JPS61229318A - Molecular beam epitaxy equipment - Google Patents

Molecular beam epitaxy equipment

Info

Publication number
JPS61229318A
JPS61229318A JP6892185A JP6892185A JPS61229318A JP S61229318 A JPS61229318 A JP S61229318A JP 6892185 A JP6892185 A JP 6892185A JP 6892185 A JP6892185 A JP 6892185A JP S61229318 A JPS61229318 A JP S61229318A
Authority
JP
Japan
Prior art keywords
molecular beam
sample
forming surface
film
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6892185A
Other languages
Japanese (ja)
Inventor
Norio Kanai
金井 謙雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6892185A priority Critical patent/JPS61229318A/en
Publication of JPS61229318A publication Critical patent/JPS61229318A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To allow the radiated molecular beam to reach the film forming surface of a sample uniformly by a method wherein the scattering of the radiated molecular beam in the direction other than the film-forming surface of the sample is suppressed, and the molecular beam passing device to be heated up is swingingly moved against the film-forming surface of the sample. CONSTITUTION:A molecular passing device 50 to be heated up is provided between the film-forming surface of a sample 4 and the molecular beam radiating hole 21 of a molecular beam 20. A swinging device 60 is provided in such a manner that the side edge of the cylindrical sample of the device 50, namely, the edge side of the outlet port edge of the molecular beam, is slidingly moved against the film forming surface of the sample 40. As a result, the scattering of the molecular beam emitted from the source of molecular beam in the direction other than the film forming surface of the sample 40 can be suppressed, thereby enabling to let the emitted molecular beam to reach the film forming surface uniformly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は1分子線エピタキシー装置(以下、MBE装置
と略)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a single molecule beam epitaxy apparatus (hereinafter abbreviated as MBE apparatus).

〔発明の背景〕[Background of the invention]

MBE装置としては、例えば、高構 清、「新しいエピ
タキシャル成長法」、電気学会誌、Vol。
As an MBE apparatus, for example, Kiyoshi Takashi, "New Epitaxial Growth Method", Journal of the Institute of Electrical Engineers of Japan, Vol.

95、肩2(昭和50年2月)のP、9〜lOに記載さ
れているような、真空雰囲気下で分子線源から分子線を
放射し、真空雰囲気に設置された試料の被膜形成面に分
子線によりエピタキシャル膜を形成させる装置が知られ
ている。このような装置では、分子線源から放射された
分子線が試料の被膜形成面以外の方向に飛散する。しか
し、このような装置では、このような分子線の飛散を抑
制してエピタキシャル膜の形成に有効に利用しようとす
る認識を有していないため、原材料の有効活用およびエ
ピタキシャル膜の成長速度向上、さらには、飛散する分
子線束の蒸気密度に濃度分布を有するため、被膜形成面
内のエピタキシャル膜の成長速度の均一性向上などの点
で問題を有している。
95, Shoulder 2 (February 1975) P, 9 to 1O, a molecular beam is emitted from a molecular beam source in a vacuum atmosphere, and the film-forming surface of the sample is placed in a vacuum atmosphere. An apparatus for forming an epitaxial film using molecular beams is known. In such an apparatus, the molecular beam emitted from the molecular beam source scatters in directions other than the coating surface of the sample. However, such devices do not have the awareness to suppress the scattering of molecular beams and use them effectively for forming epitaxial films. Furthermore, since the vapor density of the scattered molecular beam has a concentration distribution, there is a problem in improving the uniformity of the growth rate of the epitaxial film within the film formation surface.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、分子線源から放射された分子線が試料
の被膜形成面以外の方向に飛散するのを抑制すると共に
分子線源から放射された分子線を試料の被膜形成面に均
等に到達させるようにすることで、原材料の有効活用お
よびエピタキシャル膜の成長速度の向上並びに均一化を
図ることができるMBE装置を提供することにある。
The purpose of the present invention is to suppress the molecular beams emitted from the molecular beam source from scattering in directions other than the coating surface of the sample, and to distribute the molecular beams emitted from the molecular beam source evenly onto the coating surface of the sample. It is an object of the present invention to provide an MBE apparatus capable of effectively utilizing raw materials and improving and uniformizing the growth rate of an epitaxial film.

〔発明の概要〕[Summary of the invention]

本発明は、真空雰囲気内の試料の被膜形成面と前記真空
雰囲気内に分子線を放射する分子線源の分子線放射口と
の間に加熱される分子線通過手段を設け、該分子線通過
手段の前記試料側端を該試料の被膜形成面に対して揺動
させる揺動手段を設けたことを特徴とするもので、加熱
される分子線通過手段の作用により、分子線源から放射
された分子線が試料の被膜形成面以外の方向に飛散する
のを抑制し、加熱される分子線通過手段を試料の被膜形
成面に対して揺動させることで、分子線源から放射され
た分子線を試料の被膜形成面に均等に到達させるように
したものである。
The present invention provides heated molecular beam passing means between a coating-forming surface of a sample in a vacuum atmosphere and a molecular beam radiation opening of a molecular beam source that emits molecular beams into the vacuum atmosphere, and The apparatus is characterized in that it is provided with a swinging means for swinging the sample-side end of the means with respect to the film-forming surface of the sample, and the molecular beam is emitted from the molecular beam source by the action of the heated molecular beam passing means. The molecular beams emitted from the molecular beam source are suppressed from scattering in directions other than the coating surface of the sample, and the heated molecular beam passing means is oscillated relative to the coating surface of the sample. The wires are designed to reach the coating surface of the sample evenly.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図、N2図により説明する。 An embodiment of the present invention will be explained with reference to FIGS. 1 and N2.

$111.第2図で、MBE装置を構成する成長室10
には、分子線源美が、この場合、内設されている。また
、成長室10には、試料ホルダ(9)が内設されている
。分子線温の分子線放射口4は、試料ホルダ美の試料設
置に対向させられている。試料初の被膜形成面と分子線
加の分子線放射口4との間には、加熱される分子線通過
手段間が設けられている。分子線通過手段間は、この場
合、分子線の通過路となる円筒51と加熱手段であるヒ
ータ52と成長室10内を超高真空に維持するための熱
しゃへい簡団とで構成されている。円筒51は、試料荀
の被膜形成面と分子線原題の分子線放射ロムとの間に設
けられている。ヒータ52は1円筒51の、この場合、
外面に沿って巻装されている。熱しゃへい筒部は、円筒
51の外側でヒータ52を含み配設されている。この場
合、円筒51の分子線源側端は分子線源mの分子線放射
口4に近接して対向している。円筒51の試料ホルダ側
端は、試料ホルダIの試料設置と対向して所定間隔を有
している。円筒51の試料ホルダ側端すなわち分子線出
口端には、この場合、試料ホルダ田の試料設置面に対し
て凹をなす球面カパーヌが設けられている。ヒータ52
は、成長室10壁に設けられた気密導入端子(図示省略
)を介し成長室10外の電源(図示省略)に接続してい
る。揺動手段ωは、この場合、駆動源61と駆動軸62
とピン田とピンサポート舛とで構成されている。揺動手
段印は、分子線通過手段間の円筒51の試料側端、つま
り分子線出口端側を試料荀の被膜形成面に対して揺動、
この場合、上下方向に往復動させるように設けられてい
る。円筒51の分子線源側端にはビン63が設けられ、
ビンBは、ビンサポート6で回動自在に支持されている
。円筒51の分子線出口端側の底部には、駆動軸62が
設けられ、駆動軸62は、駆動源61に連接されている
$111. In FIG. 2, a growth chamber 10 that constitutes an MBE apparatus is shown.
In this case, a molecular beam source is installed internally. Furthermore, a sample holder (9) is installed inside the growth chamber 10. The molecular beam radiation port 4 of the molecular beam temperature sensor is opposed to the sample setting of the sample holder. A heated molecular beam passing means is provided between the first coating surface of the sample and the molecular beam radiation port 4 for applying the molecular beam. In this case, the space between the molecular beam passing means is composed of a cylinder 51 serving as a passage for the molecular beam, a heater 52 serving as a heating means, and a heat shielding pad for maintaining the inside of the growth chamber 10 at an ultra-high vacuum. . The cylinder 51 is provided between the coating surface of the sample tube and the molecular beam radiation ROM. The heater 52 has one cylinder 51, in this case,
Wrapped along the outside. A heat shield cylinder section is disposed outside the cylinder 51 and includes a heater 52 . In this case, the molecular beam source side end of the cylinder 51 is close to and opposed to the molecular beam emission port 4 of the molecular beam source m. The sample holder side end of the cylinder 51 faces the sample setting of the sample holder I and has a predetermined distance therebetween. At the sample holder side end of the cylinder 51, that is, at the molecular beam exit end, in this case, a spherical cup is provided which is concave with respect to the sample installation surface of the sample holder. Heater 52
is connected to a power source (not shown) outside the growth chamber 10 via an airtight introduction terminal (not shown) provided on the wall of the growth chamber 10. In this case, the swinging means ω includes a drive source 61 and a drive shaft 62.
It consists of a pin and a pin support. The swinging means mark swings the sample side end of the cylinder 51 between the molecular beam passing means, that is, the molecular beam exit end side, with respect to the coating formation surface of the sample tube.
In this case, it is provided to be reciprocated in the vertical direction. A bottle 63 is provided at the molecular beam source side end of the cylinder 51,
The bin B is rotatably supported by a bin support 6. A drive shaft 62 is provided at the bottom of the cylinder 51 on the molecular beam exit end side, and the drive shaft 62 is connected to the drive source 61.

この場合、駆動源61は、成長室10外に設置され、駆
動軸62は、ベローズ邸で気密を保持し駆動源61によ
り試料切の被膜形成面に対して上下方向に往復動させら
れる。なお、成長室10には、分子線源Iを囲みシュラ
ウド70が内設され、試料荀の被膜形成面に成長するエ
ピタキシャル膜を観察するための、例えば電子銃(資)
、AES装置81が設けられている。
In this case, the drive source 61 is installed outside the growth chamber 10, and the drive shaft 62 is kept airtight in a bellows housing and reciprocated in the vertical direction with respect to the film forming surface of the sample cut by the drive source 61. The growth chamber 10 is equipped with a shroud 70 that surrounds the molecular beam source I, and is equipped with, for example, an electron gun (equipment) for observing the epitaxial film growing on the film formation surface of the sample chamber.
, an AES device 81 are provided.

N1図、第2図で、成長室10内は真空排気系(図示省
略)により超高真空に排気され維持されている。試料ホ
ルダ父の試料設置面には、試料切が設置される。この試
料のは、その被膜形成面にエピタキシャル膜を形成する
のに必要な温度まで加熱さレル。一方、電源を投入する
ことでヒータ52は発熱し、この発熱により円筒51は
所定温度まで加熱される。この状態で、分子線原題の分
子線放射口4より分子線が放射される。この放射された
分子線は円筒51内を通過した後、試料切の被膜形成面
に到達し、これにより、試料荀の被膜形成面にはエピタ
キシャル膜が形成される。一方、分子線通過手段間がな
い場合、試料荀の被膜形成面以外の方向に飛散する分子
線も円筒51内に入る。円筒51は所定温度つまり分子
の蒸気圧より高い温度に加熱されているため、試料切の
被膜形成面以外の方向へ飛散しようとする分子線は、円
筒51の内壁面に凝縮して吸着されることな鳴円筒51
内を通過する。その後、この分子線は試料伯の被膜形成
面に到達してエピタキシャル膜の形成に有効利用される
。なお、円筒51を通過した後に試料荀の被膜形成面に
到達する以前に試料切の被膜形成面以外の方向に飛散し
ようとする分子線は、この場合、円WR51を介して同
様に加熱されている球面カバー詞によりその飛散を抑制
される。また、これと共に、駆動源61を作動させるこ
とで、円筒51の分子線出口端は試料荀の被膜形成面に
対して上下方向に往復動させられるため、試料荀の被膜
形成面へ飛散する分子線の方向が制御され、この分子線
は試料荀の被膜形成面に均等に到達させられる。
In Figures N1 and 2, the inside of the growth chamber 10 is evacuated and maintained at an ultra-high vacuum by a vacuum evacuation system (not shown). A sample cutter is installed on the sample installation surface of the sample holder. This sample is then heated to the temperature required to form an epitaxial film on its coating surface. On the other hand, when the power is turned on, the heater 52 generates heat, and this heat heats the cylinder 51 to a predetermined temperature. In this state, a molecular beam is emitted from the molecular beam emission port 4 of the molecular beam original title. After passing through the cylinder 51, the emitted molecular beam reaches the film-forming surface of the sample cut, thereby forming an epitaxial film on the film-forming surface of the sample. On the other hand, if there is no molecular beam passing means, molecular beams scattered in directions other than the coating surface of the sample tube also enter the cylinder 51. Since the cylinder 51 is heated to a predetermined temperature, that is, a temperature higher than the vapor pressure of the molecules, molecular beams that attempt to scatter in directions other than the film-forming surface of the sample cut are condensed and adsorbed on the inner wall surface of the cylinder 51. Kotona sound cylinder 51
pass through the inside. Thereafter, this molecular beam reaches the film forming surface of the sample and is effectively used for forming an epitaxial film. In addition, in this case, molecular beams that attempt to scatter in a direction other than the film-forming surface of the sample cut before reaching the film-forming surface of the sample tube after passing through the cylinder 51 are similarly heated via the circle WR51. Its scattering is suppressed by the spherical cover word. At the same time, by operating the drive source 61, the molecular beam exit end of the cylinder 51 is reciprocated in the vertical direction with respect to the coating formation surface of the sample tube, so that the molecules scattered to the coating formation surface of the sample tube are The direction of the line is controlled so that the molecular beam reaches the coating surface of the specimen evenly.

本実施例では、分子線源から放射された分子線が試料の
被膜形成面以外の方向へ飛散するのを抑制できると共に
、この分子線は試料の被膜形成面に均等に到達させられ
るので、原材料の有効活用およびエピタキシャル膜の成
長速度の向上並びに成長速度の均一性の向上を図ること
ができる。 \なお、本実施例では、分子線通過手段の
分子線出口端を試料の被膜形成面に対して上下方向に往
復動させているが、二の揺動方向は、いずれの方向であ
っても良い。また、この揺動ストロークは、試料の被膜
形成面の大きさによって決定される。
In this example, the molecular beam emitted from the molecular beam source can be suppressed from scattering in directions other than the surface on which the coating is formed on the sample, and the molecular beam can evenly reach the surface on which the coating is formed on the sample. It is possible to make effective use of the epitaxial film, improve the growth rate of the epitaxial film, and improve the uniformity of the growth rate. \In addition, in this example, the molecular beam exit end of the molecular beam passing means is reciprocated in the vertical direction with respect to the film formation surface of the sample, but the second swing direction may be any direction. good. Further, this swing stroke is determined by the size of the coating surface of the sample.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、加熱される分子線通過
手段の作用により、分子線源から放射された分子線が試
料の被膜形成面以外の方向に飛散するのを抑制し、加熱
される分子線通過手段を試料の被膜形成面に対して揺動
させることで、分子線源から放射された分子線を試料の
被膜形成面に均等に到達させることができるので、原材
料の有効活用およびエピタキシャル膜の成長速度の向上
並びに均一化を図ることができるという効果がある。
As explained above, the present invention suppresses the scattering of molecular beams emitted from a molecular beam source in directions other than the coating surface of the sample by the action of the heated molecular beam passing means, and heats the sample. By swinging the molecular beam passing means relative to the coating surface of the sample, the molecular beams emitted from the molecular beam source can reach the coating surface of the sample evenly, resulting in effective use of raw materials and epitaxial growth. This has the effect of improving the growth rate and making the film uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

181図は、本発明によるMBE装置の一実施例を示す
成長室内部の構成図、第2図は、第1図のA−A視断面
図である。 10・・・・・・成長室、■・・・・・・分子線源、ガ
・・・・・・分子線放射口、φ・・−・・試料、父・・
・・・・分子線通過手段、印オ1図 句−拭瀘 50−布軸鉗反
FIG. 181 is a configuration diagram of the inside of a growth chamber showing an embodiment of the MBE apparatus according to the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. 1. 10... Growth chamber, ■... Molecular beam source, G... Molecular beam radiation port, φ... Sample, Father...
・・・・Molecular beam passing means, Ino 1 illustration - Futan 50 - Cloth shaft forceps

Claims (1)

【特許請求の範囲】[Claims] 1、真空雰囲気内の試料の被膜形成面と前記真空雰囲気
内に分子線を放射する分子線源の分子線放射口との間に
加熱される分子線通過手段を設け、該分子線通過手段の
前記試料側端を該試料の被膜形成面に対して揺動させる
揺動手段を設けたことを特徴とする分子線エピタキシー
装置。
1. A heated molecular beam passing means is provided between the film-forming surface of the sample in a vacuum atmosphere and a molecular beam radiation opening of a molecular beam source that emits molecular beams into the vacuum atmosphere, and the molecular beam passing means is heated. A molecular beam epitaxy apparatus characterized in that a swinging means is provided for swinging the sample side end with respect to a film forming surface of the sample.
JP6892185A 1985-04-03 1985-04-03 Molecular beam epitaxy equipment Pending JPS61229318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6892185A JPS61229318A (en) 1985-04-03 1985-04-03 Molecular beam epitaxy equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6892185A JPS61229318A (en) 1985-04-03 1985-04-03 Molecular beam epitaxy equipment

Publications (1)

Publication Number Publication Date
JPS61229318A true JPS61229318A (en) 1986-10-13

Family

ID=13387598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6892185A Pending JPS61229318A (en) 1985-04-03 1985-04-03 Molecular beam epitaxy equipment

Country Status (1)

Country Link
JP (1) JPS61229318A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132423A (en) * 1974-09-14 1976-03-19 Nissan Chemical Ind Ltd Igata no sakuseiho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132423A (en) * 1974-09-14 1976-03-19 Nissan Chemical Ind Ltd Igata no sakuseiho

Similar Documents

Publication Publication Date Title
US4901667A (en) Surface treatment apparatus
US4812326A (en) Evaporation source with a shaped nozzle
JPH09503611A (en) Microwave plasma reactor
JPH0192375A (en) Device for forming functional deposited film by microwave plasma cvd
US2626359A (en) Target for particle accelerators
TW409292B (en) Thin film forming apparatus
JPS61229318A (en) Molecular beam epitaxy equipment
JPH0160546B2 (en)
EP0003454B1 (en) X-ray tube comprising a device for reducing the divergence of its useful beam
JPH08274067A (en) Plasma generating device
JPH02293392A (en) Molecular beam epitaxy apparatus equipped with crucible in emission cell
JPS61161709A (en) Molecular beam epitaxy device
JPS61111993A (en) Molecular beam epitaxial device
JPS6132414A (en) Thin film forming equipment
JPH05275679A (en) Manufacture of semiconductor device
US11145492B2 (en) Local dry etching apparatus
JPH0230693A (en) Molecular beam generation apparatus
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JPH01131096A (en) Molecular beam generator
JPH0554253B2 (en)
JPS59139928A (en) Formation of membrane
JPH04314873A (en) Method and device for forming film of superfine particles
JPH02213481A (en) Thin film forming device
JPS61260623A (en) Plasma vapor growth equipment
JPS58136763A (en) Plasma chemical vapor depositing device