KR20150059821A - thermoelement and absorption chiller system - Google Patents
thermoelement and absorption chiller system Download PDFInfo
- Publication number
- KR20150059821A KR20150059821A KR1020130143371A KR20130143371A KR20150059821A KR 20150059821 A KR20150059821 A KR 20150059821A KR 1020130143371 A KR1020130143371 A KR 1020130143371A KR 20130143371 A KR20130143371 A KR 20130143371A KR 20150059821 A KR20150059821 A KR 20150059821A
- Authority
- KR
- South Korea
- Prior art keywords
- water
- evaporator
- thermoelement
- heater
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/02—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
- F25B15/06—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
물이 기화하여 기체상태로 변할 때 주위에 열을 흡수하게 된다. 열을 흡수하여 기체상태가 된 수증기를 리튬브로마이드(Br) 용액이 있는 곳으로 보내면 리튬브로마이드 용액은 수증기를 흡수하게 묽은 용액 상태가 된다. 묽어진 리튬브로마이드 용액은 시간이 지날수록 흡수능력이 떨어지기 때문에 가열기에 재가열하여 수분을 제거하여 다시 진한 리튬브로마이드 용액으로 만들어준다. 이때 묽어진 리튬브로마이드 용액을 가열하고, 여기서 발생 된 수증기를 다시 차갑게 식혀 물로 변환시키는 역할을 열전소자가 담당하게 된다. 이때 물이 기화할 때 열을 흡수하는 현상을 이용하여 더운 실내 공기를 냉각시키는 장치로 사용한다.
When the water vaporizes and changes to the gaseous state, it absorbs heat around it. When the water vapor that absorbs heat and becomes gaseous is sent to the place where the lithium bromide (Br) solution is present, the lithium bromide solution becomes a dilute solution state to absorb water vapor. Since the diluted lithium bromide solution becomes less absorbent over time, it is reheated to the heater to remove water and turn it into a deep lithium bromide solution. At this time, the thermoelectric element plays a role of heating the diluted lithium bromide solution and converting the generated water vapor into cold water to convert it into water. At this time, water is used as a device for cooling indoor air by utilizing the phenomenon of absorbing heat when vaporized.
열전소자는 펠티어(Peltier)효과에 의하여 전압을 가하면 PN반도체로 구성된 한쪽면은 열을 방출하고 한쪽면은 열을 흡수하게 된다. 이러한 현상을 이용하여 농도가 묽어진 리튬브로마이드(Br) 용액을 가열하여 진한 농도의 용액을 만들 수 있고, 리튬브로마이드 용액 가열시 발생한 수증기를 냉각시켜 다시 액체상태로 만들어 증발기의 보충수로 사용한다.When a voltage is applied by a Peltier effect, the thermoelectric element emits heat on one side of the PN semiconductor and absorbs heat on the other side. By using this phenomenon, it is possible to make a concentrated solution by heating the diluted lithium bromide (Br) solution. In addition, the water vapor generated upon heating the lithium bromide solution is cooled and returned to a liquid state to be used as a replenishing water for the evaporator.
정상적인 대기압 1기압 = 760mmHg 에서는 물은 100도에서 끓게 된다. 하지만 공기의 압력이 낮아지면 물의 끓는점이 점점 내려간다. 50mmHg 정도로 밀폐 용기 내부를 진공상태로 만들어 주면, 물은 상온인 약 24도 정도에서 끓게 된다. 물이 끓어 수증기로 변하게 되면 기화열(heat of gasification) 혹은 증발열(heat of vaporization, latent heat of vaporization)에 해당하는 외부에 열을 흡수하게 되는데 이때 흡수한 열은 물질의 온도를 상승시키지 않아 잠열이라고 한다. 물의 기화 시 540kcal/kg의 열을 흡수하게 되는며, 물이 기화시 주위에 열을 흡수하는 현상을 이용하여 공기를 냉각하는 장치로 이용할 수 있다.At normal atmospheric pressure 1 atm = 760 mmHg, water boils at 100 degrees. However, as the air pressure decreases, the boiling point of the water gradually drops. When the inside of the sealed container is made to be in a vacuum state at about 50 mmHg, the water is boiled at about 24 degrees of normal temperature. When water boils and turns into steam, it absorbs heat to the outside, which is heat of gasification or heat of vaporization (latent heat of vaporization), which is called latent heat because it does not raise the temperature of the material . It absorbs heat of 540 kcal / kg when vaporizing water. It can be used as a device for cooling air by utilizing the phenomenon that water absorbs heat around vaporization.
증발기의 밀폐용기에 진공펌프를 설치하여 압력을 50mmHg 정도의 진공상태를 만들어 주면 증발기의 물은 상온인 24도에서 끓게 되고, 이때 물이 기화하면서 540kcal/kg의 열을 흡수하게 된다. 증발기는 매우 차가운 상태가 되어 5~15도 정도 온도상태로 변하게 된다. 증발기에 상단에 라지에터와 냉기를 외부로 배출할 팬을 설치하면 매우 차가운 냉기의 바람이 외부로 나가게 된다.If a vacuum pump is installed in the closed vessel of the evaporator to make a vacuum of about 50 mmHg, the water of the evaporator boils at 24 ° C, and the water vaporizes and absorbs 540 kcal / kg of heat. The evaporator becomes very cold and changes to a temperature of about 5 to 15 degrees. When the evaporator is equipped with a fan for discharging the radiator and chilled air to the upper side, a very cold chilled air is blown out.
증발기에서 발생한 수증기는 리튬브로마이드(Br) 50% 정도의 용액이 있는 흡수기 탱크에 연결된 관을 통하여 흡수기의 리튬브로마이드 용액에 흡수되어 증발기의 압력을 일정하게 유지하게 한다.The water vapor generated in the evaporator is absorbed into the lithium bromide solution of the absorber through a pipe connected to the absorber tank containing about 50% of lithium bromide (Br) solution, so that the pressure of the evaporator is kept constant.
흡수기의 리튬브로마이드 용액은 오랜 시간 수분을 흡수하게 되면 흡수능력이 떨어지기 때문에, 일부를 가열기로 보내 용액을 가열하여 농도 60%정도의 리튬브로마이드 용액과 수증기로 분리하게 된다. 이때 가열기를 가열하는 열원으로 열전소자의 발열부를 사용한다.Since the absorber's lithium bromide solution absorbs moisture for a long period of time, the absorptivity of the absorber is reduced, and a part of the lithium bromide solution is sent to a heater to separate the lithium bromide solution and water vapor into a solution having a concentration of about 60%. At this time, a heating portion of the thermoelectric element is used as a heat source for heating the heater.
농도가 진해진 리튬브로마이드 용액은 열전소자의 흡열부(냉각기)를 통하여 냉각되어 다시 흡수기로 공급되고, 가열기에서 발생한 수증기는 열전소자의 흡열부(냉각기)를 통하여 냉각되어 액체상태인 물로 변하여 응축기에 모이게 된다.The concentrated lithium bromide solution is cooled through the heat absorbing part (cooler) of the thermoelectric element and then supplied to the absorber. The water vapor generated in the heater is cooled through the heat absorbing part (cooler) of the thermoelectric element and converted into liquid water, Gathered.
응축기에 모인 물은 순환펌프를 이용하여 다시 증발기에 공급된다.
The water collected in the condenser is supplied to the evaporator again using a circulating pump.
압력이 낮은 밀폐된 용기 내의 물은 수증기로 변할 때 주위에 열을 흡수하는 공기냉각장치로서 동작하게 된다. 이때 발생한 수증기를 흡수하는 흡수기의 리튬브로마이드(Br)용액의 농도를 일정하게 유지시켜, 지속적으로 냉각 장치로서 역활을 하게 하여주는 것이 열전소자의 발열부이고, 증발기에서 수증기로 증발하여 부족해진 물을 가열기에서 발생한 수증기를 다시 액체로 냉각시켜 보충수를 만들어 주는 역할을 열전소자의 흡열부가 하게 된다.Water in a low-pressure, closed container acts as an air-cooling device that absorbs heat around when it turns into water vapor. In this case, the concentration of the lithium bromide (Br) solution in the absorber that absorbs the generated water vapor is kept constant, and it is the heating part of the thermoelectric device to continuously serve as the cooling device. In the evaporator, The heat absorbing portion of the thermoelectric element serves to cool the water vapor generated in the heater back to the liquid to make the makeup water.
이 공기냉각 장치는 기존의 에어컨(공기냉각장치)와 다르게 프레온이나 암모니아 가스와 같은 냉매를 사용하지 않고, 외부에 별도의 실외기를 필요로 하지 않는다.
Unlike the conventional air conditioner (air cooling device), this air cooling device does not use a refrigerant such as Freon or ammonia gas, and does not require an external outdoor unit.
해결하고자 하는 과제 : 기존 에어컨(공기냉각장치)에 사용되는 대기 오염물질인 프로온 가스나 암모니아 가스를 냉매로 사용하지 않고 냉방을 하는 방법을 찾고자 한다. 실외기와 같은 별도의 추가 시스템이 없이 냉방기를 가동시키고자 한다. 200wh 정도의 작은 소모 전력으로 냉방기를 가동하고자 한다.
Problem to be solved: We want to find a way to cool air without the use of air or pollutants such as propane gas or ammonia gas, which are used in existing air conditioners (air cooling devices). The air conditioner is intended to be operated without a separate additional system such as an outdoor unit. We want to operate the air conditioner with a small power consumption of about 200wh.
과제의 해결 수단 : 기존 에어컨(공기냉각장치)는 대기에 심각한 오염을 초래하는 프로온 가스나 암모니아 가스를 냉매로 사용하여 냉방을 하게 된다. 하지만 본 발명은 대기의 오염을 유발하는 프로온이나 암모니아 가스와 같은 물질을 사용하지 않고 친환경적인 물을 이용하여 공기를 냉각시킬 수 있다. 그리고 기존의 공기냉각장치 구동과 운영에는 외부의 실외기라는 별도의 냉각 시스템이 필요로 하지만, 본 발명은 외부에 별도의 추가적인 시스템이 필요하지 않다. 그리고 기존의 공기냉각장치들이 구동에 운영에 1500wh~ 이상의 많은 전력이 소모되지만, 본 발명은 반도체의 열전소자를 이용하여 200wh 내외의 적은 소모전력으로 동일한 효과를 낼 수 있다.
Solution to the Challenge: Conventional air conditioners (air-cooling units) use air-cooled propane or ammonia gas to cool air. However, the present invention can cool air using environmentally friendly water without using substances such as proton or ammonia gas that cause pollution of the atmosphere. In addition, the existing air cooling apparatus is driven and operated requires a separate cooling system called an external outdoor unit, but the present invention does not require an additional external system. In addition, conventional air cooling devices consume much more than 1500wh of operation in operation, but the present invention can achieve the same effect with less consumption power of about 200wh using a semiconductor thermoelectric device.
발명의 효과 : 기존의 에어콘(공기냉각장치)에서 사용한 대기 오염물질을 사용하지 않아 친환경적이다. 실외에 별도의 추가 설비가 필요치 않아 비교적 저렴하게 냉방시설을 구비할 수 있다. 200wh 정도의 적은 소모전력으로 공기냉각장치를 가동하여 여름철에 냉방으로 인하여 발생하는 대규모의 전력난을 해소할 수 있다.
EFFECT OF THE INVENTION: It is eco-friendly because it does not use the air pollutant used in the conventional air conditioner (air cooling device). It is possible to provide the air conditioner at a relatively low cost since no additional equipment is required outside the room. It is possible to operate the air cooling device with a consumption power of about 200wh, thereby eliminating a large-scale power shortage caused by cooling in summer.
진공펌프를 이용하여 증발기의 압력을 50mmHg 정도로 낮추어면 상온인 24도 정도에서 물일 끓어 증발하게 된다. 증발기 상단에 라지에터와 팬을 설치하여 증발기의 냉기를 외부로 배출 시켜 외부공기를 냉각시키다.
증발기에서 발생한 수증기는 흡수기에 흡수하여 증발기 내부의 압력이 일정 수준으로 유지하여 준다.
수증기를 흡수하여 농도가 연하여진 리튬브로마이드(Br)용액을 가열기로 보내 60%의 진한 용액으로 만들고 여기서 발생한 수증기는 냉각 과정을 거쳐 응축기로 보낸다.
가열기를 가열하는 열원과 가열기의 수증기를 액체로 냉각시키는 냉원을 열전소자가 담당하게 된다.
응축기에 모인 물은 순환펌프를 통하여 다시 증발기에 공급되게 된다.Using a vacuum pump, the pressure of the evaporator is lowered to about 50 mmHg, and the water evaporates at about 24 ° C. A radiator and a fan are installed on the top of the evaporator to cool the outside air by discharging the cold air of the evaporator to the outside.
The steam generated in the evaporator is absorbed into the absorber, and the pressure inside the evaporator is maintained at a certain level.
A solution of lithium bromide (Br), which absorbs water vapor and is swollen, is sent to a heater to make a 60% concentrated solution. The generated water vapor is cooled and sent to the condenser.
The thermoelectric element takes charge of a heat source for heating the heater and a cold source for cooling the water vapor of the heater into a liquid.
The water collected in the condenser is supplied to the evaporator again through the circulation pump.
증발기에 소형 진공펌프를 설치하여 증발기를 50mmHg정도의 진공으로 만들어 준다. 증발기, 흡수기, 가열기, 응축기는 모두 진공이 세어 나가지 않도록 철저하게 기밀을 유지하여야 한다. 열전소자의 발열부는 가열기에 방열기를 통하여 최대한 많은 열이 전달되도록 한다. 열전소자의 흡열부는 열교환기1, 열교환기2를 설치한다. 열교환기1은 가열부에서 농축된 뜨거운 용액을 냉각시켜 흡수기로 다시 공급하고, 열교환기2는 가열부에서 발생한 수증기를 냉각시켜 액체상태로 만들어 응축기로 보낸다. 응축기에 모인 물은 순환펌프를 이용하여 다시 증발기로 공급한다.A small vacuum pump is installed in the evaporator to make the evaporator to a vacuum of about 50 mmHg. Evaporators, absorbers, heaters, and condensers should all be kept tightly sealed so that no vacuum is evacuated. The heat generating portion of the thermoelectric element allows the heat of the heater to be transmitted through the heat radiator as much as possible. The heat absorbing portion of the thermoelectric element is provided with a heat exchanger 1 and a heat exchanger 2. The heat exchanger 1 cools the hot concentrated solution in the heating section and supplies it to the absorber again. The heat exchanger 2 cools the vapor generated in the heating section to a liquid state and sends it to the condenser. The water collected in the condenser is supplied to the evaporator again by using a circulating pump.
진공펌프 : 증발기 내부를 50mmHg 정도의 진공상태로 만드는 펌프
증발기 : 물을 증발시켜 열을 빼앗는 장치
흡수기 : 증발기에서 발생한 수증기를 흡수하는 용기
가열기 : 묽어진 흡수기의 용액을 가열하여 진한 농도의 용액으로 만드는 용기
열전소자 : 가열기를 가열하고, 가열기에서 발생한 뜨거운 용액을 냉각, 수증기를 액화시키는 장치
응축기 : 열전소자의 냉각부를 거친 물이 모이는 용기
순환펌프 : 응축기의 물을 증발기로 공급하는 펌프Vacuum pump: A pump that makes the inside of the evaporator to a vacuum of about 50 mmHg
Evaporator: Device that evaporates water to take heat away
Absorber: container for absorbing water vapor generated in the evaporator
Heater: a container that heats the solution of the diluted absorber to make it a concentrated solution
Thermoelectric element: a device that heats the heater, cools the hot solution generated by the heater, and liquefies the vapor.
Condenser: Container where water gathered through cooling part of thermoelectric element gather
Circulating pump: pump that supplies condenser water to the evaporator
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130143371A KR20150059821A (en) | 2013-11-24 | 2013-11-24 | thermoelement and absorption chiller system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130143371A KR20150059821A (en) | 2013-11-24 | 2013-11-24 | thermoelement and absorption chiller system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20150059821A true KR20150059821A (en) | 2015-06-03 |
Family
ID=53504585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130143371A KR20150059821A (en) | 2013-11-24 | 2013-11-24 | thermoelement and absorption chiller system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20150059821A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108592444A (en) * | 2018-02-06 | 2018-09-28 | 华北电力大学 | A kind of electric heat pump and the compound heat-exchange unit of absorption heat pump |
-
2013
- 2013-11-24 KR KR1020130143371A patent/KR20150059821A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108592444A (en) * | 2018-02-06 | 2018-09-28 | 华北电力大学 | A kind of electric heat pump and the compound heat-exchange unit of absorption heat pump |
CN108592444B (en) * | 2018-02-06 | 2023-10-31 | 华北电力大学 | Heat exchange unit combining electric heat pump and absorption heat pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Srikhirin et al. | Investigation of a diffusion absorption refrigerator | |
KR200443867Y1 (en) | Sola Lowtemp Water Absorption cooling System | |
US9464826B2 (en) | Hybrid system combining chiller and absorption heat pump | |
Ajib et al. | Solar thermally driven cooling systems: Some investigation results and perspectives | |
Xu et al. | Experimental verification of the variable effect absorption refrigeration cycle | |
JPH05172437A (en) | Method and device for cooling fluid, particularly air by two separated absorption cooling system | |
JP2012141101A (en) | Absorption refrigerator | |
CN104236160A (en) | Hybrid system combining cooling device and absorption heat pump | |
KR101069886B1 (en) | Air conditon apparatus for ship | |
KR20160010805A (en) | Free cooling system with absorption chiller | |
KR200445537Y1 (en) | Hybrid Absoption Cooling System | |
Yousfi et al. | Performance of a 5 kW hot water driven diffusion absorption chiller | |
EP2406551B1 (en) | Plant for heat-regulating a first fluid and a second fluid used for air-conditioning premises | |
KR20150059821A (en) | thermoelement and absorption chiller system | |
WO2015060369A1 (en) | Absorption-type hot and cold water system | |
KR20150067551A (en) | Outdoor Unit with evaporation cooling system of Airconditioner by thermoelement | |
KR101699905B1 (en) | Absorption chiller system having fuel cell | |
Lavanya et al. | Design of solar water cooler using aqua-ammonia absorption refrigeration system | |
Tenkeng et al. | Exergy analysis of a solar absorption refrigeration system in Ngaoundere | |
Shaker et al. | A novel technique for improving the performance of ammonia absorption refrigeration cycle | |
KR100426834B1 (en) | Heat Absorbing System for Absorber, Condenser and Evaporator by Using Latent Heat of Phase-change Fluids in Absorption Heat Pump | |
Arunkumar et al. | Design and fabrication of solar powered lithium bromide vapour absorption refrigeration system | |
JP2006300403A (en) | Heating and cooling device using heat exchange | |
JP2014119197A (en) | Refrigeration system | |
Srivastava et al. | Review paper on analysis of vapour absorption refrigeration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E601 | Decision to refuse application |