JPS61227103A - Production of iron powder - Google Patents
Production of iron powderInfo
- Publication number
- JPS61227103A JPS61227103A JP6508685A JP6508685A JPS61227103A JP S61227103 A JPS61227103 A JP S61227103A JP 6508685 A JP6508685 A JP 6508685A JP 6508685 A JP6508685 A JP 6508685A JP S61227103 A JPS61227103 A JP S61227103A
- Authority
- JP
- Japan
- Prior art keywords
- pig
- coarse
- grained
- crushing
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はキッシュグラファイト又はスラグ中より分離し
た、粗粒銑から鉄粉末を製造する方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing iron powder from coarse-grained pig iron separated from quiche graphite or slag.
高炉溶銑処理作業中、不可避的に発生するキッシュ黒鉛
を含む不定形粗粒銑は溶銑量の約1%内外発生し、その
量は多大である。しかし、一部は磁選されて付加価値の
低いスクラップとなるほか。During blast furnace hot metal processing operations, amorphous coarse pig iron containing Quiche graphite is unavoidably generated, which accounts for approximately 1% of the amount of hot metal, which is a large amount. However, some of it is magnetically sorted and becomes scrap with low added value.
焼結用原料等としてリサイクルされるのが実状である。The reality is that it is recycled as a raw material for sintering.
ところが、粗粒銑は粒形2mm以下のものが約50%を
占め、鉄粉原料として注目されている。しかしながら粒
状で且つ可成りのしん性をもっているため破砕時の衝撃
荷重が分散し、通常の破砕機であるボールミル、ハンマ
ーミルその他の機械的破砕では破砕困難な欠点をもって
いる。このような破砕しにくい固体金属の粉砕法として
化学工業便覧(丸善株式会社)P、1031−17゜3
.6に記載されているような低温粉砕法がある。However, about 50% of coarse-grained pig iron has a grain size of 2 mm or less, and is attracting attention as a raw material for iron powder. However, since it is granular and has considerable toughness, the impact load during crushing is dispersed, making it difficult to crush by mechanical crushing such as ball mills, hammer mills, and other conventional crushers. As a method of crushing solid metals that are difficult to crush, Chemical Industry Handbook (Maruzen Co., Ltd.) P, 1031-17゜3
.. There is a cryo-grinding method as described in 6.
低温粉砕は砕料が常温では熱可塑性、或は強じん性を有
する場合にドライアイスや液体窒素等の冷媒で冷却し、
脆性を与えて粉砕する方法のため、鉄類を粉砕する場合
、ドラムやボール材の低温脆性を配慮して特殊材料を用
いなければならない。In low-temperature pulverization, if the pulverized material is thermoplastic or tough at room temperature, it is cooled with a refrigerant such as dry ice or liquid nitrogen.
Since this is a method of grinding by imparting brittleness, when grinding iron, special materials must be used in consideration of the low-temperature brittleness of drums and ball materials.
又嵩張る鉄系スクラップは特開昭52−52482(金
属スクラップ処理方法)のように常温で軽くプレスした
後、冷却したスクラップを圧潰し。In addition, bulky iron-based scraps are lightly pressed at room temperature as in JP-A-52-52482 (metal scrap processing method), and then the cooled scraps are crushed.
粗破砕の後、微粉砕する方法もあるが、常温での機械的
粉砕法よりランニングコストや設備費が大きいことが知
られている。There is also a method of coarsely crushing and then finely crushing, but it is known that running costs and equipment costs are higher than mechanical crushing at room temperature.
一方、機械的粉砕法には(1)ボールミル法、(2)ハ
ンマーミル法、(3)振動ミル法、(4)スタンプミル
法、(5)エツジミル法、(6)マイクロティザ−法等
知られているが、(4)〜(6)は設備費が大きく、又
粉砕能率も比較的低く、(1)〜(3)で粉砕すること
が最も経済的である。しかしながら、該粗粒銑は前述し
たように形状と材質の両面から粉砕時の衝撃荷重が分散
し、ボールミル法においては長時間粉砕しても粉化率が
低い。しかも粉砕機構は磨耗作用にょる粗粒銑表面のみ
粉化し、衝撃による体積粉砕が行われない、又ハンマー
ミル法においては予めエツジミルで粗破砕したものでも
スクリーンの磨耗が著しく、スクリーン交換のため粉砕
機の運転時間が短く10分以内の断続稼動となり作業性
が悪く生産設備として得策でない。On the other hand, mechanical crushing methods include (1) ball mill method, (2) hammer mill method, (3) vibration mill method, (4) stamp mill method, (5) edge mill method, (6) microteaser method, etc. Although it is known, methods (4) to (6) require large equipment costs and have relatively low pulverization efficiency, so pulverization using methods (1) to (3) is the most economical. However, as described above, the impact load during crushing of the coarse pig iron is dispersed due to both its shape and material, and in the ball mill method, the pulverization rate is low even if it is crushed for a long time. Moreover, the crushing mechanism only pulverizes the surface of the coarse particles due to wear, and volumetric pulverization due to impact is not performed.In addition, in the hammer mill method, even if the iron is coarsely crushed in advance with an edge mill, the screen wears out significantly, and the screen must be replaced before pulverization. The operating time of the machine is short, with intermittent operation of less than 10 minutes, resulting in poor workability and not being a good idea as a production facility.
振動ミルにおいては、巾広い粒度構成をもっ該粗粒銑を
分別し3 m m以下の細粒は実験室規模の振動ミルで
微粉砕は可能であるが3 m m以上の粗粒銑は粗破砕
を行わなければ粉砕できず、その鉄粉末は凹凸の少ない
球形を呈し、焼結金属月並にカイロ用原料としては不適
で、且つ実生産規模のミルは現在のところ見当らない。In a vibrating mill, coarse pig iron with a wide particle size composition is separated, and fine grains of 3 mm or less can be pulverized in a laboratory-scale vibration mill, but coarse pig pigs of 3 mm or more are coarsely pulverized. It cannot be pulverized without crushing, and the iron powder has a spherical shape with few irregularities, making it as unsuitable as a raw material for body warmers as sintered metal, and no mill on a commercial scale has been found at present.
前記溶銑処理中に発生する長径15mm以下で不特定形
状の粗粒銑は、その粒度構成は第3図(イ)に示すよう
に2 m m以下の細粒が多いにもかかわらず、常温で
の機械的粉砕法では材質の両面から微粉砕することは困
難である。即ち、該粗粒銑は粒状でしかも銑鉄と同材質
であることから靭性を有するため、破砕時の衝撃荷重が
分散し、その粉砕機構は粗粒銑の表面層が僅に磨耗粉砕
するだけでなので体積粉砕が進行する手段が必要である
。The coarse-grained pig iron of unspecified shape with a major axis of 15 mm or less that is generated during the hot metal treatment has a particle size composition as shown in Fig. 3 (a), although it has many fine particles of 2 mm or less, but it is not stable at room temperature. It is difficult to pulverize both sides of the material using mechanical pulverization methods. In other words, since the coarse-grained pig is granular and made of the same material as pig iron, it has toughness, so the impact load during crushing is dispersed, and the crushing mechanism is such that the surface layer of the coarse-grained pig is only slightly abraded and crushed. Therefore, a means for volumetric pulverization is required.
粗粒銑の材質は銑鉄と同種であることから靭性を有し4
%程度の黒鉛を含有する。又その形状例(3〜10mm
)は第6図に示すように不特定粒状を示す、しかも細粒
と混合しているため破砕時の衝撃荷重が分散し粉砕しに
くいことは前記に示した通りである。しかし、該粗粒銑
は低応力で黒鉛を起点として亀裂が発生し易い性質があ
る。しかも常温で低速圧潰することによって含有黒鉛を
起点として無数の亀裂を発生させ得る。Since the material of coarse-grained pig is the same as pig iron, it has toughness.
% of graphite. Also, examples of its shape (3 to 10 mm
) has an unspecified granular shape as shown in FIG. 6, and since it is mixed with fine particles, the impact load during crushing is dispersed and it is difficult to crush, as described above. However, the coarse-grained pig iron has a property of being prone to cracking starting from graphite due to low stress. Furthermore, by crushing at room temperature and at low speed, countless cracks can be generated starting from the graphite contained.
本発明はこの点に着目して開発したもので、その製造方
法は高炉溶銑の出銑及び鋳鉄等の溶銑処理時に発生する
キッシュグラファイトとスラグの混合物中から分離した
粗粒銑を予め常温で圧潰し板状に塑性変形することによ
り多数の亀裂を発生させ、その後微粉砕することを特徴
とする鉄粉末の製造方法である。The present invention was developed focusing on this point, and its manufacturing method involves crushing coarse pig iron separated from a mixture of quiche graphite and slag, which is generated during tapping of blast furnace hot metal and processing of hot metal such as cast iron, in advance at room temperature. This method of producing iron powder is characterized by generating a large number of cracks by plastically deforming it into a plate shape, and then pulverizing it into fine particles.
本発明の製造工程について説明すると先ずキッシュグラ
ファイトから粗粒銑を分離する工程があり、高炉から出
銑された溶銑を鋳鉄機、又は混銑炉へ搬送し、それぞれ
の場所で発生するキッシュグラファイトと溶滓の混合物
を排滓し留置する。To explain the manufacturing process of the present invention, there is first a step of separating coarse-grained pig iron from Quiche graphite, in which the hot metal tapped from the blast furnace is transported to a casting machine or a mixed iron furnace, and the Quiche graphite generated at each location is mixed with the molten iron. Drain and retain the slag mixture.
留置した排滓をバースクリーン(篩分)で分級する。The retained waste slag is classified using a bar screen.
次にトロンメンによりスラッジ、小塊、荒銑、粗粒銑に
分離する。上記の分離方法は乾式でも可能である。また
、前記の粗粒銑は出銑、鋳銑及び転炉以外から発生した
ものも含む。Next, it is separated into sludge, small lumps, rough pig iron, and coarse pig iron using a trommen. The above separation method can also be performed dryly. Further, the above-mentioned coarse-grained pig iron includes those generated from sources other than tap iron, cast pig iron, and converter furnaces.
次に分離した粗粒銑を多段ロールによって複数のロール
を通して圧潰し1mm程度の板状に塑性変形させ、多数
の亀裂を発生させる。その後、微粉砕機で微粉砕する。Next, the separated coarse-grained pig iron is crushed through a plurality of rolls and plastically deformed into a plate shape of about 1 mm, thereby generating a large number of cracks. Then, it is pulverized using a pulverizer.
まず粗粒銑を分離する方法を実施例にもとすいて説明す
る。該粗粒銑はキッシュグラファイトや排滓中に混在し
ており1分離しなければならない。First, a method for separating coarse-grained pig iron will be explained using an example. The coarse pig iron is mixed in the quiche graphite and waste slag and must be separated.
第2図はその分離方法を示す、高炉Aより出銑された溶
銑は溶銑鍋Bに受けられ鋳銑機C又は混銑炉りに送られ
、夫々の溶銑処理時に排滓E−,Fが行なわれる。この
排滓には多量の荒銑や粒銑が混在するため、鉄源及びグ
ラファイトの回収を行なう。排滓物は一時留置され、そ
の後バースクリーンHの300m/m篩目で分級される
。+300m / mは篩上荒鉄工となり一300m/
mは篩下荒銑、グラファイト、スラッジとなる。その後
−300m/mは水洗、篩分の機能を有するトロンメン
Kによってまずスラッジを除去し、その他は一15m/
mの粗粒銑Nと15−300m/mの小塊丸鉄Mとなる
。上記のうち、粗粒銑Nは以下に説明するような装置で
微粉砕される。Figure 2 shows the separation method. Hot metal tapped from blast furnace A is received in hot metal ladle B and sent to caster C or mixer, and slag E- and F are removed during each hot metal treatment. It will be done. Since this slag contains a large amount of rough pig iron and granular pig iron, the iron source and graphite will be recovered. The sludge is temporarily retained and then classified using a bar screen H with a 300 m/m sieve mesh. +300m/m is sieve top rough ironwork and -300m/m
m is rough pig iron under the sieve, graphite, and sludge. After that, the sludge is first removed from -300m/m by Trommen K, which has water washing and sieving functions, and the rest is -300m/m/m.
m/m of coarse grain pig N and 15-300 m/m of small lump round iron M. Among the above, coarse pig pig N is finely pulverized using a device as described below.
第1図は粗粒銑を圧潰微粉砕するための装置例である。FIG. 1 shows an example of an apparatus for crushing and pulverizing coarse pig iron.
該装置は粗粒銑貯蔵ホッパー1.シュート2、多段ロー
ル5.磁選装置を有するコンベアー8及び微粉砕機10
等からなる。該ホッパー1とシュート2の間には必要の
つと切出させるゲート3がある。又該多段ロール5は複
数のロール6及びガイド7からなっており、該ロール5
は上段から下段に進むにつれてその間隙が狭くなってい
る。その後の工程には夾雑物除去のため磁選装置を有す
るコンベアー8及びホッパー9を介して微粉砕機10が
設けられている。The equipment consists of a coarse pig iron storage hopper1. Chute 2, multi-stage roll 5. Conveyor 8 and pulverizer 10 with magnetic separator
Consists of etc. Between the hopper 1 and the chute 2 there is a gate 3 for cutting out the necessary material. Further, the multistage roll 5 is composed of a plurality of rolls 6 and a guide 7, and the roll 5
The gap becomes narrower from the top to the bottom. In the subsequent process, a pulverizer 10 is provided via a conveyor 8 and a hopper 9 having a magnetic separator to remove impurities.
上記微粉砕機はボールミル、ハンマーミル、振動ミル等
いずれでも可能である。好ましくは得られる鉄粉粒形及
び粉砕能率の良い振動ミルがよい。The above-mentioned pulverizer may be a ball mill, a hammer mill, a vibration mill, or the like. Preferably, a vibrating mill is used because of its obtainable iron powder particle shape and grinding efficiency.
本発明では、粗粒銑の粉砕困難な主因である粒状形を低
速回転ロールで常温圧潰することにより、第7図のよう
に無数の亀裂を発生させた板状に塑性変形させられるた
め、その後の微粉砕を容易にする。又この塑性変形方法
はロール又はプレスによって可能であるが、プレス圧潰
は材料供給が断続的になるため生産性が悪く、大量処理
には不適であるがロールによる圧潰は連続的に、材料供
給が可能なことから大量処理に適する。ロールは粒状の
原料を噛み込ませるためと粒形の大きいものはパス回数
を多くして所定の厚さに圧潰させるため垂直多段型が好
ましい。In the present invention, by crushing the granular shape, which is the main cause of difficulty in crushing coarse-grained pig iron, with low-speed rotating rolls at room temperature, it is plastically deformed into a plate shape with countless cracks as shown in Figure 7. facilitates fine pulverization. This plastic deformation method is possible using rolls or a press, but press crushing has poor productivity because the material supply is intermittent, and is unsuitable for mass processing; however, roll crushing is continuous and the material supply is This makes it suitable for mass processing. It is preferable that the roll be of the vertical multi-stage type in order to allow granular raw materials to be bitten and to crush large granular materials to a predetermined thickness by increasing the number of passes.
前記の方法によって1mm程度に圧潰した板状砕料は大
粒形程ロールパス回数が多くなるため発生亀裂の伝播に
よって破断分割されるものもあり。The plate-shaped crushed material crushed to about 1 mm by the above method may be broken and split due to propagation of generated cracks because the larger the particle size is, the more roll passes are required.
該粗粒銑の1mm以上の粒径のものは無数の亀裂を発生
した砕料に変化する。かくして得られた砕料は粉砕時の
衝撃荷重を分散させることなく、しかも同時生成した亀
裂の相乗効果から体積粉砕が著しく向上するため、粗破
砕工程を省略して微粉砕することが可能になる。The coarse pig iron with a particle size of 1 mm or more turns into crushed material with numerous cracks. The thus obtained crushed material does not disperse the impact load during crushing, and the volumetric crushing is significantly improved due to the synergistic effect of the simultaneously generated cracks, so it becomes possible to omit the coarse crushing step and perform fine crushing. .
特に圧潰時の亀裂発生による体積粉砕により凹凸の著し
い形状となり、焼結金属用並にカイロ用原料に適した鉄
粉末が得られる。In particular, the volume pulverization due to cracking during crushing results in a significantly uneven shape, resulting in iron powder suitable for use as a raw material for sintered metals and hand warmers.
上記鉄粉末は使途に応じて分級し粒度をそろえて混合し
最適粒度にすると良く、例えば市販されている鉄粉カイ
ロ用と同程度の品質を保証することができる。The above-mentioned iron powder may be classified according to the purpose of use, and the particle size may be made uniform and mixed to obtain the optimum particle size. For example, it is possible to guarantee the same quality as that for commercially available iron powder body warmers.
鉄粉末を製造する作用の実施例を以下に説明する。An example of the operation of producing iron powder will be described below.
第1図に示したように、該粗粒銑を貯蔵するホッパー1
に取付けられたシュート2よりロール長さ40cmの約
70%にわたり圧潰されるように巾広く該粗粒銑4を2
kg/分の切出しで落下させ周速10m/分以下の低速
回転する垂直多段ロール5の上段ロール6(ロール間の
すき間6m/m)で50%の圧下率で圧潰ガイド7を通
り、さらに中段ロール(ロール間のすき間2.5m/m
)で60%、下段ロール(ロール間のすき間1 m /
m )で60%圧下で夫々圧潰し約1mmの板状にし
た。As shown in FIG. 1, a hopper 1 for storing the coarse pig iron
The coarse-grained pig iron 4 is rolled widely through a chute 2 attached to the chute 2 so that about 70% of the roll length of 40 cm is crushed.
kg/min, and passed through the crushing guide 7 at a rolling reduction rate of 50% by the upper roll 6 (gap between rolls 6 m/m) of the vertical multi-stage roll 5 rotating at a low speed of 10 m/min or less peripheral speed, and then passed through the crushing guide 7 at a reduction rate of 50%. Rolls (gap between rolls 2.5m/m
) 60%, lower roll (gap between rolls 1 m /
m ) under 60% pressure to form a plate shape of approximately 1 mm.
この圧潰工程は下段ロールの間隙より小さい該粗粒銑は
無圧下で通過するが各段ロール間隙より大きい該粗粒銑
は圧潰されロールバス回数の多いもの程黒鉛を起点とし
た亀裂の伝播により分割される。圧潰用ロールの材質は
該粗粒銑が白銑化していないためHRB 140以下
で軟く圧潰時、砕料がロールへ張付かないチルドロール
がよい。In this crushing process, the coarse grained piglet smaller than the gap between the lower rolls passes under no pressure, but the coarse grained piglet larger than the gap between each flute roll is crushed. be divided. The material of the crushing roll is preferably a chilled roll, which has an HRB of 140 or less and is soft so that the crushed material does not stick to the roll during crushing because the coarse grained pig iron is not whitened.
圧潰された砕料は磁選装置を有するコンベアー8により
ホッパー9に貯蔵され、微粉砕機10に供給される。圧
潰した砕料をドラム径30cmドラム長さ20cmのボ
ールミルに10kg装入し回転数5Orpmで1時間粉
砕した。粉砕後の粒度構成は第3図の(ロ)のようにな
り無圧潰でボールミル粉砕7時間の粒度構成第3図(ハ
)及び無圧潰の該粗粒銑10kgをハンマークラッシャ
ーで15分粗破砕の後アトマイザ−で所要時間50分微
粉砕した粒度構成(ニ)に比較して最も破砕率が良い。The crushed material is stored in a hopper 9 by a conveyor 8 having a magnetic separator, and is supplied to a pulverizer 10. 10 kg of the crushed material was charged into a ball mill with a drum diameter of 30 cm and a drum length of 20 cm, and pulverized at a rotational speed of 5 Orpm for 1 hour. The particle size structure after crushing is as shown in Figure 3 (b), and the particle size configuration after 7 hours of ball mill crushing without crushing is shown in Figure 3 (c). The crushing rate is the best compared to the particle size configuration (d) in which the particles were then finely pulverized using an atomizer for 50 minutes.
又、本発明による方法、で粉砕した鉄粉末を149〜2
97μで分級した粒形は第8図のように長方多角形とな
っており、焼結金屑及びカイロ用原料として理想的な形
状になっている。この鉄粉末を−297〜149μと一
149μに分級し、市販品同様に各々50%の割合で混
合し発熱テストを実施した結果第4図に示すように市販
の使い捨てカイロの発熱温度並に発熱持続時間等、同等
の特性を有することが確認された。Further, the iron powder pulverized by the method according to the present invention is
The particle shape classified by 97μ is a rectangular polygon as shown in FIG. 8, which is an ideal shape as a raw material for sintered metal scraps and body warmers. This iron powder was classified into -297~149μ and -149μ, mixed at 50% of each in the same way as commercially available products, and a heat generation test was conducted.As shown in Figure 4, the heat generation temperature was similar to that of a commercially available disposable body warmer. It was confirmed that they had similar characteristics such as duration.
又、本発明で粉砕された鉄粉末を297μ以下で分別し
焼結金属用鉄粉として可否を試験した結果、第1表に示
す粒度構成のものが得られ、バインダー無添加で成型し
た。この鉄粉末には前記のように3〜4%の黒鉛を含む
ためバインダーの添加を必要とせず且っ3 t / c
rd低加圧でも抜型後のハンドリングも支障なく成型
性に優れている。Further, as a result of classifying the iron powder pulverized according to the present invention into particles of 297 μm or less and testing whether or not they can be used as iron powder for sintered metals, particles having the particle size configuration shown in Table 1 were obtained and molded without the addition of a binder. As mentioned above, this iron powder contains 3 to 4% graphite, so it does not require the addition of a binder and has a yield of 3 t/c.
RD Excellent moldability with no problems in handling after mold removal even at low pressure.
第5図は第1表の鉄粉末を用い40φ試料に成型した圧
粉体密度を示すがダライ粉をボールミル破砕した鋳鉄粉
1より該鉄粉末2の方が成型性に優れていることがわか
る。この理由としては鋳鉄粉1の粒形は切削時の方向性
亀裂が粉末にも遺伝し粒度係数(Q/d)が大きいため
ブリッジ現象を生じ圧縮性を悪くしている。一方、該鉄
粉末は無方向性亀裂のため適度な粒度係数となり前記ブ
リッジ現象を生じないため圧縮性が良い。Figure 5 shows the density of a green compact molded into a 40φ sample using the iron powder in Table 1, and it can be seen that iron powder 2 has better moldability than cast iron powder 1, which is made by ball milling powder. . The reason for this is that the particle shape of the cast iron powder 1 causes directional cracks during cutting to be inherited by the powder and has a large particle size coefficient (Q/d), which causes a bridging phenomenon and deteriorates compressibility. On the other hand, the iron powder has non-directional cracks, has an appropriate particle size coefficient, and does not cause the bridging phenomenon, so it has good compressibility.
このように従来スクラップとして回収されていた粗粒銑
の材質特性からロール又はプレスによって圧潰し、多数
の亀裂を発生させることによって破砕困難な粗粒銑を低
コストで粉砕を可能にした。In this way, the material properties of coarse-grained pig, which had been conventionally recovered as scrap, were crushed by rolls or presses to generate a large number of cracks, making it possible to crush coarse-grained pig which was difficult to crush at a low cost.
又、その品質を焼結金属月並にカイロ用原料に適した鉄
粉末としたことにより数倍の付加価値増が図られるばか
りでなく、近年需要増から不足している鉄粉カイロ用原
料として安価に供給でき、経済効果は顕著である。In addition, by making the iron powder suitable as a raw material for body warmers, the quality of which is comparable to that of sintered metals, not only is the added value increased several times, but it can also be used as a raw material for iron powder body warmers, which has been in short supply due to increased demand in recent years. It can be supplied at low cost and has significant economic effects.
第1図は本発明の鉄粉末製造方法を示すフロー、第2図
はキッシュグラファイトから粗粒銑を分・離するフロー
。
第3図は破砕前粗粒銑の粒度分布と各種破砕法によって
得られた鉄粉末の粒度分布。
(イ)破砕前粗粒銑の粒度分布
(ロ)本発明による破砕後の粒度分布
(ハ)無圧潰粗粒銑をボールミルで7時間破砕した粒度
分布
(ニ)無圧潰粗粒銑をハンマークラッシャーで15分粗
破砕の後アトマイザ−で50分微粉砕した粒度分布
第4図は本発明で得られた鉄粉末をカイロ用原料として
の適否を試験した発熱試験結果を示す。
第5図は本発明で得られた鉄粉末で4oφ試料を成型し
圧粉体密度を測定したものである。
(1)ダライ粉を粉砕した鋳鉄粉の圧粉体密度(2)本
発明による鉄粉末の圧粉体密度第6図は破砕前粗粒銑(
3〜10mm)の外観例、
第7図は第6図をロールで圧潰した亀裂発生状況の外観
例、
第8図は本発明で得られた鉄粉末粒形例、1:粗粒銑貯
蔵ホッパー
2:同シュート
3:ゲート
4:粗粒銑
5:多段ロール
6:ロール
7:ガイド
8:コンベアー
9:圧潰後の砕料貯蔵ホッパー
10:微粉砕機
A:高炉
B:溶銑鍋
C:鋳鉄機
D:混銑炉
E:排滓
F:排滓
G:留置
H:バースクリーン(篩分)
工:篩上丸鉄
J:篩下丸鉄
にニトロンメン(水洗、篩分)
L:スラッジ
M:小塊丸鉄
N:粗粒銑
第2図
至、不皮層卆之インヘ
第3図
Atと 4(ミ (μン
#−潤(〃r)
太f!圧力(fhys’)
)、
罎
第6vR
に1
1i7図
f
: 第8図FIG. 1 is a flowchart showing the iron powder manufacturing method of the present invention, and FIG. 2 is a flowchart showing the separation and separation of coarse grained pig iron from Kish graphite. Figure 3 shows the particle size distribution of coarse pig iron before crushing and the particle size distribution of iron powder obtained by various crushing methods. (a) Particle size distribution of coarse grained pig before crushing (b) Particle size distribution after crushing according to the present invention (c) Particle size distribution of uncrushed coarse grained pig crushed for 7 hours in a ball mill (d) Particle size distribution of uncrushed coarse grained pig using a hammer crusher Particle size distribution after coarse crushing for 15 minutes with an atomizer and finely crushing with an atomizer for 50 minutes. Figure 4 shows the results of an exothermic test to determine the suitability of the iron powder obtained in the present invention as a raw material for body warmers. FIG. 5 shows the green compact density measured by molding a 4oφ sample using the iron powder obtained according to the present invention. (1) Green density of cast iron powder obtained by crushing dull powder (2) Green density of iron powder according to the present invention Figure 6 shows the density of coarse-grained iron (
3 to 10 mm), Figure 7 is an example of the appearance of a crack generated by crushing Figure 6 with a roll, Figure 8 is an example of the shape of iron powder particles obtained by the present invention, 1: Coarse pig iron storage hopper 2: Same chute 3: Gate 4: Coarse pig iron 5: Multistage roll 6: Roll 7: Guide 8: Conveyor 9: Crushed material storage hopper 10: Fine crusher A: Blast furnace B: Hot metal pot C: Cast iron machine D: Mixed pig iron furnace E: Slag F: Slag G: Detention H: Bar screen (sieving) Work: Round iron above the sieve J: Nitron mening on the round iron below the sieve (washing with water, sieving) L: Sludge M: Small lumps Round Iron N: Coarse Pig No. 2 To, Unskinned Layer Volume No. 3 At and 4 (μn#-Run (〃r) Thick f! Pressure (fhys')), 罎No. 6vR to 1 Figure 1i7f: Figure 8
Claims (1)
及びスラグの中から分離した粗粒銑を予め常温で圧潰し
板状に塑性変形させて多数の亀裂を発生させ、その後微
粉砕することを特徴とする鉄粉末の製造方法。An iron that is characterized in that coarse pig iron separated from quiche graphite and slag generated during hot metal processing or cast iron is crushed in advance at room temperature, plastically deformed into a plate shape to generate a large number of cracks, and then finely pulverized. Method of manufacturing powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6508685A JPS61227103A (en) | 1985-03-30 | 1985-03-30 | Production of iron powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6508685A JPS61227103A (en) | 1985-03-30 | 1985-03-30 | Production of iron powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61227103A true JPS61227103A (en) | 1986-10-09 |
JPS634881B2 JPS634881B2 (en) | 1988-02-01 |
Family
ID=13276773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6508685A Granted JPS61227103A (en) | 1985-03-30 | 1985-03-30 | Production of iron powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61227103A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01177306A (en) * | 1988-01-08 | 1989-07-13 | Nippon Steel Corp | Manufacture of iron powder |
CN111761069A (en) * | 2020-09-01 | 2020-10-13 | 西安赛隆金属材料有限责任公司 | Powder making equipment and method |
-
1985
- 1985-03-30 JP JP6508685A patent/JPS61227103A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01177306A (en) * | 1988-01-08 | 1989-07-13 | Nippon Steel Corp | Manufacture of iron powder |
CN111761069A (en) * | 2020-09-01 | 2020-10-13 | 西安赛隆金属材料有限责任公司 | Powder making equipment and method |
Also Published As
Publication number | Publication date |
---|---|
JPS634881B2 (en) | 1988-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3079243A (en) | Abrasive grain | |
RU2612477C2 (en) | Metallic iron producton method | |
JPS5817785B2 (en) | Manufacturing method of granulated abrasive | |
CN101195167B (en) | Method for purifying powdered iron from steel-smelting sewage sludge coarse grain | |
CN100404704C (en) | Brittle formed product and iron-based power material and method for manufacturing these materials | |
JPS61227103A (en) | Production of iron powder | |
JP6181953B2 (en) | Sand substitute and manufacturing method thereof | |
JP3518736B2 (en) | Method for producing granulated blast furnace slag sand | |
KR20050076556A (en) | Manufacture of powdered iron and iron recovery from water crushed blast furnace slag | |
JP3619389B2 (en) | Method for producing blast furnace slag fine aggregate | |
CN1899731A (en) | Method for producing super fine steel slag powder | |
JP6586210B2 (en) | Method for producing chromium for powder metallurgy | |
JPH0367833B2 (en) | ||
JP2000290048A (en) | Granular body for shot blast | |
KR20040079315A (en) | Briquette for steel material and briquette for slag producing apparatus | |
JP2004067396A (en) | Method of manufacturing blast furnace slag fine aggregate | |
JP3839331B2 (en) | Steelmaking slag treatment method | |
JP2004269293A (en) | Preparation apparatus for water-granulated slag | |
JPS6037171B2 (en) | Method of producing shot material from steelmaking slag | |
JP2964074B2 (en) | How to treat granulated magnetic particles | |
TWM621815U (en) | Pozzolanic material manufacturing system | |
JP2015174046A (en) | Manufacturing method of chromium for powder metallurgy | |
JPS6221053B2 (en) | ||
JPH0356287B2 (en) | ||
JP2002180109A (en) | Ferrous powder material and manufacturing method |