
FIG. 3 shows an example of the response of the temperature indicated by the substrate 2 and the temperature sensor 4 as a result of the calculation shown in FIG. When the horizontal axis represents time τ and the vertical axis represents temperature, the sensor temperature indicated by a dashed line with respect to the substrate temperature change indicated by a solid line in the case of constant values of q b , T H , Y J , α W , and α j Is larger than the substrate temperature, and the smaller α j is, the larger the difference is. When the response of the temperature sensor 4 shown in FIG. 3 is empirically determined, α j is considered to be about 150 W / m 2 ° C or less, and it can be seen that the error in the contact temperature measurement in vacuum is large. In addition, since this error changes due to fluctuations in thermal conditions such as the amount of incident heat and the contact state between the substrate 2 and the holding table 1, a value obtained by adding a constant value to the temperature sensor indication value as an error is used as the true substrate value. The result is that it cannot be considered as temperature.

本発明は対象基板の温度を正確に測定して所定の温度
に正確に制御できる真空内被処理物の温度測定方法並び
に温度制御方法及び装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for measuring the temperature of an object to be processed in a vacuum, and a method and apparatus for controlling the temperature, which can accurately measure the temperature of a target substrate and accurately control the temperature to a predetermined temperature.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の真空内被処理物
の温度測定方法では、処理中の被処理物の被処理面と反
対側の面に接触式温度計を接触させて前記被処理物の温
度を複数回測定し、該複数回測定して求めた前記被処理
物の温度に関するデータを用いて真空室内部での前記被
処理物と前記接触式温度計との間の熱平衡式の中の未知
数を決定し、該決定した未知数を用いて前記熱平衡式か
ら前記被処理物の温度を算出するか、または保持台上に
保持された被処理物に接触式温度を接触させて前記被処
理物の温度を複数回測定し、該複数回測定して求めた前
記被処理物の温度に関するデータを用いて真空室内部で
の前記被処理物と前記保持台と前記接触式温度計との間
の複数の熱平衡式から前記被処理物の温度を算出するよ
うにしたものである。
In order to achieve the above object, in the method for measuring the temperature of an object to be processed in a vacuum according to the present invention, the object to be processed is contacted with a contact-type thermometer on a surface of the object to be processed which is opposite to the surface to be processed. The temperature of the object to be processed is measured a plurality of times, and the data on the temperature of the object to be processed obtained by the plurality of measurements is used. Is determined, and the temperature of the object to be processed is calculated from the thermal equilibrium equation using the unknown value determined, or the temperature of the object to be processed is brought into contact with the object to be processed held on a holding table by contacting the temperature. The temperature of the object is measured a plurality of times, and the data between the object, the holding table, and the contact-type thermometer in the vacuum chamber is used by using the data on the temperature of the object obtained by measuring the plurality of times. Calculating the temperature of the object to be processed from a plurality of thermal equilibrium equations.

また、温度制御方法では、処理中の被処理物の被処理
面と反対側の面に接触式温度計を接触させて前記被処理
物の温度を複数回測定し、該複数回測定して求めた前記
被処理物の温度に関するデータを用いて前記真空室内部
での前記被処理物と前記接触式温度計との間の熱平衡式
の中の未知数を決定し、該決定した未知数を用いて前記
熱平衡式から前記被処理物の温度を算出し、該算出した
前記被処理物の温度に基いて前記温度制御機能を備えた
保持台を介して前記被処理物の温度を制御するか、また
は保持台上に保持された被処理物に接触式温度計を接触
させて前記被処理物の温度を複数回測定し、該複数回測
定して求めた前記被処理物の温度に関するデータを用い
て前記真空室内部での前記被処理物と前記保持台と前記
接触式温度計との間の複数の熱平衡式から前記被処理物
の温度を算出し、該算出した前記被処理物の温度に基い
て前記温度制御機能を備えた保持台を介して前記被処理
物の温度を制御するようにしたものである。
In the temperature control method, a contact-type thermometer is brought into contact with a surface of the object to be processed which is opposite to the surface to be processed, and the temperature of the object is measured a plurality of times. Using the data on the temperature of the object to be processed, an unknown number in the thermal equilibrium between the object to be processed and the contact thermometer in the vacuum chamber is determined, and the determined unknown number is used by using the determined unknown number. Calculate the temperature of the processing object from a thermal equilibrium equation, and control or hold the temperature of the processing object via a holding table having the temperature control function based on the calculated temperature of the processing object. The temperature of the object to be processed is measured a plurality of times by bringing a contact thermometer into contact with the object to be processed held on a table, and the data is measured using the data about the temperature of the object to be processed obtained multiple times. Between the object to be processed, the holding table, and the contact thermometer inside the vacuum chamber Calculating the temperature of the processing object from a plurality of thermal equilibrium equations, and controlling the temperature of the processing object via a holding table having the temperature control function based on the calculated temperature of the processing object. It was done.

更に、温度制御装置は、真空容器内に設けられた真空
内処理手段と、真空内処理手段と好適な位置関係を有す
る被処理物の保持手段と、保持手段の一部に載置された
被処理物の測温手段と、保持手段の内部あるいは外部に
設けられた温度制御手段とを有し、測温手段は真空内被
処理物の接触式温度測定における複数回の温度測定デー
タより被処理物と温度センサとの間の熱平衡式の中の未
知数を算出することにより、あるいは複数回の温度測定
データから作成した未知変数と同数個以上の熱平衡式を
連立させて解くことにより被処理物の温度を算出し、測
温手段により算出された測定結果に基づいて動作する温
度制御手段により被処理物の温度を制御すべく構成され
ることで達成される。
Further, the temperature control device includes an in-vacuum processing means provided in the vacuum vessel, a means for holding an object to be processed having a suitable positional relationship with the in-vacuum processing means, and an object mounted on a part of the holding means. It has a temperature measuring means for the processed object and a temperature control means provided inside or outside the holding means, and the temperature measuring means performs the processing on the basis of a plurality of temperature measurement data in the contact-type temperature measurement of the processing object in the vacuum. By calculating the unknowns in the thermal equilibrium equation between the object and the temperature sensor, or by solving the same number or more of the thermal equilibrium equations with unknown variables created from multiple temperature measurement data, This is achieved by calculating the temperature and controlling the temperature of the object to be processed by the temperature control means operating based on the measurement result calculated by the temperature measurement means.

〔作用〕[Action]

温度測定に際して、例えば処理中の被処理物の被処理
面と反対側の面に接触式温度計を接触させて前記被処理
物の温度を複数回測定し、該複数回測定して求めた前記
被処理物の温度に関するデータを用いて真空室内部での
前記被処理物と前記接触式温度計との間の熱平衡式の中
の未知数を決定し、該決定した未知数を用いて前記熱平
衡式からは、前記被処理物の温度が熱抵抗などとともに
正確に算出され得るものである。
In the temperature measurement, for example, the temperature of the object to be processed is measured a plurality of times by contacting a contact-type thermometer with the surface opposite to the surface to be processed of the object to be processed during the processing, and the plurality of times is measured and obtained. Using the data on the temperature of the object to be processed, an unknown number in a thermal equilibrium equation between the object to be processed and the contact thermometer inside the vacuum chamber is determined, and from the thermal equilibrium equation using the determined unknown number. The temperature of the object to be processed can be accurately calculated together with the thermal resistance and the like.

また、温度制御に際しては、例えば上記の如くに算出
された被処理物の温度に基いて温度制御機能を備えた保
持台を介して前記被処理物の温度が制御されているもの
である。
In the temperature control, for example, the temperature of the processing target is controlled via a holding table having a temperature control function based on the temperature of the processing target calculated as described above.

〔実施例〕〔Example〕

以下に本発明の一実施例を第1図から第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明による真空内被処理物の温度測定方法
並びに温度制御方法および装置の一実施例を示す成膜装
置の構成図である。
FIG. 1 is a block diagram of a film forming apparatus showing one embodiment of a method for measuring the temperature of a workpiece in vacuum and a method and apparatus for controlling the temperature according to the present invention.

まずこの成膜装置の構成を説明する。真空容器11の上
部に成膜手段12が配置され、成膜手段12に対向した位置
にあるベース13上に保持台1が配置されており、図示し
ない搬送手段により基板(被処理物)2は保持台1の上
に載置される。ベース13および保持台1の中央の穴3を
貫通して温度センサ4が基板2と一定圧力で接触可能に
取り付けられる。保持台1は静電吸着電極14を内蔵して
おり、保持電源15からの供給電圧により基板2を保持台
1に吸着できる。配管16より導入された冷却ガスは穴3
を経由して、基板2と一定温度に維持された保持台1と
の間に入り、基板2と保持台1との間で熱伝達を行な
う。この配管16内のガス圧力は真空計17からの圧力信号
をうけた冷却圧力制御部18の出す弁開度指令により開度
を調節する流量制御弁19により一定圧力に保たれる。温
度センサ4の例えば熱電対20は測温・演算部21に接続さ
れる。保持電源15と冷却圧力制御部18と測温・演算部21
はそれぞれ温調部22に接続され、温調部22はさらに中央
制御部23に接続される。また中央制御部23は成膜手段12
に成膜電力を供給する成膜電源24に接続される。真空容
器11内は図示しない真空排気手段および処理ガス供給手
段により基板2の成膜処理に好適な圧力に保たれる。
First, the configuration of the film forming apparatus will be described. A film forming means 12 is arranged above a vacuum vessel 11, and a holding table 1 is arranged on a base 13 at a position facing the film forming means 12, and a substrate (object to be processed) 2 is It is placed on the holding table 1. The temperature sensor 4 is mounted so as to be able to come into contact with the substrate 2 at a constant pressure through the base 13 and the central hole 3 of the holding table 1. The holding table 1 has a built-in electrostatic suction electrode 14, and the substrate 2 can be suctioned to the holding table 1 by a voltage supplied from a holding power supply 15. Cooling gas introduced from piping 16 is
And enters between the substrate 2 and the holding table 1 maintained at a constant temperature to perform heat transfer between the substrate 2 and the holding table 1. The gas pressure in the pipe 16 is maintained at a constant pressure by a flow control valve 19 that adjusts the opening in accordance with a valve opening command issued by a cooling pressure controller 18 that receives a pressure signal from a vacuum gauge 17. For example, a thermocouple 20 of the temperature sensor 4 is connected to a temperature measuring / calculating unit 21. Holding power supply 15, cooling pressure control unit 18, temperature measurement / calculation unit 21
Are respectively connected to the temperature control unit 22, and the temperature control unit 22 is further connected to the central control unit 23. Further, the central control unit 23 is
Is connected to a film forming power supply 24 that supplies film forming power to the apparatus. The inside of the vacuum vessel 11 is maintained at a pressure suitable for the film formation processing of the substrate 2 by a vacuum exhaust unit and a processing gas supply unit (not shown).

つぎに上記構成の成膜装置の動作を説明する。保持台
1上に基板2を載置後に中央制御部23の成膜指令により
成膜電源24から成膜手段12に成膜電力を供給して基板2
上に成膜する。また中央制御部23の温度指令により温調
部22からの測温指令をうけた測温・演算部21で温度セン
サ4の熱電対20からの温度信号により基板2の温度測定
およびその他の熱条件の演算を行ない、その演算データ
を温調部22に送る。温調部22は演算データを設定温度と
比較したのち必要に応じて保持電源15に保持指令を送
り、保持電源15からの供給電圧により基板2を保持台1
に吸着するとともに、冷却圧力制御部18に圧力制御指令
を送り、冷却圧力制御部18からの真空計17の圧力信号に
応じた弁開度指令により、配管16の流量制御弁19を制御
して冷却ガスの圧力を所定の値に保つことにより、基板
2を所定の温度に制御する。
Next, the operation of the film forming apparatus having the above configuration will be described. After mounting the substrate 2 on the holding table 1, the film forming power is supplied from the film forming power supply 24 to the film forming means 12 by the film forming command of the central control unit 23, and the substrate 2 is
A film is formed thereon. Further, the temperature measurement / calculation unit 21 receives a temperature measurement command from the temperature control unit 22 according to a temperature command from the central control unit 23, and measures the temperature of the substrate 2 and other heat conditions based on the temperature signal from the thermocouple 20 of the temperature sensor 4 And sends the calculated data to the temperature control unit 22. The temperature control unit 22 compares the calculated data with the set temperature, sends a holding command to the holding power source 15 as necessary, and moves the substrate 2 to the holding table 1 by the supply voltage from the holding power source 15.
A pressure control command is sent to the cooling pressure control unit 18 and the flow control valve 19 of the pipe 16 is controlled by a valve opening command according to the pressure signal of the vacuum gauge 17 from the cooling pressure control unit 18. By maintaining the pressure of the cooling gas at a predetermined value, the substrate 2 is controlled at a predetermined temperature.

つぎに上記構成の成膜装置の動作における測温・演算
部21の演算例を説明する。この測温・演算部21での演算
は時間対温度センサ指示値の複数個のデータより熱平衡
式の中の未知数を算出することにより基板温度を算出す
るか、あるいは未知変数と同数個以上の熱平衡式を作り
これを連立させて解くことにより熱抵抗および基板温度
までを算出するものである。ここでは基板2と温度セン
サ4の各々に関する熱平衡式を連立させて解く場合を示
す。
Next, a calculation example of the temperature measurement / calculation unit 21 in the operation of the film forming apparatus having the above configuration will be described. The calculation by the temperature measurement / calculation unit 21 is performed by calculating the substrate temperature by calculating an unknown in the thermal equilibrium equation from a plurality of data of the time versus the temperature sensor indicated value, or by calculating the thermal equilibrium of at least the same number as the unknown variables. The formula is used to calculate the thermal resistance and the substrate temperature by solving the equations simultaneously. Here, a case is shown in which thermal equilibrium equations for each of the substrate 2 and the temperature sensor 4 are solved simultaneously.

第2図は第1図の基板2および温度センサ4の測温部
5の部分を拡大して熱の流れを示す模式図である。第2
図に示す通り、 qb……基板2への単位面積当りの入射熱量 α……基板2と保持台1との間の熱伝達率 TW……基板温度 TH……保持台温度 とし、また、 YW……基板1の単位面積当りの熱容量 τ……時間 とすると、基板温度TWに関する熱平衡式は、 となる。
FIG. 2 is a schematic diagram showing the flow of heat by enlarging the substrate 2 and the temperature measuring section 5 of the temperature sensor 4 in FIG. Second
As shown in the figure, q b ... The amount of heat incident on the substrate 2 per unit area α W ... The heat transfer coefficient T W between the substrate 2 and the holder 1... The substrate temperature T H. Further, when Y W ...... capacity τ ...... time per unit area of the substrate 1, the heat balance equation for the substrate temperature T W is Becomes

となる。ここに、 TW0:τ=0のときのTW である。また、 TW∞:τ=∞のときのTW とすると、 となる。ここでαは、 αC:介在ガスによる熱伝達率 αR:ふく射による熱伝達率 とおき、 α=α+α とすることにより、ふく射伝熱の影響を考慮した値とす
ることができる。つぎに、 αj:基板2と温度センサ4との間の熱伝達率 Tj:温度センサ指示値 E:センサ測温部5によりセンサ背面へ流出する熱量の
大きさを示す定数 Ta:センサ末端の温度 Yj:センサ測温部5の熱容量 とすると、温度センサ4に関する熱平衡式は、 となる。
Becomes Here, T W0 : T W when τ = 0. T W∞ : T W when τ = ∞, Becomes Here, α W is defined as α C : heat transfer coefficient due to intervening gas α R : heat transfer coefficient due to radiation. By setting α W = α C + α R , a value considering the influence of radiation heat transfer is taken. Can be. Next, α j : heat transfer coefficient between the substrate 2 and the temperature sensor 4 T j : indicated value of the temperature sensor E: constant indicating the amount of heat flowing out to the back of the sensor by the sensor temperature measuring unit 5 T a : sensor Terminal temperature Y j : heat capacity of sensor temperature measuring unit 5 Assuming that, thermal equilibrium equation for temperature sensor 4 is: Becomes

つぎにこの熱平衡式中の未知数の較正法について説明
する。(4)式でTjはセンサ指示値であり、時間当りの
温度変化ΔTj/Δτとともに実測できる。また基板温度T
Wは別個の測温手段を用いて測定すれば、(4)式の未
知数αj,E,Ta,Yjは次のようにして求める。
Next, a method of calibrating unknowns in the thermal equilibrium equation will be described. (4) T j is the sensor reading by the formula, can be measured with the temperature change [Delta] T j / .DELTA..tau per hour. Substrate temperature T
If W is measured using a separate temperature measuring means, the unknowns α j , E, T a , and Y j in equation (4) are obtained as follows.

時間τ=i,i+1,i+2,i+3の時の各々のデータはそ
れぞれ添字i,i+1,i+2,i+3をつけて表わすと、 となる。
Each data at time τ = i, i + 1, i + 2, i + 3 is represented by subscript i, i + 1, i + 2, i + 3 respectively. Becomes

この4式を連立させて解くことにより、温度センサ4
の定数E,Ta,Yjが求まる。この値を(4)式に代入する
と、実際の測定系において(4)式の未知変数はα
TWの2個となる。そこで処理中の基板温度TWについて複
数回の測定を行ない、(2)式と(4)式に関する複数
個の式を得る。
By solving these four equations simultaneously, the temperature sensor 4
Constants E, T a , and Y j are obtained. Substituting this value into equation (4), the unknown variables in equation (4) in the actual measurement system are α j and
The two T W. Therefore the substrate temperature T W during processing performs multiple measurements, to obtain a plurality of formulas for (2) and (4).

たとえばαWj,TW,TW0,qbが未知の時には4回の測
定を行うと、次式に示すように未知変数はαWj,TW,q
bおよびTWi,TWi+1,TWi+2,TWi+3の8個で、式も8個とな
って解を求められる。
For example, when α W , α j , T W , T W0 , and q b are unknown, four measurements are performed. As shown in the following equation, the unknown variables are α W , α j , T W , q
With b and T Wi , T Wi + 1 , T Wi + 2 , and T Wi + 3 , the number of equations is also eight, and a solution can be obtained.

この方法により一度すべての未知変数を演算した後、
引き続いて次の基板2を処理する時に、前回測定と一定
値とみなせる項目がある場合には測定回数を減らすこと
ができる。この関係を次の表1に示す。
After calculating all unknown variables once by this method,
When the next substrate 2 is subsequently processed, if there is an item that can be regarded as a constant value from the previous measurement, the number of measurements can be reduced. This relationship is shown in Table 1 below.

この演算によりαW(それぞれ熱抵抗の逆数)お
よび基板温度の瞬時値TWを求め、さらに(2)式に代入
することにより任意の時刻τの温度TWiを求め、
(3)式に代入することにより飽和温度TW∞を求める
ことができる。
By this calculation, α W , α j (the reciprocals of the thermal resistance) and the instantaneous value T W of the substrate temperature are obtained, and by substituting into the equation (2), the temperature T Wi at an arbitrary time τ i is obtained.
By substituting into the equation (3), the saturation temperature T W∞ can be obtained.

なお上記の演算ではαWを一定としたが、TWが高
くなると絶対温度の4乗に比例するふく射の影響が大き
くなり、この場合にはαWと温度の関係を示す式の
中の定数を求めるのに必要なだけ測定回数をふやして上
記と同様に定数を算出すればよい。
In the above calculation, α W and α j are fixed. However, when T W increases, the influence of radiation proportional to the fourth power of the absolute temperature increases, and in this case, the relationship between α W and α j and the temperature is The constants may be calculated in the same manner as above by increasing the number of measurements as necessary to obtain the constants in the formulas shown.

つぎに測温・演算部21で算出したTWiあるいはTW0が目
標値と異なる時には温調部22は次の方法により温度制御
する。(2)式から明らかなように基板温度TWは入射熱
量qbまたは基板2と保持台1との間の熱伝達率αある
いは保持台1の温度THによって変化する。ここでqbは処
理条件によって定まり、またTHは保持台1の熱容量のた
め短時間では変えられず、したがってTWの制御にはα
を変えることが有効である。このためには基板2と保持
台1とのすきまδまたは保持台1へ基板2を押しつける
力Fあるいは基板2と保持台1との間に介在させる熱伝
導用ガスの圧力Pを変えればよく、通常にはFまたはP
による。このFまたはPを大きくすればαは大きくな
るが、この関係をあらかじめ較正しておくことにより、
目的とするTWに制御するために必要な力Fまたは圧力P
に設定し、目的とする基板温度TWに制御できる。
Then T Wi or T W0 calculated by the temperature measurement and computing unit 21 is the temperature control unit 22 at a different time and the target value is temperature controlled by the following method. (2) the substrate temperature T W As is clear from the equation varies with the incident heat q b or heat transfer coefficient alpha W or the temperature T H of the holder 1 between the substrate 2 and the supporter 1. Here q b is determined by the processing conditions and T H is not changed in a short time because the heat capacity of the holder 1, thus the control of the T W alpha W
It is effective to change For this purpose, the clearance δ between the substrate 2 and the holding table 1 or the force F for pressing the substrate 2 against the holding table 1 or the pressure P of the heat transfer gas interposed between the substrate 2 and the holding table 1 may be changed. Usually F or P
by. If this F or P is increased, α W is increased, but by calibrating this relationship in advance,
Force F or pressure P required for controlling the T W of interest
Set can be controlled on the substrate temperature T W of interest.

これにより保持台1への基板2を押し付ける力Fは例
えば静電吸着方式の場合には調整部22からの保持指令に
より吸着電極14に供給する電圧によって変えられる。さ
らにこのとき基板2内の温度分布を測定しておき、吸着
電極14を分割してその各々に供給する電圧を変えること
により、基板2の温度分布に対応した熱伝達率αにし
て所望の温度分布に制御することができる。
Accordingly, the force F for pressing the substrate 2 against the holding table 1 can be changed by the voltage supplied to the suction electrode 14 according to a holding command from the adjusting unit 22 in the case of the electrostatic suction method, for example. Further, at this time, the temperature distribution in the substrate 2 is measured, and by changing the voltage supplied to each of the adsorption electrodes 14 to change the voltage, the heat transfer coefficient α W corresponding to the temperature distribution of the substrate 2 is set to a desired value. Temperature distribution can be controlled.

上記の測温・演算部21および温調部22の動作は基板2
から保持台1に熱を奪って基板2を冷却する場合を説明
したが、この他に保持台1の方を加熱して基板2を加熱
する場合あるいは保持台1に赤外線などのふく射熱発生
手段を内蔵して基板2を加熱する場合などにも同様に基
板2の温度測定および温度制御ができる。
The operation of the temperature measurement / calculation unit 21 and the temperature control unit 22
In this case, the substrate 2 is cooled by depriving the holding table 1 of heat. However, in addition to the above, the holding table 1 is heated by heating the substrate 2 or the holding table 1 is provided with a means for generating radiation heat such as infrared rays. In the case where the substrate 2 is built in and heated, the temperature of the substrate 2 can be similarly measured and controlled.

上記の実施例は基板2上に薄膜を形成する成膜装置の
場合を示したが、この他に基板上の薄膜を加工する加工
装置または薄膜に特定の不純物を打ち込む打込み装置あ
るいはプラズマ表面改質装置などにも適用できる。
In the above embodiment, a film forming apparatus for forming a thin film on the substrate 2 has been described. In addition, a processing apparatus for processing a thin film on a substrate, a driving apparatus for driving a thin film into a specific impurity, or a plasma surface modification. It can also be applied to devices and the like.

〔発明の効果〕〔The invention's effect〕

本発明によれば、真空内被処理物の接触式測定に際し
て被処理物と温度センサとの間の熱平衡式の中の未知数
を算出することにより被処理物の温度を正確に測定でき
る。
According to the present invention, the temperature of the object to be processed can be accurately measured by calculating the unknown in the thermal equilibrium equation between the object to be processed and the temperature sensor at the time of the contact type measurement of the object to be processed in a vacuum.

また被処理物の温度測定データをもとに温度制御条件
を調節することにより所定の温度に正確に制御すること
ができる。そのさい被処理物の温度分布に対応して温度
制御条件を変えることにより所定の温度分布に制御する
こともできる。
Further, the temperature can be accurately controlled to a predetermined temperature by adjusting the temperature control conditions based on the temperature measurement data of the object to be processed. At this time, a predetermined temperature distribution can be controlled by changing the temperature control conditions according to the temperature distribution of the object to be processed.

このように成膜、加工、イオン打込み、プラズマ表面
改質などの真空内処理において、その特性に影響を与え
る被処理物の温度の精密制御により処理の高性能化およ
び高精度化ができる効果がある。
In this way, in vacuum processing such as film formation, processing, ion implantation, and plasma surface modification, precise control of the temperature of the object to be processed, which affects its characteristics, has the effect of improving the performance and accuracy of the processing. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す成膜装置の構成図、第
2図は第1図の基板および温度センサ部を拡大して熱の
流れを示す模式図、第3図は第2図の基板と温度センサ
の指示温度の応答を示す説明図である。 1……保持台、2……基板、3……穴、4……温度セン
サ、5……測温部、11……真空容器、12……成膜手段、
13……ベース、14……吸着電極、15……保持電源、16…
…配管、17……真空計、18……冷却圧力制御部、19……
流量制御弁、20……熱電対、21……測温・演算部、22…
…温調部、23……中央制御部、24……成膜電源。
FIG. 1 is a configuration diagram of a film forming apparatus showing one embodiment of the present invention, FIG. 2 is a schematic diagram showing the flow of heat by enlarging a substrate and a temperature sensor section of FIG. 1, and FIG. It is explanatory drawing which shows the response of the instruction | indication temperature of the board | substrate of the figure and a temperature sensor. DESCRIPTION OF SYMBOLS 1 ... Stand, 2 ... Substrate, 3 ... Hole, 4 ... Temperature sensor, 5 ... Temperature measuring part, 11 ... Vacuum container, 12 ... Film forming means,
13 ... Base, 14 ... Adsorption electrode, 15 ... Holding power supply, 16 ...
... Piping, 17 ... Vacuum gauge, 18 ... Cooling pressure controller, 19 ...
Flow control valve, 20 ... Thermocouple, 21 ... Temperature measurement / calculation unit, 22 ...
... Temperature control unit, 23 ... Central control unit, 24 ... Deposition power supply.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/00 - 16/56 H01L 21/302 G01K 1/00 - 19/00 JICSTファイル(JOIS) INSPEC(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/00-16/56 H01L 21/302 G01K 1/00-19 / 00 JICST file (JOIS) INSPEC (DIALOG)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空室の内部で処理中の被処理物の温度を
測定する方法であって、前記処理中の被処理物の被処理
面と反対側の面に接触式温度計を接触させて前記被処理
物の温度を複数回測定し、該複数回測定して求めた前記
被処理物の温度に関するデータを用いて前記真空室内部
での前記被処理物と前記接触式温度計との間の熱平衡式
の中の未知数を決定し、該決定した未知数を用いて前記
熱平衡式から前記被処理物の温度を算出することを特徴
とする真空内被処理物の温度測定方法。
1. A method for measuring the temperature of an object to be processed in a vacuum chamber, wherein a contact thermometer is brought into contact with a surface of the object to be processed which is opposite to a surface to be processed. Measuring the temperature of the object to be processed a plurality of times, and using the data on the temperature of the object to be processed determined and measured the plurality of times to measure the temperature of the object and the contact-type thermometer inside the vacuum chamber. A method for measuring the temperature of an object to be processed in a vacuum, comprising: determining an unknown in the thermal equilibrium equation between the two; and using the determined unknown to calculate the temperature of the object to be processed from the thermal equilibrium equation.
【請求項2】真空室の内部で保持台上に保持された被処
理物の温度を測定する方法であって、前記保持台上に保
持された前記被処理物に接触式温度を接触させて前記被
処理物の温度を複数回測定し、該複数回測定して求めた
前記被処理物の温度に関するデータを用いて前記真空室
内部での前記被処理物と前記保持台と前記接触式温度計
との間の複数の熱平衡式から前記被処理物の温度を算出
することを特徴とする真空内被処理物の温度測定方法。
2. A method for measuring the temperature of an object held on a holding table inside a vacuum chamber, wherein the temperature of the object held on the holding table is brought into contact with a contact-type temperature. The temperature of the object to be processed is measured a plurality of times, and the temperature of the object to be processed, the holding table, and the contact-type temperature in the vacuum chamber using data on the temperature of the object to be processed obtained by the plurality of measurements. A method for measuring the temperature of an object to be processed in a vacuum, comprising calculating a temperature of the object to be processed from a plurality of thermal equilibrium equations between the object and a gauge.
【請求項3】真空室の内部で温度制御機能を備えた保持
台上に保持された処理中の被処理物の温度を制御する方
法であって、前記処理中の被処理物の被処理面と反対側
の面に接触式温度計を接触させて前記被処理物の温度を
複数回測定し、該複数回測定して求めた前記被処理物の
温度に関するデータを用いて前記真空室内部での前記被
処理物と前記接触式温度計との間の熱平衡式の中の未知
数を決定し、該決定した未知数を用いて前記熱平衡式か
ら前記被処理物の温度を算出し、該算出した前記被処理
物の温度に基いて前記温度制御機能を備えた保持台を介
して前記被処理物の温度を制御することを特徴とする真
空内被処理物の温度制御方法。
3. A method for controlling the temperature of an object to be processed held on a holding table having a temperature control function inside a vacuum chamber, wherein the surface of the object to be processed is processed. The contact type thermometer is brought into contact with the surface on the opposite side to measure the temperature of the object to be processed a plurality of times, and in the vacuum chamber using data on the temperature of the object to be processed obtained by measuring the plurality of times. Determine the unknown in the thermal equilibrium equation between the object to be processed and the contact thermometer, calculate the temperature of the object to be processed from the thermal equilibrium equation using the determined unknown, and calculate the calculated A method for controlling the temperature of a workpiece in a vacuum, comprising controlling the temperature of the workpiece via a holding table having the temperature control function based on the temperature of the workpiece.
【請求項4】真空室の内部で温度制御機能を備えた保持
台上に保持された被処理物の温度を制御する方法であっ
て、前記保持台上に保持された前記被処理物に接触式温
度計を接触させて前記被処理物の温度を複数回測定し、
該複数回測定して求めた前記被処理物の温度に関するデ
ータを用いて前記真空室内部での前記被処理物と前記保
持台と前記接触式温度計との間の複数の熱平衡式から前
記被処理物の温度を算出し、該算出した前記被処理物の
温度に基いて前記温度制御機能を備えた保持台を介して
前記被処理物の温度を制御することを特徴とする真空内
被処理物の温度制御方法。
4. A method for controlling the temperature of an object held on a holding table having a temperature control function inside a vacuum chamber, the method comprising: contacting the object held on the holding table. Measuring the temperature of the object to be processed a plurality of times by contacting a thermometer,
Using the data on the temperature of the object to be processed obtained by the plurality of measurements, the object to be processed is obtained from a plurality of thermal equilibrium equations between the object, the holding table, and the contact thermometer in the vacuum chamber. Calculating a temperature of the processing object, and controlling the temperature of the processing object via a holding table having the temperature control function based on the calculated temperature of the processing object. How to control the temperature of things.
【請求項5】前記被処理物の温度の制御を、前記被処理
物と前記保持台の間に気体を導入した状態で行うことを
特徴とする請求項3または4に記載の真空内被処理物の
温度制御方法。
5. The processing in a vacuum according to claim 3, wherein the control of the temperature of the processing target is performed in a state where gas is introduced between the processing target and the holding table. How to control the temperature of things.
【請求項6】真空容器内に設けられた真空内処理手段
と、真空内処理手段と好適な位置関係を有する被処理物
の保持手段と、保持手段の一部に載置された被処理物の
測温手段と、保持手段の内部あるいは外部に設けられた
温度制御手段とを有し、測温手段は真空内被処理物の接
触式温度測定における複数回の温度測定データより被処
理物と温度センサとの間の熱平衡式の中の未知数を算出
することにより、あるいは複数回の温度測定データから
作成した未知変数と同数個以上の熱平衡式を連立させて
解くことにより被処理物の温度を算出し、測温手段によ
り算出された測定結果に基づいて動作する温度制御手段
により被処理物の温度を制御する構成とした真空内被処
理物の温度制御装置。
6. An in-vacuum processing means provided in a vacuum vessel, holding means for holding an object having a suitable positional relationship with the in-vacuum processing means, and an object to be mounted mounted on a part of the holding means. Temperature measurement means, and a temperature control means provided inside or outside the holding means, the temperature measurement means and the processing object from the multiple times temperature measurement data in the contact-type temperature measurement of the processing object in vacuum The temperature of the object to be processed is calculated by calculating the unknowns in the thermal equilibrium equation between the temperature sensor and the unknown variables created from the temperature measurement data multiple times and solving the same number of thermal equilibrium equations. A temperature control device for an object to be processed in a vacuum, wherein the temperature of the object is controlled by a temperature control means which operates based on the calculated result calculated by the temperature measuring means.
【請求項7】測温手段は被処理物の複数位置の温度を算
出し、測温手段により算出された測定結果に基づいて動
作する温度制御手段により被処理物の複数位置の温度分
布を制御する構成とした請求項6記載の真空内被処理物
の温度制御装置。
7. A temperature measuring means calculates temperatures at a plurality of positions of the object to be processed, and controls a temperature distribution at the plurality of positions of the object to be processed by a temperature control means which operates based on the measurement result calculated by the temperature measuring means. 7. The temperature control device for a workpiece in a vacuum according to claim 6, wherein
【請求項8】保持手段は機械的クランプもしくは静電吸
着により被処理物を保持し、温度制御手段は被処理物と
保持手段の保持台との間のガス伝導もしくは保持台から
のふく射加熱により制御する構成とした請求項6または
請求項7記載の真空内被処理物の温度制御装置。
8. A holding means for holding an object to be processed by mechanical clamping or electrostatic attraction, and a temperature control means by gas conduction between the object to be processed and a holding table of the holding means or radiant heating from the holding table. The temperature control device for a workpiece in a vacuum according to claim 6, wherein the temperature control device is configured to control the temperature.
JP2174565A 1990-07-03 1990-07-03 Temperature measurement method and temperature control method and device for workpiece in vacuum Expired - Fee Related JP3042786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174565A JP3042786B2 (en) 1990-07-03 1990-07-03 Temperature measurement method and temperature control method and device for workpiece in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174565A JP3042786B2 (en) 1990-07-03 1990-07-03 Temperature measurement method and temperature control method and device for workpiece in vacuum

Publications (2)

Publication Number Publication Date
JPH0463276A JPH0463276A (en) 1992-02-28
JP3042786B2 true JP3042786B2 (en) 2000-05-22

Family

ID=15980785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174565A Expired - Fee Related JP3042786B2 (en) 1990-07-03 1990-07-03 Temperature measurement method and temperature control method and device for workpiece in vacuum

Country Status (1)

Country Link
JP (1) JP3042786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162665A1 (en) 2013-04-02 2014-10-09 株式会社神戸製鋼所 Processing device and method for measuring workpiece temperature in processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013437A (en) * 2007-06-29 2009-01-22 Fujifilm Corp Substrate holder and vacuum film deposition apparatus
US10879046B2 (en) * 2015-09-11 2020-12-29 Applied Materials, Inc. Substrate support with real time force and film stress control
CN116157902A (en) * 2020-09-30 2023-05-23 株式会社国际电气 Substrate processing apparatus, temperature control program, method for manufacturing semiconductor device, and temperature control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162665A1 (en) 2013-04-02 2014-10-09 株式会社神戸製鋼所 Processing device and method for measuring workpiece temperature in processing device
US9897489B2 (en) 2013-04-02 2018-02-20 Kobe Steel, Ltd. Processing apparatus and method of measuring temperature of workpiece in processing apparatus

Also Published As

Publication number Publication date
JPH0463276A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
KR940010643B1 (en) Mehtod of and apparatus for controlling temperature in the processing of a substrate
JPH0810231B2 (en) Flow sensor
JPH0954619A (en) Temperature control method
Wiese et al. Energy influx measurements with an active thermal probe in plasma-technological processes
EP0962763A1 (en) Differential scanning calorimeter
JP3042786B2 (en) Temperature measurement method and temperature control method and device for workpiece in vacuum
JP3310430B2 (en) Measuring device and measuring method
JP2023526426A (en) Passive and active calibration methods for resistive heaters
JP2860144B2 (en) Plate temperature measuring device
US3534809A (en) Temperature measuring devices
US4619144A (en) Method of and apparatus for gas pressure measurement by the gas-friction principle
JPS61240135A (en) Vacuum gauge
JP3300110B2 (en) Gas detector
JP3328408B2 (en) Surface temperature measurement method
JPH06265565A (en) Current speed detector for gas
JP3065862B2 (en) Flow rate detecting device and flow rate detecting method
JP2000218151A (en) Vacuum apparatus
JPS5923369B2 (en) Zero-level heat flow meter
JPH0584867B2 (en)
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JP2002323464A (en) Apparatus and method for measurement
JPS62203019A (en) Flow sensor
JPH0557849U (en) Board holder
SU586330A1 (en) Heat flow meter
JPH0222516A (en) Flow sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees