JPS5968336A - Production of glass fiber-reinforced plastics having excellent resistance to corrosion by acid at high temperature - Google Patents

Production of glass fiber-reinforced plastics having excellent resistance to corrosion by acid at high temperature

Info

Publication number
JPS5968336A
JPS5968336A JP17949082A JP17949082A JPS5968336A JP S5968336 A JPS5968336 A JP S5968336A JP 17949082 A JP17949082 A JP 17949082A JP 17949082 A JP17949082 A JP 17949082A JP S5968336 A JPS5968336 A JP S5968336A
Authority
JP
Japan
Prior art keywords
weight
resin
glass fiber
parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17949082A
Other languages
Japanese (ja)
Other versions
JPH0243768B2 (en
Inventor
Akio Kuno
久野 昭夫
Nobuhiro Kimura
暢宏 木村
Haruaki Izutsu
井筒 治明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP17949082A priority Critical patent/JPH0243768B2/en
Publication of JPS5968336A publication Critical patent/JPS5968336A/en
Publication of JPH0243768B2 publication Critical patent/JPH0243768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To obtain the titled FRP, by impregnating a glass fiber-reinforced substrate with a compsn. consisting of an epoxy polyacrylate resin, a polyacrylate resin, a diallyl terephthalate resin and a hardener and curing it. CONSTITUTION:20-80pts.wt. diallyl terephthalate, 0-30pts.wt. styrene, 0.5- 5pts.wt. ketone peroxide and/or alkyl peroxy ester, 0.1-2pts.wt. cobalt salt of an org. acid and/or vanadium salt of an org. acid and 0.01-0.1pts.wt. tertiary amine are blended with 100pts.wt. mixture consisting of 50-80wt% epoxy polyacrylate resin and 50-20wt% bisphenol type or novolak type polyacrylate resin. 80-10pts.wt. glass fiber-reinforced substrate is impregnated with 20-90wt% said resin compsn. and cured.

Description

【発明の詳細な説明】 本発明は、特に高温下での耐酸腐蝕性に優れたカラス繊
維強化プラスチックス(F RP )の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glass fiber reinforced plastics (F RP ) having excellent acid corrosion resistance, particularly at high temperatures.

工業材料としてのFRPは、その加工性、経済性の点か
ら次第に各様産業分野に利用されつつあるが、従来使用
されているFRPの原わ1樹脂とし−Cは、不飽和ポリ
エステル樹脂が殆んどである。しかしながら、FRPの
用途の拡大に伴って上記樹脂では満足C′きないような
性質、例えば耐熱性、耐腐蝕性等の性能を備えたFRP
が要求されるようになり、このような要求を満たす樹脂
とし′Cエポキシポリアクリレート樹脂が開発された。
FRP as an industrial material is gradually being used in various industrial fields due to its processability and economic efficiency. It is. However, as the uses of FRP expand, FRP has properties that cannot be satisfied with the above resins, such as heat resistance and corrosion resistance.
As a result, epoxy polyacrylate resin was developed as a resin that satisfies these demands.

上記のような耐腐蝕性が特に要求される分野においても
その応用は多種に亘り、特に100°C以上の高温雰囲
気に接する廃ガス処理施設の煙道、煙突、タクト等に使
用される材料は、例えば酸露点に達した無機酸、塩素カ
ス、窒素酸化物あるいは有機物等の各種の腐蝕性物質に
曝され、殊に露点下の無機酸は直接材料表面に付着する
ため従来の金属製材料は勿論のこと、上記エポキシポリ
アクリレート樹脂を原料とするFRPでもこのような環
境に耐えうる材料として充分ではなかった。
Its applications are wide-ranging even in the fields where corrosion resistance is particularly required as mentioned above, especially for materials used in flues, chimneys, tacts, etc. of waste gas treatment facilities that are in contact with high-temperature atmospheres of 100°C or higher. For example, conventional metal materials are exposed to various corrosive substances such as inorganic acids that have reached acid dew points, chlorine scum, nitrogen oxides, and organic substances. Of course, even FRP made from the above-mentioned epoxy polyacrylate resin was not sufficient as a material that could withstand such an environment.

本発明者らは、上記の如き厳しい環境条件下にあいCも
充分使用に耐えうるFRPを得るべく、エポキシポリア
クリレート樹脂を主成分とする含浸用樹脂について研究
を進めてきた結果、エポキシポリアクリレート樹脂とビ
スフェノール型又はノボラック型のポリアクリレート樹
脂及びジアリルテレフタレートとの特定割合よりなる組
成物が常温硬化性に優れており、これを含浸用樹脂とし
て用いることにより、上記環境に耐えうるFRPが得ら
れるということを見出したので必る。最も、従来におい
−Cもエポキシポリアクリレート樹脂に重合性上ツマ−
で゛あるジアリルオルソフタレート、またはジアリルイ
ソフタレートを配した組成物は知られている。しかしな
がら、ジアリルフタレ−1〜の異性体の一つであるジア
リルテレフタレートが意外にも本発明樹脂組成物の一成
分として特に有効であること、更にこれに特定のポリア
クリレート樹脂を配した三成分系の特定配合比よりなる
樹脂組成物が従来のFRPては得ることのできない高温
下での耐腐蝕性に顕著な効果を有するということについ
ては全く知られてあらず、本発明者らによって初めて見
出し得たことである。
The present inventors have conducted research on impregnating resins containing epoxy polyacrylate resin as a main component in order to obtain FRP that can withstand use under severe environmental conditions such as those described above. A composition consisting of a specific ratio of a resin, a bisphenol type or novolac type polyacrylate resin, and diallyl terephthalate has excellent room temperature curability, and by using this as an impregnation resin, an FRP that can withstand the above environment can be obtained. I found out that it is necessary. Most importantly, conventional odor-C is also highly polymerizable to epoxy polyacrylate resin.
Compositions containing diallyl orthophthalate or diallyl isophthalate are known. However, diallyl terephthalate, which is one of the isomers of diallyl phthalate-1~, is surprisingly particularly effective as a component of the resin composition of the present invention, and furthermore, it has been found that diallyl terephthalate, which is one of the isomers of diallyl phthalate-1~, is particularly effective as a component of the resin composition of the present invention. It was not known at all that a resin composition with a specific blending ratio had a remarkable effect on corrosion resistance at high temperatures, which cannot be obtained with conventional FRP, and the present inventors discovered this for the first time. That's what happened.

すなわち、本発明は、(a )エポキシポリアクリレー
ト樹脂50〜20重量%と(b)ビスフェノール型又は
ノボラック型ポリアクリレート樹脂50〜20重量%よ
りなる樹脂100重量部に対して、(C)ジアリルテレ
フタレート20〜80重量部、(d)スチレン0〜30
重量部。
That is, in the present invention, (C) diallyl terephthalate is added to 100 parts by weight of a resin consisting of (a) 50 to 20% by weight of an epoxy polyacrylate resin and (b) 50 to 20% by weight of a bisphenol type or novolac type polyacrylate resin. 20-80 parts by weight, (d) styrene 0-30
Weight part.

(e)ケトンパーオキシド及び/又はアルキルパーオキ
シエステル0.5〜5重量部、(f)コバルトの有機酸
塩及び/又はバナジウムの有機酸塩0.1〜2重量部及
び(g)第3級アミン類0.01〜0.1重量部を含む
樹脂組成物20〜90重量%をガラス繊維補強基材80
〜10重置%に含浸させて硬化せしめることを特徴とす
る高温下での耐酸腐蝕性に優れたFRPの製法を提供す
るものである。
(e) 0.5 to 5 parts by weight of ketone peroxide and/or alkyl peroxy ester, (f) 0.1 to 2 parts by weight of organic acid salt of cobalt and/or organic acid salt of vanadium, and (g) third 20 to 90% by weight of a resin composition containing 0.01 to 0.1 parts by weight of class amines was added to a glass fiber reinforced base material of 80% by weight.
The present invention provides a method for producing FRP having excellent acid corrosion resistance at high temperatures, which is characterized by impregnating the FRP at a concentration of up to 10% and curing it.

本発明に用いられるエポキシポリアクリレ−1−樹脂は
、エポキシ樹脂と(メタ)アクリル酸との反応生成物で
あり、通常エポキシ樹脂のエポキシ基1個当り(メタ)
アクリル酸0.8〜1.2モルの割合でトリエチルアミ
ンのごとき触媒、ハイドロキノンのごとき重合防止剤の
存在下で反応温度80〜160℃で反応させることによ
って製造される。エポキシ樹脂は分子中に2個以上のエ
ポキシ基をもつもので、例えばビスフェノール型エポキ
シ樹脂、ノボラック型エポキシ樹脂がある。
The epoxy polyacrylate-1-resin used in the present invention is a reaction product of an epoxy resin and (meth)acrylic acid, and usually has a (meth)
It is produced by reacting 0.8 to 1.2 moles of acrylic acid in the presence of a catalyst such as triethylamine and a polymerization inhibitor such as hydroquinone at a reaction temperature of 80 to 160°C. Epoxy resins have two or more epoxy groups in their molecules, such as bisphenol-type epoxy resins and novolac-type epoxy resins.

本発明に用いられるポリアクリレート樹11旨(よ、ヒ
スフェノール又はノボラックのポリフェノールとアルキ
レンオキシドとの相加反応物℃゛あるポリオールとアク
リル酸、メタ91月し酸又はこれらのエステルとを反応
させて得られるポリアクリレート樹脂である。このよう
なポリアクリレート樹脂の具体例として(ま、2゜2−
ヒス(4−(2−アクリロキシエトキシ)フェニル)プ
ロパン、2,2−ビス(4−(2−<  2−アクリロ
キシエトキシ)エトキシ)フェニル)プロパン、2,2
−ビス〔4−(2−アクリロキシプロポキシ)フェニル
〕プロパン、2,2−ビス(4−(2−メタクリロキシ
エトキシ)フェニル〕プロパン、2゜2−ビス(4−(
2−(2−メタクリロキシエトキシ)エトキシ)フェニ
ル〕プロパン、2.2−ヒス(4−(2−メタクリロキ
シプロポキシ)フェニル〕プロパン、2,2−ビス(4
−(3−メタクリロキシプロポキシ)フェニル〕プロパ
ン、2,2−ビス〔4−(2−(2−(2−アクリロキ
シエトキシ)エトキシ)■1〜キシ〕フェニル〕プロパ
ンおよびオキシエチレン化ノボラック又はオキシプロピ
レン化ノボラックのポリ(メタ)アクリレートなどが挙
げられる。
The polyacrylate resin used in the present invention is an additive reaction product of a polyphenol such as hisphenol or novolac and an alkylene oxide. This is a polyacrylate resin obtained.A specific example of such a polyacrylate resin is (2゜2-
his(4-(2-acryloxyethoxy)phenyl)propane, 2,2-bis(4-(2-< 2-acryloxyethoxy)ethoxy)phenyl)propane, 2,2
-bis[4-(2-acryloxypropoxy)phenyl]propane, 2,2-bis(4-(2-methacryloxyethoxy)phenyl)propane, 2゜2-bis(4-(
2-(2-methacryloxyethoxy)ethoxy)phenyl]propane, 2,2-his(4-(2-methacryloxypropoxy)phenyl)propane, 2,2-bis(4
-(3-methacryloxypropoxy)phenyl]propane, 2,2-bis[4-(2-(2-(2-acryloxyethoxy)ethoxy)■1~xy]phenyl]propane and oxyethylated novolak or oxy Examples include poly(meth)acrylate of propylenated novolak.

本発明における(a>、(b)、(c)よりなる樹脂成
分の割合は、(a )■ボキシポリアクリレーIへ樹脂
50〜80重量%と(b)ビスフェノール型又はノボラ
ック型ポリアクリレート樹脂50〜20重量%よりなる
混合物1oo重量部に対して(C)ジアリルテレフタレ
ート20〜80i量部である。(a )成分が50重量
%より少ないと、常温硬化性が乏しくなって初期物性に
影響を与える。又、(b )成分が20重量%より少な
いと、即ち(a )成分のエポキシポリアクリレ−1〜
樹脂が80重量%をこえるようになると、樹脂成分の粘
度が高ずぎて、規定量の(C)成分及び必要に応じて添
加される((1)成分の配合によっても実用的な粘度ど
ならず作業性を悪化させる結果となる。
In the present invention, the ratio of the resin components consisting of (a>, (b), and (c)) is (a) 50 to 80% by weight of resin to boxy polyacrylate I and (b) bisphenol type or novolak type polyacrylate. Diallyl terephthalate (C) is used in an amount of 20 to 80 parts per 10 parts by weight of a mixture consisting of 50 to 20% by weight of the resin.If the content of component (a) is less than 50% by weight, the room temperature curability becomes poor and the initial physical properties deteriorate. Also, if component (b) is less than 20% by weight, that is, component (a), epoxy polyacrylate 1 to
When the resin exceeds 80% by weight, the viscosity of the resin component becomes too high, and depending on the specified amount of component (C) and the blend of component (1), the practical viscosity cannot be reached. This results in poor workability.

(c)成分か上記(a)、(b)両成分100重量部に
対し゛U20重量部未満であると、本発明の目的どする
高温耐酸腐蝕性を充分付与することかできないと共に樹
脂組成物の粘度が高くなって作業性も悪くなる。(C)
成分が80重量部をこえると常温硬化性が悪化する。
If the amount of component (c) is less than 20 parts by weight per 100 parts by weight of both components (a) and (b), it will not be possible to provide sufficient high-temperature acid corrosion resistance, which is the objective of the present invention, and the resin composition will be The viscosity of the product increases and the workability deteriorates. (C)
If the amount of the component exceeds 80 parts by weight, room temperature curability deteriorates.

本発明の樹脂成分には、必要に応じU(d)成分のスチ
レンが(a)、(b)成分100重恒部に対して30重
量部以下の範囲で粘度調整希釈剤としで加えることがで
きる。30重量部をこえる添加は本発明効果を著しく減
退させるので好ましくない。
If necessary, styrene as U(d) component may be added as a viscosity adjusting diluent to the resin component of the present invention in an amount of 30 parts by weight or less per 100 parts by weight of components (a) and (b). can. Addition of more than 30 parts by weight is not preferable because it significantly reduces the effects of the present invention.

本発明組成物の硬化触媒としては、ケトンパーオキシド
又はアルキルパーオキシエステルあるいはこれらの混合
系からなる有機過酸化物とコバルト又はバナジウムの各
有41 M mあるいはこれらの混合系からなる硬化促
進剤及び第3級アミン類の硬化促進助剤より構成される
常温硬化性の硬化触媒系が使用される。
The curing catalyst of the composition of the present invention includes an organic peroxide consisting of ketone peroxide, alkyl peroxy ester, or a mixture thereof, a curing accelerator consisting of cobalt or vanadium, or a mixture thereof; A room-temperature curing curing catalyst system composed of a curing accelerator of tertiary amines is used.

上記有機過酸化物が混合系として使用される場合、ケト
ンパーオキシドとアルキルパーオキシエステルとの割合
は重量化で1:1〜1:10、望ましくは1:4〜1:
8の範囲で用いるとよい。ケトンパーオキシドの例とし
ては、メチルエチルケトンパーオキシト、シクロヘキサ
ノンパーオキシド、メチルイソブチルケトンパーオキシ
ド、アセチルアセトンパーオキシドなどが挙げられる。
When the above organic peroxide is used as a mixed system, the ratio of ketone peroxide and alkyl peroxy ester is 1:1 to 1:10 by weight, preferably 1:4 to 1:
It is recommended to use it within the range of 8. Examples of ketone peroxides include methyl ethyl ketone peroxide, cyclohexanone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, and the like.

アルキルパーオキシエステルの例とし′Cは、ターシャ
リ−ブチルパーベンゾエート、ターシャリープチルパー
オキシオクl〜エート、タージャリーブデルパーオキシ
−2−エチルヘキソエート。
Examples of alkyl peroxy esters include tert-butyl perbenzoate, tert-butyl peroxyocl-ate, and tert-butyl peroxy-2-ethylhexoate.

ターシャリ−ブチルパーオキシ−3,5,5−1〜リメ
ヂルヘキソエート、ターシャリ−ブチルパーオキシアセ
テート、ターシャリ−ブチルパー副キシイソブチレート
、ターシャリ−ブチルパーオキシビバレート、ターシャ
リ−ブチルパーオキシイソプロビルカーボネート、ジタ
ーシャリ−ブチルパーオキシアジペートなどが挙げられ
る。
Tert-butyl peroxy-3,5,5-1 to rimedylhexoate, tert-butyl peroxy acetate, tert-butyl peroxyisobutyrate, tert-butyl peroxy bivalate, tert-butyl peroxy isopro Examples include vinyl carbonate, di-tert-butyl peroxy adipate, and the like.

上記硬化促進剤が混合系で用いられる場合、コバル1〜
有機酸塩とバナジウム有機酸塩との混合割合は、それぞ
れ金属に換算した重母比で10:1〜1:1の範囲がよ
い。上記有1aM Mとしては炭素数6〜12のものが
よく、特にオクテン酸又はナフテン酸の金属塩が好まし
く用いられる。
When the above curing accelerator is used in a mixed system, Kobal 1 to
The mixing ratio of the organic acid salt and the vanadium organic acid salt is preferably in the range of 10:1 to 1:1 in terms of weight ratio calculated as metal. The above-mentioned 1aM M preferably has 6 to 12 carbon atoms, and metal salts of octenoic acid or naphthenic acid are particularly preferably used.

上記硬化促進助剤Cある第3級アミン類の例としては、
ジメチルアニリン、ジエチルアニリン、ジメヂルトルイ
ジン、ジェタノールアニリン、フェニルモルホリン、ト
リエチルアミン、トリブチルアミン、メチルモルホリン
Examples of the tertiary amines that are the curing accelerator C are:
Dimethylaniline, diethylaniline, dimethyltoluidine, jetanolaniline, phenylmorpholine, triethylamine, tributylamine, methylmorpholine.

ピペリジン、トリエチレンジアミンなどが挙げられる。Examples include piperidine and triethylenediamine.

これら硬化触媒の使用量は、本発明組成物の(a )成
分のエポキシポリアクリレート樹脂と(b)成分のビス
フェノール型又はノボラック型ポリアクリレート樹脂と
の合計樹脂分100重吊重量対して、有機過酸化物0.
5〜5重量部、硬化促進剤0.1〜2重量部及び硬化促
進助剤0.01〜0.1重量部の範囲が加工性と硬化物
特性どの関係上好ましい。本弁明の硬化触媒を用いると
0℃付近でも樹脂の硬化が進行して本発明の特性を発揮
することができ、冬季での現場施工が可能である等非常
に右利゛Cある。硬化に迅速を要するときは加熱による
アフターキュアーを行うことが望ましい。
The amount of these curing catalysts to be used is determined based on the total resin content of the epoxy polyacrylate resin as the component (a) and the bisphenol type or novolak type polyacrylate resin as the component (b) of the composition of the present invention. Oxide 0.
A range of 5 to 5 parts by weight, 0.1 to 2 parts by weight of the curing accelerator, and 0.01 to 0.1 parts by weight of the curing accelerator is preferable in terms of processability and properties of the cured product. When the curing catalyst of the present invention is used, the curing of the resin can proceed even at around 0° C., and the characteristics of the present invention can be exhibited, making it possible to perform on-site construction in winter, which is very advantageous. When rapid curing is required, it is desirable to perform after-curing by heating.

本発明に用いられる補強基材であるカラス繊維の形態と
しては、スIヘラント、チョップ1へストランド、チョ
ツプドストランドマッl−。
The forms of the glass fibers that are the reinforcing base material used in the present invention include strands, chopped strands, and chopped strands.

サーフェスマツ1〜.スワールマツト、ロービング、カ
ラス布などがあり、これらはFRPの用途及び成形法に
よって選択される。また、上記ガラス繊維のほか、カー
ボン繊維、有機質繊維を必要に応じて併用することもで
きる。
Surface pine 1~. There are swirl mats, rovings, crow cloths, etc., and these are selected depending on the use of FRP and the molding method. Further, in addition to the above-mentioned glass fibers, carbon fibers and organic fibers can be used in combination as necessary.

本発明のFRP中の樹脂組成物とカラス繊維補強基材と
の割合は、前者が20〜90重量%に対し、後者が80
〜10重量%の範囲が適当である。樹脂組成物の初が2
0重開%より少ないと、補強基材との密着性が充分でな
く機械的強度の低下が著しくなると共(こ耐熱性、耐酸
腐蝕性1ご乏しくなる。又、補強基材が10重岱%より
少ないと、補強効果が小さくなり、使用上充分な強度を
有するFRPとならない。
The ratio of the resin composition and the glass fiber reinforced base material in the FRP of the present invention is 20 to 90% by weight for the former and 80% for the latter.
A range of 10% by weight is suitable. The first resin composition is 2
If it is less than 0%, the adhesion with the reinforcing base material will be insufficient, resulting in a significant decrease in mechanical strength (this will result in poor heat resistance and acid corrosion resistance. If it is less than %, the reinforcing effect will be small and the FRP will not have sufficient strength for use.

成形方法としては、従来FRPの成形法とし−C知られ
Cいる方法てよく、例えはハンドレイアッゾ?去、スプ
レーアップ法、フィラメントワインディング法、遠心成
形法などが用いられる。
The molding method may be a conventional FRP molding method, such as a well-known method such as hand-lay azzo? methods such as spray-up method, filament winding method, and centrifugal molding method are used.

本発明によって得られたFRPは、廃ガス処理施設の煙
道、煙突、ダクトや化学反応装置にdSUるパイプ、タ
ンク等の耐腐蝕性の要求される部材として特に有用であ
る。以下実施例によって本発明を説明づ−る。
The FRP obtained by the present invention is particularly useful as members that require corrosion resistance, such as flues, chimneys, and ducts in waste gas treatment facilities, as well as pipes and tanks connected to chemical reaction equipment. The present invention will be explained below with reference to Examples.

実施例1〜6、比較例1〜6 第1表に示す樹脂組成物を用い−U、、ll5K−69
19に規定する積層板試験片の作製法に準じて試験片を
作製した。使用したガラス繊維は、サーフェスマット(
S)(日東紡績社IU rMs−30WJ)とチョツプ
ドストランドマット(M)(日東紡績社製rMC−45
0CJ)で、積層板の構成は5M3S’r試験片の大き
さは130X 100X 39、樹脂組成物含量は70
重量%C・あった。
Examples 1 to 6, Comparative Examples 1 to 6 -U, ll5K-69 using the resin compositions shown in Table 1
A test piece was produced according to the method for producing a laminate test piece specified in No. 19. The glass fiber used was Surface Mat (
S) (Nitto Boseki IU rMs-30WJ) and chopped strand mat (M) (Nitto Boseki rMC-45
0CJ), the configuration of the laminate is 5M3S'r test piece size is 130X 100X 39, resin composition content is 70
Weight% C.

得られた試験片を縦1.6m 、横2.0mのステンレ
ス製の角ダウl−内壁に取イ4け、6ケ月後。
The obtained test piece was placed on the inner wall of a stainless steel rectangular dow measuring 1.6 m long and 2.0 m wide. After 6 months.

12ケ月後のJISK−6919に基く各物性測定を行
い、初期物性に対する保持率を計締してその結果を第1
表に示した。試験条件は、廃ガス温度120 ’C〜1
50℃、風但2x 10’Nm’/hrでSOx  O
,1%、  NOx 200Dll1m、  8201
0%を含む廃ガスであった。試験期間中試験片表面には
常にン農度0.5〜5%程度の凝集酸(+−12S04
)が付着していた。ダクト内部は、随所にステンレス材
の腐蝕の激しい部分があり、毎年ステンレス材を取替え
ねばならないような状態であった。
After 12 months, each physical property was measured based on JISK-6919, the retention rate for the initial physical property was determined, and the results were used for the first
Shown in the table. Test conditions are exhaust gas temperature 120'C~1
SOx O at 50℃, Futan 2x 10'Nm'/hr
,1%, NOx 200Dll1m, 8201
The waste gas contained 0%. During the test period, the surface of the test piece was always covered with agglomerated acid (+-12S04) with a concentration of about 0.5 to 5%.
) was attached. Inside the duct, there were parts of the stainless steel material that were severely corroded, and the stainless steel material had to be replaced every year.

尚、第1表において使用した樹脂及び硬化剤等は以下に
示すとおりである。
The resins, curing agents, etc. used in Table 1 are as shown below.

エポキシポリアクリレート樹脂(■)ニジエル化学社製
[エピコー1−828Jを用いてこれと当量のメタクリ
ル酸との反応により得られた樹脂。粘度12400ボイ
ス(25°C)。
Epoxy polyacrylate resin (■) manufactured by Nigel Chemical Co., Ltd. [Resin obtained by reacting it with an equivalent amount of methacrylic acid using Epicor 1-828J. Viscosity 12400 voices (25°C).

エポキシポリアクリレート樹脂(■)ニジエル化学社製
[エピコート1001Jを用いてこれと当量のメタクリ
ル酸との反応により得られた帛温で固形の樹脂。
Epoxy polyacrylate resin (■) manufactured by Nigel Chemical Co., Ltd. [Resin solid at temperature obtained by reacting Epikote 1001J with an equivalent amount of methacrylic acid.

ヒスフェノール型アクリレート樹脂:大阪有機化学工業
社製1−ヒスコート#700j、粘度1200センチボ
イス(25℃)。
Hisphenol type acrylate resin: 1-Hiscoat #700j manufactured by Osaka Organic Chemical Industry Co., Ltd., viscosity 1200 centibois (25°C).

ノボラック型アクリレ−1−樹脂:3,6核体のノボラ
ック樹脂1モルとエチレンオキシド5,0モルとの付加
反応物とメタクリル酸3.6モルとの反応より得られる
樹脂。
Novolac-type acrylate-1-resin: A resin obtained by reacting an addition reaction product of 1 mol of 3,6-nuclear novolac resin with 5.0 mol of ethylene oxide and 3.6 mol of methacrylic acid.

粘度7000センチポイズ(25°C)。Viscosity 7000 centipoise (25°C).

硬化剤(ハ):ターシャリープチルパーヘンゾエート 硬化剤e:メチルエチルケトンパーオキサイド:ターシ
ャリブチルパーベンゾ 工−1〜−に6(重量) 硬化促進剤(P):0%オクチル酸コバルト硬化促進剤
0:0.2%オクチル酸バナジウム第3級アミン0′1
ジメチルトルイジン第3級アミン0ニジメチルアニリン また、バーコル硬さは、JISK−6911に規定する
バーコル硬度計934−1形を用いた。
Curing agent (c): Tertiary butyl perbenzoate curing agent e: Methyl ethyl ketone peroxide: Tertiary butyl perbenzoate -1 to -6 (weight) Curing accelerator (P): 0% cobalt octylate curing accelerator 0: 0.2% vanadium octylate tertiary amine 0'1
Dimethyltoluidine Tertiary amine O dimethylaniline Also, Barcol hardness was measured using Barcol hardness tester type 934-1 specified in JISK-6911.

試験片の重量変化率は初期の試験片の重量に対する変化
率で示した。
The rate of change in weight of the test piece was expressed as the rate of change with respect to the initial weight of the test piece.

第1表の物性試験結果より明らかなように、本発明によ
り得られたFRPは、6ケ月後及び12ケ月後において
も初期物性の保持率が著しく高いことが判る。これに対
して、ジアリルテレフタレー・トの代りにジアリルオル
ソフタレート及びジアリルイソフタレートを用いた比較
例1及び2では、6ケ月後に85いて既に積層物が界面
破壊を起している。またシアリルテレフタレートの配合
量の少ない比較例3では、6ケ月後の各物性値の保持率
は50%を割っており、重量変化率も本発明より著しく
高い。シアリルテレフタレートの配合量の多い比較例4
では樹脂が硬化せず物性試験を行うことができなかった
。又樹脂成分比が本発明範囲外にある比較例5及び6で
は、エポキシポリアクリレート樹脂量の少ない比較例5
′cは、初期物性が著しく小さく、耐蝕性試験も6ケ月
後で既に界面破壊を起しCおり、エポキシポリアクリレ
ート樹脂量の多い比較例6では、液粘度が著しく高いた
めスチレンの増量が必要であり、それと共に耐蝕性も著
しく悪化している。
As is clear from the physical property test results in Table 1, the FRP obtained by the present invention has a significantly high retention rate of initial physical properties even after 6 months and 12 months. On the other hand, in Comparative Examples 1 and 2 in which diallyl orthophthalate and diallyl isophthalate were used instead of diallyl terephthalate, the laminates had already undergone interfacial failure after 6 months. Furthermore, in Comparative Example 3, which contains a small amount of sialyl terephthalate, the retention rate of each physical property value after 6 months is less than 50%, and the weight change rate is also significantly higher than that of the present invention. Comparative example 4 with a large amount of sialyl terephthalate
However, the resin did not harden and physical property tests could not be performed. In addition, in Comparative Examples 5 and 6 where the resin component ratio is outside the range of the present invention, Comparative Example 5 has a small amount of epoxy polyacrylate resin.
'c has extremely low initial physical properties, and interfacial failure has already occurred after 6 months in the corrosion resistance test. In Comparative Example 6, which has a large amount of epoxy polyacrylate resin, the liquid viscosity is extremely high, so it is necessary to increase the amount of styrene. At the same time, the corrosion resistance is also significantly deteriorated.

実施例7〜8、比較例7〜8 第2表に示す樹脂組成物〈組成物の各成分は第1表のも
のと同じ)を用いて、実施例1〜6と同様にして大きさ
 130X  100x  、h重の試験片を作製した
Examples 7-8, Comparative Examples 7-8 Using the resin composition shown in Table 2 (each component of the composition is the same as in Table 1), the size was 130X in the same manner as in Examples 1-6. A test piece of 100x and h weight was prepared.

塩化アルカリ電解槽の塩素カス導管内に上記試験片を取
(=Jけ、実施例1〜6と同様にして6ケ月後、12ケ
月後の物性測定を行い、その結果を第2表に示した。試
験条件は、塩素カス温度80〜95°C2塩素園度95
〜100%、湿度100%であった。
The above test piece was placed in the chlorine waste conduit of the alkali chloride electrolytic cell (=J), and the physical properties were measured after 6 months and 12 months in the same manner as in Examples 1 to 6, and the results are shown in Table 2. The test conditions were: chlorine scum temperature: 80-95°C; chlorine temperature: 95°C;
~100%, and the humidity was 100%.

第2表より明らかなように、本発明の積層板は、いずれ
も物性保持率の低下は小さく、重量変化率も著しく小さ
い。これに対してジアリルテレフタレートの代りにジア
リルオルソフタレートを用いた比較例7及びジアリルテ
レフタレート含闇の少ない比較例8ではいずれも6ケ月
経過後で既に軟化しCバーコル硬さ保持率は零となって
おり、他の物性保持率も著しく低下し、重量変化率も大
きい。
As is clear from Table 2, in all the laminates of the present invention, the decrease in physical property retention was small and the weight change rate was also extremely small. On the other hand, in Comparative Example 7, in which diallyl orthophthalate was used instead of diallyl terephthalate, and Comparative Example 8, in which diallyl terephthalate had little darkness, both of them already softened after 6 months and the C Barcol hardness retention rate became zero. In addition, the retention rate of other physical properties also decreased significantly, and the weight change rate was also large.

第   2   表         (配合二重量部
)また、実施例1〜6と同じサーフェスマット(S)と
チョツプドストランドマット(M)及びガラスクロステ
ープ(T)(ユニチカ社製rATG 25100X  
150−3AJ )を用い、樹脂として実施例8の組成
物を用いて木型にてSM2TMTMTMSの積層構成か
らなる樹脂組成物含ff165重量%のFRP管く内径
125酩φ、厚さ 7鮪)を作製した。これを上記電解
槽の塩素ガス導管の一部として取付け、1年間使用後の
管の肉厚測定をした結果0.5〜0.8TA、の減少が
あったのみで従来使用されCいたFRP管(樹脂成分と
してビスフェノール型不飽和ポリエステルを使用したも
の)に較べて1.3〜1.8倍の耐久性があった。
Table 2 (Double weight part) Also, the same surface mat (S), chopped strand mat (M), and glass cloth tape (T) as in Examples 1 to 6 (rATG 25100X manufactured by Unitika Co., Ltd.
150-3AJ) and the composition of Example 8 as the resin, an FRP pipe (with an inner diameter of 125 mm and a thickness of 7 mm) containing a resin composition of 165% by weight consisting of a laminated structure of SM2TMTMTMMS was made in a wooden mold. Created. This was installed as part of the chlorine gas conduit in the electrolytic cell, and the wall thickness of the pipe was measured after one year of use. As a result, there was only a decrease of 0.5 to 0.8 TA, which was different from the conventionally used FRP pipe. (Using bisphenol type unsaturated polyester as the resin component) had 1.3 to 1.8 times the durability.

実施例9〜10、比較例9〜10 第3表に示ず樹脂組成物(組成物の各成分は第1表のも
のと同じ)を用いて、実施例7〜8と同様なガラス繊維
補強基材及び積層構成で樹脂組成物含量65重量%のF
RP管(内径75nφ、厚さ51.長さ1+n)を作製
した。これをベンゼンを0.1重量%含有するi11度
35重量%塩酸溶液中(温度20〜40℃)に浸漬し、
実施例1〜6と同様にして6ケ月後及び12ケ月後の各
物性測定を行ってその結果を第3表に示した。
Examples 9-10, Comparative Examples 9-10 Glass fiber reinforcement similar to Examples 7-8 using a resin composition not shown in Table 3 (each component of the composition is the same as in Table 1) F with a resin composition content of 65% by weight in the base material and laminated structure
An RP pipe (inner diameter 75nφ, thickness 51.length 1+n) was produced. This was immersed in a 35% by weight hydrochloric acid solution (temperature 20 to 40°C) containing 0.1% by weight of benzene.
Physical properties were measured after 6 months and 12 months in the same manner as in Examples 1 to 6, and the results are shown in Table 3.

第3表の物性結果をみると、実施例9,10はいずれも
浸漬12ケ月後においては、物性保持率90%以上を有
しているのに反()、比較例9,10では、物性保持率
50%前後もしくは50%以下の保持率しか有しておら
ず、重量変化率も大きい。
Looking at the physical property results in Table 3, Examples 9 and 10 both have a physical property retention rate of 90% or more after 12 months of immersion (), whereas Comparative Examples 9 and 10 have a physical property retention rate of 90% or more. The retention rate is only around 50% or less than 50%, and the weight change rate is also large.

第   3   表        (配合二重置部)
また、実施例9の樹脂組成物を用いてハントレイアップ
法により内容積約10711”のタンク(内径2,10
0mm、高さ3200. )を作製した。
Table 3 (Double combination section)
Further, using the resin composition of Example 9, a tank with an internal volume of about 10,711" (inner diameter 2,10"
0mm, height 3200. ) was created.

用いたカラス繊維は、実施例1〜6で用いたと同しサー
フェスマツ1−(S)とチョツプドストランドマット(
M)に、更にロービングクロス(R)(日東紡績社製r
WR−570J)を加えたもので、積層構成はSM2R
MRMRM2ST:樹脂含量60〜70重量%Cあった
The glass fibers used were the same surface pine 1-(S) and chopped strand mat (S) as used in Examples 1 to 6.
M), and roving cloth (R) (manufactured by Nittobo Co., Ltd.
WR-570J), and the laminated structure is SM2R.
MRMRM2ST: Resin content was 60 to 70% by weight C.

このタンク中に上記ど同様なベンゼン含有塩酸溶液を入
れて、1年、2年、3年後のタンクの内壁面の状態を観
察したが何らの異常も認められなかった。
A benzene-containing hydrochloric acid solution similar to that described above was placed in this tank, and the condition of the inner wall of the tank was observed after 1, 2, and 3 years, but no abnormality was observed.

出願人 大阪曹達株式会社 代理人 弁理士 間予 透Applicant: Osaka Soda Co., Ltd. Agent: Patent Attorney Toru Mayo

Claims (1)

【特許請求の範囲】 (a )エポキシポリアクリレート樹脂50N80重四
% (b)ヒ゛スフエノール型又はノボラック型ポリアクリ
レート樹脂 50〜20重量%上記(a )及び(b)
よりなる樹脂100重φ部に対して、下記の(C)〜(
(1>成分、(C)ジアリルテレフタレート 20〜80重量部 (d )スチレン        0〜30重量部(e
 >ケ1〜ンパーオキシド及び/又はアルキルパーオキ
シエステル 0.5〜5重量部 (f)コバルトの有11i1i1塩及び/又はバナジウ
ムの有m酸塩   0.1〜2重量部(g)第3級アミ
ン類 0.01〜0.1重量部を含む樹脂組成物20〜
90重量%をガラス繊維補強基材80〜10重量%に含
浸させて硬化せしめることを特徴とする高温下での耐酸
腐蝕性に優れたカラス繊維強化プラスチックスの製法。
[Scope of Claims] (a) Epoxy polyacrylate resin 50N80 4% by weight (b) Disphenol type or novolak type polyacrylate resin 50 to 20% by weight (a) and (b) above
The following (C) to (
(1>Component, (C) 20 to 80 parts by weight of diallyl terephthalate (d) 0 to 30 parts by weight of styrene (e
> 0.5 to 5 parts by weight of peroxide and/or alkyl peroxyester (f) 0.1 to 2 parts by weight of cobalt salt and/or vanadium salt (g) Tertiary Resin composition containing amines 0.01-0.1 parts by weight 20-
A method for producing glass fiber-reinforced plastics having excellent acid corrosion resistance at high temperatures, characterized by impregnating 90% by weight into 80 to 10% by weight of a glass fiber-reinforced base material and curing.
JP17949082A 1982-10-13 1982-10-13 KOONDENOTAISANFUSHOKUSEINISUGURETAGARASUSENIKYOKAPURASUCHITSUKUSUNOSEIHO Expired - Lifetime JPH0243768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17949082A JPH0243768B2 (en) 1982-10-13 1982-10-13 KOONDENOTAISANFUSHOKUSEINISUGURETAGARASUSENIKYOKAPURASUCHITSUKUSUNOSEIHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17949082A JPH0243768B2 (en) 1982-10-13 1982-10-13 KOONDENOTAISANFUSHOKUSEINISUGURETAGARASUSENIKYOKAPURASUCHITSUKUSUNOSEIHO

Publications (2)

Publication Number Publication Date
JPS5968336A true JPS5968336A (en) 1984-04-18
JPH0243768B2 JPH0243768B2 (en) 1990-10-01

Family

ID=16066731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17949082A Expired - Lifetime JPH0243768B2 (en) 1982-10-13 1982-10-13 KOONDENOTAISANFUSHOKUSEINISUGURETAGARASUSENIKYOKAPURASUCHITSUKUSUNOSEIHO

Country Status (1)

Country Link
JP (1) JPH0243768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030547A1 (en) * 2014-12-22 2016-06-24 Arkema France LIQUID (METH) ACRYLIC SYRUP, PROCESS FOR THE IMPREGNATION OF A FIBROUS SUBSTRATE BY THE SAME, AND COMPOSITE MATERIAL OBTAINED AFTER POLYMERIZATION OF THE IMPREGNATION SYRUP
JP2018158971A (en) * 2017-03-22 2018-10-11 日油株式会社 Curing agent composition, resin composition, and resin cured product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030547A1 (en) * 2014-12-22 2016-06-24 Arkema France LIQUID (METH) ACRYLIC SYRUP, PROCESS FOR THE IMPREGNATION OF A FIBROUS SUBSTRATE BY THE SAME, AND COMPOSITE MATERIAL OBTAINED AFTER POLYMERIZATION OF THE IMPREGNATION SYRUP
WO2016102890A1 (en) * 2014-12-22 2016-06-30 Arkema France Liquid (meth)acrylic syrup, method for impregnating a fibrous substrate with said syrup, and composite material produced after polymerisation of said impregnation syrup
CN107567468A (en) * 2014-12-22 2018-01-09 阿肯马法国公司 Liquid (methyl) acrylic acid series slurries, the method for fiber base material, and the composite obtained after the polymerisation of the printing slurries are printed with above-mentioned slurries
JP2018158971A (en) * 2017-03-22 2018-10-11 日油株式会社 Curing agent composition, resin composition, and resin cured product

Also Published As

Publication number Publication date
JPH0243768B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
CN1280353C (en) Heat convertible composition containing poly (arylidene ether), its producing process and products thereby
Launikitis Vinyl ester resins
Li Synthesis, characterization and properties of vinyl ester matrix resins
JPS5968336A (en) Production of glass fiber-reinforced plastics having excellent resistance to corrosion by acid at high temperature
US4581393A (en) Glass fiber reinforced vinylized epoxy compositions with reduced fiber prominence
JP2018002888A (en) Vinyl ester resin composition
EP0214370B1 (en) Low styrene emission vinyl ester resin employing polyacrylates for fiber-reinforced applications
US4322505A (en) Reactive polyester resin-plasticizer composition
JPH0233724B2 (en)
JPS6132326B2 (en)
JPH0559126B2 (en)
CA2064622C (en) Thioester polymerization modifiers
JP2014513199A (en) Curable polymer material
KR20100082816A (en) Production of vinylester resin and their composites with glass and carbon fibers by trifunctional epoxy resin
JP3553770B2 (en) Resin composition for reinforcing pipe joints made of vinyl chloride resin
JP2019085476A (en) Vinyl ester resin composition, composite material and cured product
Burts Structure and properties of dimethacrylate-styrene resins and networks
JPS60161414A (en) Preparation of unsaturated epoxy resin composition having improved shelf stability
JPH0131532B2 (en)
JP3912071B2 (en) Resin composition for waterproofing material
JPH05301934A (en) Resin composition and laminate product and composite product using the same
EP0009055B1 (en) Compositions containing (a) a resin with vinyl groups and (b) a monomer mixture comprising (1) dicyclopentadiene alkenoate and (2) a vinyl aromatic monomer or dialhylphtalate
FI86646B (en) Thermosetting, free-radical-settable unsaturated polymer resin composition and method for reducing gas development in the setting of thermosetting, free-radical-settable unsaturated polymer compositions
CN112789303A (en) Unsaturated polyester resin composition and cured product of the same
JPS58187415A (en) Fiber-reinforced plastic formed product