JPS61228293A - Underground storage of heat by hygroscopic substance - Google Patents

Underground storage of heat by hygroscopic substance

Info

Publication number
JPS61228293A
JPS61228293A JP60069288A JP6928885A JPS61228293A JP S61228293 A JPS61228293 A JP S61228293A JP 60069288 A JP60069288 A JP 60069288A JP 6928885 A JP6928885 A JP 6928885A JP S61228293 A JPS61228293 A JP S61228293A
Authority
JP
Japan
Prior art keywords
heat
water
soil
water vapor
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60069288A
Other languages
Japanese (ja)
Inventor
Atsuo Yoshida
厚生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60069288A priority Critical patent/JPS61228293A/en
Publication of JPS61228293A publication Critical patent/JPS61228293A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To store large capacities of heat by a method in which water vapor of a temperature higher than the temperature of the ground is placed into the underground, diffused, and condensed to heat the ground and warm water is also impregnated into the ground. CONSTITUTION:When a hygroscopic substance 2 is heated by a heater 3 to high temperatures, the water in the hygroscopic substance is discharged in the form of water vapor. Although the water vapor so discharged becomes water by being cooled by soil 1, its sensible heat and latent heat of evaporation are discharged. When the heating of the heater 3 is stopped and cold water is passed through a heat recovery pipe 5 to cool the hygroscopic substance 2, the hygroscopic property of the substance 2 is increased as its temperature is lowered, the partial pressure of water vapor is lowered, and warm water held by the soil 1 is vaporized to water vapor, whereupon the heat of the soil is absorbed by water vapor. The water vapor so vaporized is absorbed by the substance 2, but if discharges its sensible heat and latent heat of vaporization to raise the temperature of the substance 2. The fluid in the pipe 5 can thus be heated by the substance 2.

Description

【発明の詳細な説明】 本発明は熱エネμギーの地中への貯蔵及び地中熱の回収
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing thermal energy underground and recovering underground heat.

比較的に低い温度で利用する熱エネルギーの貯蔵は従来
、水や土石を直接加熱する方法と物質の融触熱等を利用
した蓄熱剤を加熱して蓄熱する方法があるが前者は設備
が大きくなり後者は利用温度に制限があり蓄熱剤も蓄熱
容量の率よりみて高価である。従って両方法とも蓄熱用
装置として用いるには設備費が高く実用的でない。
Conventionally, there are two methods of storing thermal energy that can be used at relatively low temperatures: directly heating water or rocks, and storing heat by heating a heat storage agent that uses the fused tactile heat of materials, but the former requires large equipment. In the latter case, the usage temperature is limited and the heat storage agent is also expensive compared to the heat storage capacity. Therefore, both methods require high equipment costs and are not practical for use as a heat storage device.

本発明は地中にある無限の±(砂、粘土等)の物性。The present invention is based on the physical properties of the infinite ± (sand, clay, etc.) found underground.

(イ) 地中の土には重量当り10〜20%の水分を毛
細管水や重力水として 保持することが出来ること。
(a) Underground soil can retain 10 to 20% water by weight as capillary water or gravity water.

(ロ) 地中で部分的に土を加温して水分を蒸発させる
と地中で気圧差が生じ て水分及び水蒸気の移動を助けるこ と。
(b) When soil is partially heated underground to evaporate moisture, a pressure difference is created underground, which helps the movement of moisture and water vapor.

(ハ) 水蒸気の拡散及び(ロ)の圧力差の発生によっ
て早い伝熱が地中であ っても出来ること。〔ヒートパイプ の原理と同じ〕 以上(イ) (ロ) (ハ)に着目して、経済的な熱の
貯蔵方法を確立したものであって、以下図をもって本方
法を説明する。
(c) Rapid heat transfer is possible even underground due to the diffusion of water vapor and the generation of the pressure difference (b). [Same principle as heat pipe] Focusing on (a), (b), and (c) above, an economical heat storage method has been established, and this method will be explained using the following diagram.

第1図において吸湿性物質(2)〔著しい吸湿性のある
物質であって、シリカゲ〜や臭化リチュウム液等をいう
〕は水分を飽和まで吸収しているものとする。この状態
でヒーター(3)によって吸湿性物質(2)を加熱し昇
温させれば吸湿性物質はその温度に応じ吸収した水分を
水蒸気として放出する。放出された水蒸気は±(1)で
冷却され水となるがこのとき水蒸気の持っている顕熱及
び蒸発潜熱を放出する。
In FIG. 1, it is assumed that the hygroscopic substance (2) (a substance with significant hygroscopicity, such as silicage, lithium bromide liquid, etc.) has absorbed moisture up to saturation. In this state, if the hygroscopic substance (2) is heated by the heater (3) to raise its temperature, the hygroscopic substance releases the absorbed moisture as water vapor according to the temperature. The released water vapor is cooled at ±(1) and becomes water, but at this time, the sensible heat and latent heat of vaporization that the water vapor has is released.

ヒーター(3)の熱源は深夜電力や昼間の太陽熱や排熱
などその熱を貯蔵する必要のある熱源より与えられる。
The heat source for the heater (3) is provided by a heat source that needs to store its heat, such as late-night electricity, daytime solar heat, and waste heat.

従ってヒーターの形式は吸湿性物質の性質を担持出来る
ものであればどんなものでもよい。
Therefore, the heater may be of any type as long as it can support the properties of the hygroscopic substance.

以上が蓄熱の方法であるが次に熱の回収方法について説
明する。
The heat storage method has been described above, and now the heat recovery method will be explained.

ヒーター(3)での加熱を停止して、熱回収用パイプ(
5)へ冷水等の低温の流体を通し吸湿性物質(2)を冷
却するときには吸湿性物質(2)は温度の低下に伴なっ
て吸湿力が増加して水蒸気の分圧が低くなる、又地中の
水蒸気の拡散の早いことによって±(1)が保持してい
る温水は蒸発して水蒸気となるがこのとき土(1)の熱
を吸収する。
Stop heating with the heater (3) and turn the heat recovery pipe (
5) When cooling the hygroscopic substance (2) by passing a low-temperature fluid such as cold water, the hygroscopic substance (2) increases its hygroscopic power as the temperature decreases, and the partial pressure of water vapor decreases. Due to the rapid diffusion of water vapor underground, the hot water held by ±(1) evaporates and becomes water vapor, which absorbs the heat of soil (1).

蒸発した水蒸気は吸湿性物質(2)に吸収されるがこの
とき顕熱及び蒸発潜熱を放出し吸湿性物質(2)を昇温
させて(温度低下を防ぎ)熱回収用パイプ(5)の流体
の加熱を助ける。
The evaporated water vapor is absorbed by the hygroscopic substance (2), and at this time, sensible heat and latent heat of vaporization are released, raising the temperature of the hygroscopic substance (2) (preventing the temperature from decreasing) and releasing the heat recovery pipe (5). Helps heat the fluid.

熱回収用パイプ(5)の流体は高温として外部へ取り出
して利用する。
The fluid in the heat recovery pipe (5) is taken out to the outside as a high temperature and used.

以上で本発明における蓄熱の方法及び貯蔵した熱の外部
への取り出し方法の説明を終る。
This concludes the explanation of the heat storage method and the method of extracting the stored heat to the outside in the present invention.

発明の効果 A、 吸湿性物質(2)及び土(1)の顕熱のみならず
、吸湿性物質(2)に吸収された水の蒸発潜熱による熱
の貯蔵が可能であるので小さな設備で大きな容量の熱の
貯蔵が出来る。〔土(1)を大きく利用出来るため〕 B、  土(1)への伝熱が伝導によるものでないので
熱の伝達速度が早いため短時間で多量の熱を運搬出来る
ため多量の土を利用出来ること。(伝導による蓄熱方法
の場合熱伝導率の制限によって温度差を大きくする必要
がある) C1吸湿性物質の吸湿力による潜熱を主体として熱を貯
蔵するため、顕熱による貯蔵に比べて同一熱量では温度
差が低くなるので放熱によるロスが小さいこと。
Effect of the invention A: It is possible to store heat not only by the sensible heat of the hygroscopic substance (2) and the soil (1), but also by the latent heat of vaporization of the water absorbed by the hygroscopic substance (2). Capacity of heat can be stored. [Because soil (1) can be used to a large extent] B. Heat transfer to soil (1) is not by conduction, so the heat transfer speed is fast, so a large amount of heat can be transported in a short time, so a large amount of soil can be used. thing. (In the case of heat storage method by conduction, it is necessary to increase the temperature difference due to the limitation of thermal conductivity.) Since heat is mainly stored as latent heat due to the hygroscopic ability of C1 hygroscopic substance, compared to storage by sensible heat, the same amount of heat is Since the temperature difference is lower, there is less loss due to heat radiation.

D、  シリカゲル等安価な吸湿性物質を利用出来るの
で設備費が安いこと。
D. Equipment costs are low because inexpensive hygroscopic substances such as silica gel can be used.

E、 吸湿性物質によってはく臭化リチュウム溶液など
)通常の地温以下まで地温を低下させて地熱を回収する
ことが出来る。
E. By using hygroscopic substances (such as lithium bromide solution), geothermal heat can be recovered by lowering the ground temperature to below the normal ground temperature.

F、 因に、地温を10℃として、吸湿性物質として臭
化リチュウム溶液を60℃で70%とした場合の蓄熱能
力はこれを30℃で回収を行う場合には臭化リチュウム
1キログラム当り350キロカロリー (水分0.65
キログラムの潜熱)となる。
F. Incidentally, if the soil temperature is 10°C, and the hygroscopic substance is a lithium bromide solution at 60°C to 70%, the heat storage capacity is 350% per kilogram of lithium bromide if the recovery is carried out at 30°C. kilocalorie (water 0.65
kilogram latent heat).

従って暖房やヒートポンプ用熱源の貯蔵には効果が大き
い。
Therefore, it is highly effective for storing heat sources for heating and heat pumps.

続いて本発明による方法を冷暖房用として活用するシス
テムについて説明スる。。
Next, a system that utilizes the method according to the present invention for heating and cooling will be explained. .

容器(6)に付設されたパイプα0は吸収冷房機の蒸発
器(水が冷媒)に連結されパイプ住υは土(1)へ末端
が開放されている。
The pipe α0 attached to the container (6) is connected to the evaporator of the absorption cooling machine (water is the refrigerant), and the end of the pipe α0 is open to the soil (1).

電磁弁(8)を閉じ(9)を開いた状態で臭化リチュウ
ム溶液(7)をヒーター(3)で加熱して濃縮して蓄熱
した後電磁弁(9)を閉じ完全密閉とする。
With the solenoid valve (8) closed and (9) open, the lithium bromide solution (7) is heated with the heater (3) to concentrate and store heat, and then the solenoid valve (9) is closed to make it completely airtight.

続いて熱回収用パイプ(5)より熱を回収して臭化リチ
ュウム容液(7)及び吸湿性物質(2)土(1)を冷却
する。
Subsequently, heat is recovered from the heat recovery pipe (5) to cool the lithium bromide solution (7), the hygroscopic substance (2), and the soil (1).

濃縮冷却された臭化リチュウム容液(7)によって容器
(6)の気圧は低下するので電磁弁(8)を開くことに
よって蒸発器の冷媒(水)を蒸発させ吸収する。尚、冷
媒の吸収によって得た熱は再び熱回収される。
Since the air pressure in the container (6) is reduced by the concentrated and cooled lithium bromide liquid (7), the refrigerant (water) in the evaporator is evaporated and absorbed by opening the solenoid valve (8). Note that the heat obtained by absorption of the refrigerant is recovered again.

パイプαυより排出する水蒸気は土(1)で熱交換゛し
て冷却して冷媒として両便用が可能である。又、このシ
ステムでは土(1)の温度より高い温度での回収が可能
であるので±+1)へ低温エネルギーを貯蔵してそのエ
ネルギーを吸収性物質(2)の部分で高温で回収するこ
とが可能である。
The water vapor discharged from the pipe αυ is cooled by heat exchange with the soil (1) and can be used as a refrigerant for both purposes. In addition, this system allows recovery at a temperature higher than the temperature of the soil (1), so it is possible to store low-temperature energy in ±+1) and recover it at high temperature in the absorbent material (2). It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はフローシートである。 Figures 1 and 2 are flow sheets.

Claims (1)

【特許請求の範囲】 (1)地中へ地温より高い水蒸気を入れ、水蒸気の地中
での拡散・凝縮させることによつ て地中の土(1)を加熱し昇温するとともに土(1)へ
温水を含ませる蓄熱の方法。 (2)土(1)に含まれた水分の飽和蒸気圧力より低い
圧力状態を地中に作ることによつて土 (1)に含まれた水分を蒸発させ、その潜熱によつて土
(1)を冷却すること及び蒸発した水蒸気を再び凝縮さ
せて潜熱を回収する方法 によつて蓄熱された熱を取り出す方法。 (3)水分の飽和蒸気圧力より低い圧力状態を作ること
及び土(1)に含まれた水分より回収された水蒸気を凝
縮させるために吸湿性物 質を用いる方法。 (4)以上(1)(2)(3)を組合せることによつて
行う、地中への蓄熱及び放熱と地中熱の回収方法。
[Claims] (1) By introducing water vapor higher than the soil temperature into the ground and causing the water vapor to diffuse and condense underground, the soil (1) in the ground is heated and the temperature is increased, and the soil (1) is heated. ) is a heat storage method that involves soaking hot water in the water. (2) By creating a pressure state in the ground that is lower than the saturated vapor pressure of the moisture contained in the soil (1), the moisture contained in the soil (1) is evaporated, and the latent heat is used to evaporate the moisture contained in the soil (1). ) and re-condensing the evaporated water vapor to recover latent heat. (3) A method of creating a pressure state lower than the saturated vapor pressure of water and using a hygroscopic substance to condense the water vapor recovered from the water contained in the soil (1). (4) A method for storing and dissipating heat underground and recovering underground heat by combining the above (1), (2), and (3).
JP60069288A 1985-04-02 1985-04-02 Underground storage of heat by hygroscopic substance Pending JPS61228293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069288A JPS61228293A (en) 1985-04-02 1985-04-02 Underground storage of heat by hygroscopic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069288A JPS61228293A (en) 1985-04-02 1985-04-02 Underground storage of heat by hygroscopic substance

Publications (1)

Publication Number Publication Date
JPS61228293A true JPS61228293A (en) 1986-10-11

Family

ID=13398260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069288A Pending JPS61228293A (en) 1985-04-02 1985-04-02 Underground storage of heat by hygroscopic substance

Country Status (1)

Country Link
JP (1) JPS61228293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008840A (en) * 2012-12-27 2015-10-28 加泰罗尼亚理工大学 Thermal energy storage system combining solid sensible heat material and phase change material
CN111208168A (en) * 2020-02-24 2020-05-29 上海理工大学 Method for capturing tidal surge heat exchange phenomenon of porous medium soil body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008840A (en) * 2012-12-27 2015-10-28 加泰罗尼亚理工大学 Thermal energy storage system combining solid sensible heat material and phase change material
CN111208168A (en) * 2020-02-24 2020-05-29 上海理工大学 Method for capturing tidal surge heat exchange phenomenon of porous medium soil body
CN111208168B (en) * 2020-02-24 2022-11-04 上海理工大学 Method for capturing damp-surging heat exchange phenomenon of porous medium soil body

Similar Documents

Publication Publication Date Title
US4240268A (en) Ground cold storage and utilization
JPS611933A (en) Adsorber for electric heat accumulator and operation method thereof
JPH02504424A (en) Intermittent solar ammonia absorption cycle refrigeration equipment
US4437321A (en) Absorption cooling and heating system
US3777811A (en) Heat pipe with dual working fluids
JPS61228293A (en) Underground storage of heat by hygroscopic substance
US2692483A (en) Refrigeration unit utilizing solar energy
JPH083392B2 (en) Concentration difference cold storage heat generator
JP2678211B2 (en) Heat storage type cold / heat generator
JPH0115783B2 (en)
JP3013481B2 (en) Cooling and heating equipment
JPS58164954A (en) Solar heat utilizing heat exchanger
JPS6150212B2 (en)
JPS6118107B2 (en)
JPS5832301B2 (en) absorption refrigerator
JPS59134488A (en) Latent heat type heat accumulator
JPS6024901B2 (en) Waste heat heating and cooling equipment
JPH0355741B2 (en)
JPS58164957A (en) Architectural member having solar heat utilizing function
JPH0452322B2 (en)
Bilgen Solar powered refrigeration
KR20150059821A (en) thermoelement and absorption chiller system
JPS58193061A (en) Two-stage absorption refrigerator
JPS644044Y2 (en)
JPH02150661A (en) Heat pipe utilization solar heat accumulation device