JPS61227838A - Lining resistant to hydrofluoric acid - Google Patents

Lining resistant to hydrofluoric acid

Info

Publication number
JPS61227838A
JPS61227838A JP6664985A JP6664985A JPS61227838A JP S61227838 A JPS61227838 A JP S61227838A JP 6664985 A JP6664985 A JP 6664985A JP 6664985 A JP6664985 A JP 6664985A JP S61227838 A JPS61227838 A JP S61227838A
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
al2o3
resin
compound layer
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6664985A
Other languages
Japanese (ja)
Other versions
JPH0564102B2 (en
Inventor
Mizukado Tomikawa
冨川 水門
Toshiaki Urata
浦田 敏昭
Masataka Fujii
藤井 正敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Mitsubishi Engineering Plastics Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP6664985A priority Critical patent/JPS61227838A/en
Publication of JPS61227838A publication Critical patent/JPS61227838A/en
Publication of JPH0564102B2 publication Critical patent/JPH0564102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0245Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of synthetic organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0295Synthetic organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain an excellent lining resistant to hydrofluoric acid in a treating apparatus for a combustion exhaust gas of coal by laminating a compound layer contg. 5-50wt% gamma-Al2O3 particle on the surface of a base material consisting of the fiber reinforced plastic. CONSTITUTION:A compound layer 2 consisting of alpha-Al2O3 particle, 5-50wt% gamma-Al2O3 particle and the resin resistant to corrosion is laminated with a spray or the like on the surface of a base material 1 consisting of the fiber reinforced plastic of the resin resistant to corrosion such as unsaturated polyester resin. Still further, gamma-Al2O3 particles function as an absorbent of F2 and alpha-Al2O3 particles function as an excipien. An average particle size of the inorganic particle is 60-90mu and the thickness of the layer is suitably decided by means of the amount of F2 incorporated in the exhaust gas and a waste liquid. In an example wherein a lining having 0.25mm thickness was laminated and brought into contact with hydrofluoric acid of 10,000ppm fluorine concn. for 180 days, fluorine had not reached the base material.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、石炭燃焼排ガス、窯業等に用いるボイラー排
ガスなどのような弗化水素ガスを含む気体や弗酸を含有
する液体等と接触する装置の耐弗酸性ライニングに関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an apparatus that comes into contact with a gas containing hydrogen fluoride gas or a liquid containing hydrofluoric acid, such as coal combustion exhaust gas or boiler exhaust gas used in the ceramics industry. Regarding hydrofluoric acid resistant lining.

(従来技術〕 従来、弗化水素ガスを含有する排ガスを処理する洗浄塔
、吸収塔、煙道、貯槽等の装置としては、繊維強化プラ
スチック(以下、FRPという)製のものが多用されて
いる。しかし、このような装置では、FRP中の繊維が
ガラス繊維である場合には、そのガラス繊維が弗化水素
ガスに侵されるので、7トリソクスである樹脂は弗化水
素ガスの通過のみでは侵されないものの、強度が低下し
たりして、装置自体の寿命をちじめてしまうこととなる
(Prior art) Conventionally, devices made of fiber-reinforced plastic (hereinafter referred to as FRP) have often been used for cleaning towers, absorption towers, flues, storage tanks, and other devices that treat exhaust gas containing hydrogen fluoride gas. However, in such a device, if the fibers in FRP are glass fibers, the glass fibers will be attacked by hydrogen fluoride gas, so the 7-trisox resin will not be attacked by passing hydrogen fluoride gas alone. Although this is not the case, the strength of the device itself will be reduced and the lifespan of the device itself will be shortened.

〔発明の目的〕[Purpose of the invention]

本発明は、耐弗酸性および耐久性に優れた長期間の使用
に耐え得るライニングを提供することを目的とする。
An object of the present invention is to provide a lining that has excellent hydrofluoric acid resistance and durability and can withstand long-term use.

〔発明の構成〕[Structure of the invention]

このため、本発明は、繊維強化プラスチックからなる基
体の表面に、α−アルミナ粒子と5〜50重量%のγ−
アルミナ粒子とからなる無機粉末を耐食性樹脂に配合し
たコンパウンド層を積層させてなる耐弗酸性ライニング
を要旨とするものである。
Therefore, in the present invention, α-alumina particles and 5 to 50% by weight of γ-
The gist of this product is a hydrofluoric acid-resistant lining formed by laminating a compound layer in which inorganic powder consisting of alumina particles is blended with a corrosion-resistant resin.

以下、図面を参照して本発明の構成について詳しく説明
する。   □ 第1図において、FRPからなる基体1の表面には、α
−アルミナ粒子と5〜50重量%のγ−アルミナ粒子と
からなる無機粉末を耐食性樹脂に配合したコンパウンド
N2を積層させている。
Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings. □ In Figure 1, the surface of the base 1 made of FRP has α
- Compound N2, in which inorganic powder consisting of alumina particles and 5 to 50% by weight of γ-alumina particles is blended with a corrosion-resistant resin, is laminated.

基体1は、ガラス繊維、炭素繊維等の繊維に耐食性樹脂
を含浸させたもので、公知の方法によって得ることがで
きる。
The base body 1 is made of fibers such as glass fibers and carbon fibers impregnated with a corrosion-resistant resin, and can be obtained by a known method.

耐食性樹脂としては、例えば、不飽和ポリエステル樹脂
、フェノール樹脂、ビニルエステル樹脂、エポキシ樹脂
、ウレタン樹脂等の耐食性を有するものである。これら
のうちで、耐熱性、施工性等を考慮すると、不飽和ポリ
エステル樹脂又はエポキシアクリレート樹脂を用いるこ
とが好ましい。
Examples of the corrosion-resistant resin include those having corrosion resistance such as unsaturated polyester resin, phenol resin, vinyl ester resin, epoxy resin, and urethane resin. Among these, in consideration of heat resistance, workability, etc., it is preferable to use unsaturated polyester resin or epoxy acrylate resin.

基体1の表面にコンパウンド層2を積層させるには、例
えば刷毛塗り、スプレー等の公知の方法によればよい。
The compound layer 2 may be laminated on the surface of the substrate 1 by a known method such as brush coating or spraying.

コンパウンド層2を構成する無機粉末においてγ−アル
ミナ粒子の量を5〜50重量%としたのは、5重量%未
満では長期にわたり弗素を吸収するのには不十分な量と
なり、一方、50重量%を越えると樹脂の硬化反応を進
めるために添加する硬化促進剤(ナフテン酸コバルトな
ど)を吸収し始めるため樹脂が未硬化となるからである
。なお、α−アルミナ粒子は、賦形剤として機能するも
のであって、γ−アルミナ粒子のように弗化水素ガス又
は弗酸と反応して弗素を吸収し得るものではない。無機
粉末の平均粒子径は、60〜90μである。60μ未満
では補強骨材としての性能がでにくく、そのためへアー
クランクの原因となり、一方、90μを越えるとザラつ
きを生じ、平滑な積極面を得ることが困難となるからで
ある。この無機粉末に加えて、ジルコニア等の他の無機
物の粉末を用いることもできる。
The reason why the amount of γ-alumina particles in the inorganic powder constituting the compound layer 2 is set to 5 to 50% by weight is that less than 5% by weight is insufficient to absorb fluorine for a long period of time, whereas 50% by weight %, the resin will begin to absorb the curing accelerator (such as cobalt naphthenate) added to advance the curing reaction of the resin, resulting in the resin becoming uncured. Note that the α-alumina particles function as an excipient and are not capable of absorbing fluorine by reacting with hydrogen fluoride gas or hydrofluoric acid like the γ-alumina particles. The average particle size of the inorganic powder is 60 to 90μ. If it is less than 60μ, it will be difficult to perform well as a reinforcing aggregate, which will cause arc rank, while if it exceeds 90μ, it will become rough and it will be difficult to obtain a smooth positive surface. In addition to this inorganic powder, other inorganic powders such as zirconia can also be used.

この無機粉末と配合するのに用いる耐食性樹脂は、前述
した基体1において用いるのと同様なものでよい。
The corrosion-resistant resin used for blending with this inorganic powder may be the same as that used in the base 1 described above.

コンパウンド層2において、無機粉末と耐食性樹脂との
配合割合は、樹脂100重量部に対して無機粉末5〜5
0重量部、好ましくは15〜25重量部である。5重量
部未満では長期にわたり弗素を吸収するのには不十分な
量であり、50重量部超では樹脂の硬化反応を進めるた
めに添加する硬化促進剤(ナフテン酸コバルトなど)を
吸収し始めるため樹脂が未硬化となるからである。
In compound layer 2, the blending ratio of inorganic powder and corrosion-resistant resin is 5 to 5 parts by weight of inorganic powder to 100 parts by weight of resin.
0 parts by weight, preferably 15 to 25 parts by weight. If it is less than 5 parts by weight, it is insufficient to absorb fluorine over a long period of time, and if it exceeds 50 parts by weight, it will begin to absorb curing accelerators (cobalt naphthenate, etc.) added to advance the curing reaction of the resin. This is because the resin becomes uncured.

コンパウンド層2の厚さは、処理すべき気体(排ガス)
又は液体(廃液)中の弗素の量に依存して適宜決定すれ
ばよい。例えば、排ガス中に弗化水素が弗素に換算して
1000〜2000ppm含有されている場合、又は廃
液中に弗酸が弗素に換算して1200ppm程度含有さ
れている場合には200μ〜300μ程度の厚さでよい
。なお、コンパウンド層2は、1層又は複数層のいずれ
でもよく、とくに限定されるものではない。
The thickness of compound layer 2 is determined by the thickness of the gas to be treated (exhaust gas).
Alternatively, it may be determined as appropriate depending on the amount of fluorine in the liquid (waste liquid). For example, if the exhaust gas contains 1000 to 2000 ppm of hydrogen fluoride converted to fluorine, or if the waste liquid contains about 1200 ppm of hydrofluoric acid converted to fluorine, the thickness is about 200 μ to 300 μ. It's good. Note that the compound layer 2 may be one layer or multiple layers, and is not particularly limited.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、FRPからなる基
体の上にγ−アルミナ粒子を含有するコンパウンド層を
積層させたため、下記の効果を奏することができる。
As explained above, according to the present invention, since the compound layer containing γ-alumina particles is laminated on the base made of FRP, the following effects can be achieved.

■ コンパウンド層においてγ−アルミナ粒子が弗素を
キャッチするため、弗化水素ガス又は弗酸の基体への到
達が殆どなく、したがってコンパウンド層と基体との間
で眉間剥離が生じることがない。このため、長期に亘る
ライニング寿命を期待することができる。すなわち、基
体の弗素ガス又は弗酸による劣化がない。
(2) Since the γ-alumina particles catch fluorine in the compound layer, almost no hydrogen fluoride gas or hydrofluoric acid reaches the substrate, and therefore no peeling occurs between the eyebrows between the compound layer and the substrate. Therefore, a long lining life can be expected. That is, there is no deterioration of the substrate due to fluorine gas or hydrofluoric acid.

■ アルミナ粒子がコンパウンド層内で補強骨材として
も機能し、これによりコンパウンド層の硬度を高めるの
で、ライニング表面の耐摩耗性を向上させることができ
る。
■ The alumina particles also function as reinforcing aggregate within the compound layer, thereby increasing the hardness of the compound layer, thereby improving the wear resistance of the lining surface.

以下に実施例を挙げて本発明の効果を具体的に説明する
EXAMPLES The effects of the present invention will be specifically explained below with reference to Examples.

実施例 tel  3.2n++n厚のガラス繊維強化FRP板
のまわりに、第1図に示すようにコンパウンド層を積層
させることによりテストピースを作製した(本発明品)
Example tel: A test piece was prepared by laminating a compound layer around a glass fiber reinforced FRP board with a thickness of 3.2n++n as shown in Fig. 1 (product of the present invention).
.

コンパウンド層2は、不飽和ポリエステル樹脂100重
量部に対し、α−アルミナ粒子と30重量%のγ−アル
ミナ粒子とからなる平均粒子径75μの無機粉末20重
量部を配合したもので、その厚さは0.25mmである
Compound layer 2 is a mixture of 100 parts by weight of unsaturated polyester resin and 20 parts by weight of an inorganic powder consisting of α-alumina particles and 30% by weight of γ-alumina particles with an average particle diameter of 75 μm. is 0.25 mm.

(b)  3.2n+m厚のガラス繊維強化FRP板の
まわりに、ポリエステル繊維の不織布を補強材としたF
RPをオーバーレイさせることによってテストピースを
作製した(比較品1)。なお、有機繊維の厚さは0.3
畦である。
(b) A 3.2n+m thick glass fiber-reinforced FRP board with a non-woven fabric made of polyester fiber as a reinforcing material.
A test piece was produced by overlaying RP (comparative product 1). The thickness of the organic fiber is 0.3
It is a ridge.

このようにして得られるこれらのテストピースを弗素濃
度10,000ppmに調整した弗化水素酸水溶液(液
温60℃)に基体の部分を除いて180日間接触させた
後、乾燥して重量を測定し、接触前に対する重量変化を
1d当りのmg数で算出した。この結果を下記第1表に
示す。
These test pieces obtained in this way were brought into contact with a hydrofluoric acid aqueous solution (liquid temperature 60°C) adjusted to a fluorine concentration of 10,000 ppm for 180 days, excluding the base portion, and then dried and weighed. The weight change compared to before contact was calculated in mg per 1 d. The results are shown in Table 1 below.

また、上記のように弗化水素酸水溶液に接触させて乾燥
した後のテストピースの断面部分について、X線マイク
ロアナライザー(EPMA)分析写真、走査型電子顕微
鏡写真(S[!M)等により分析した結果、ライニング
層に浸透した弗素が上記本発明品においてはT−アルミ
ナ粒子にキャッチされ、ガラス繊維にまで到達していな
く、上記比較品1においては有機繊維FRP層を通過し
てガラス繊維を溶解していることが確かめられた。
In addition, the cross section of the test piece after being brought into contact with the hydrofluoric acid aqueous solution and dried as described above was analyzed using X-ray microanalyzer (EPMA) analysis photographs, scanning electron micrographs (S[!M), etc. As a result, in the product of the present invention, the fluorine that had penetrated into the lining layer was caught by the T-alumina particles and did not reach the glass fibers, whereas in the comparative product 1, it passed through the organic fiber FRP layer and did not reach the glass fibers. It was confirmed that it was dissolved.

第1表 記1湛此漱盾口= 重量変化 (mg/an?)  13.2   20.6上記第1
表から明らかなように、本発明のものが耐弗酸性および
耐久性において優れていることが判る。
1st notation 1. Weight change (mg/an?) 13.2 20.6 1st above
As is clear from the table, the products of the present invention are superior in hydrofluoric acid resistance and durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のライニングの構成の一例を示す模式図
である。 ■・・・基体、2・・・コンパウンド層。
FIG. 1 is a schematic diagram showing an example of the configuration of the lining of the present invention. ■...Base, 2...Compound layer.

Claims (1)

【特許請求の範囲】[Claims] 繊維強化プラスチックからなる基体の表面に、α−アル
ミナ粒子と5〜50重量%のγ−アルミナ粒子とからな
る無機粉末を耐食性樹脂に配合したコンパウンド層を積
層させてなる耐弗酸性ライニング。
A hydrofluoric acid-resistant lining made by laminating a compound layer in which an inorganic powder consisting of α-alumina particles and 5 to 50% by weight of γ-alumina particles is blended with a corrosion-resistant resin on the surface of a substrate made of fiber-reinforced plastic.
JP6664985A 1985-04-01 1985-04-01 Lining resistant to hydrofluoric acid Granted JPS61227838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6664985A JPS61227838A (en) 1985-04-01 1985-04-01 Lining resistant to hydrofluoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6664985A JPS61227838A (en) 1985-04-01 1985-04-01 Lining resistant to hydrofluoric acid

Publications (2)

Publication Number Publication Date
JPS61227838A true JPS61227838A (en) 1986-10-09
JPH0564102B2 JPH0564102B2 (en) 1993-09-13

Family

ID=13321956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6664985A Granted JPS61227838A (en) 1985-04-01 1985-04-01 Lining resistant to hydrofluoric acid

Country Status (1)

Country Link
JP (1) JPS61227838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411583A (en) * 1993-11-15 1995-05-02 E. I. Du Pont De Nemours And Company HF-resistant ceramics and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411583A (en) * 1993-11-15 1995-05-02 E. I. Du Pont De Nemours And Company HF-resistant ceramics and use thereof

Also Published As

Publication number Publication date
JPH0564102B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
KR102365874B1 (en) Anti-corrosion and lightweight polymer mortar components for repair of deteriorated concrete structures
HU9200942D0 (en) Catalysts for polymerization of olefines and their components
CN1068860A (en) Hard austenitic stainless steel screw
JPS58174237A (en) Reforming catalyst of methanol
JPS61227838A (en) Lining resistant to hydrofluoric acid
JPH0455384B2 (en)
US3661663A (en) Method of producing siliceous fiber corrosion inhibiting composites
JPH04198491A (en) Treatment of metal surface
JP2570898B2 (en) Waterproof material composition, waterproof coating structure using the same, and waterproof coating method
KR101247187B1 (en) Silane based anti-corrosion coating agent and method for manufacturing thereof
JP6664308B2 (en) Material for gasket
JPH0442433B2 (en)
JPH07196318A (en) Calcium carbonate having modified surface and production of phenol resin foam using the same
CN206345816U (en) A kind of composite of degradable smog
JPH01172249A (en) Compounding substance for cement
JPS62103137A (en) Fiber reinforced plastic structure
JPS6035255B2 (en) How to separate oxidizing and non-oxidizing substances
JPS59335A (en) Preparation of anti-wear catalyst
JPS6132326B2 (en)
JPS5968336A (en) Production of glass fiber-reinforced plastics having excellent resistance to corrosion by acid at high temperature
JPS60166358A (en) Coating composition for prevention of hydrogen absorption
JPS5962639A (en) Preparation of multi-layer molded article having corrosion resistance
Yagupol'akaya et al. The Structure and Corrosion Resistance of Nickel--Molybdenum Composite Coatings in Acid Media
SU276015A1 (en) METHOD FOR PREPARING THE CATALYST TO RECEIVE "CONTROLLED ATMOSPHERE"
Belmares et al. New composite materials from natural hard fibers. 3. Biodeterioration kinetics and mechanism