JPS6221053B2 - - Google Patents

Info

Publication number
JPS6221053B2
JPS6221053B2 JP9773883A JP9773883A JPS6221053B2 JP S6221053 B2 JPS6221053 B2 JP S6221053B2 JP 9773883 A JP9773883 A JP 9773883A JP 9773883 A JP9773883 A JP 9773883A JP S6221053 B2 JPS6221053 B2 JP S6221053B2
Authority
JP
Japan
Prior art keywords
iron
slag
granular
abrasive material
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9773883A
Other languages
Japanese (ja)
Other versions
JPS59222537A (en
Inventor
Nobuhiro Nishikawa
Kazuhiro Ishida
Kuniharu Kazuno
Masaru Kuwana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sangyo Shinko Co Ltd
Original Assignee
Nippon Steel Corp
Sangyo Shinko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Sangyo Shinko Co Ltd filed Critical Nippon Steel Corp
Priority to JP9773883A priority Critical patent/JPS59222537A/en
Publication of JPS59222537A publication Critical patent/JPS59222537A/en
Publication of JPS6221053B2 publication Critical patent/JPS6221053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶銑、溶鋼の処理工程に於いて、その
上に浮上しているスラグを吸引除去し、これを急
冷して粒状化したスラグから高濃度鉄分含有研掃
材を効率良く回収する方法に関するものである。 スラグから鉄分を分離除去又は回収する方法
は、従来から種々考えられている。即ち磁力選
鉱、風力分級等があるが、いづれも操作及び工程
が煩雑であつたり又は分離が不十分であつたりす
る。しかも回収粒鉄は粒状の形で回収されるた
め、スケール落し等に用いる研掃材としては不向
きなものであつた。 したがつて通常は、例えば転炉スラグから回収
された含鉄物は、焼結原料への再利用とか、再溶
解用に供される程度であつた。 本発明は、スラグ分と鉄分を分離して鉄分濃度
を高めると共に粒状鉄を研掃材として必要な形状
に破壊し、回収するものである。即ち、本発明は
ロールクラツシヤーでスラグを粉砕し、スクリー
ンで分級する方式を採用し、従来方法では丸味を
おびた粒鉄しか回収出来なかつたり、Fe濃度が
低かつたりするといつた問題点を解消し鉄分含有
スラグから付加価値の高い研掃材を回収する方法
を提供するにある。 近年、製鉄プロセスに於いて、分割精錬技術が
発達して来た。即ち転炉精錬の負荷を軽減するた
めに、例えば溶銑の段階で脱Si、脱S、脱Pの1
種又は2種以上を行なうことが実施されている。
この各処理工程で使用した処理剤から生成したス
ラグは、次の処理工程に移る前に十分に除去する
ことが必要であり、従来はノロかきといつた方法
が採用されていた。しかし近年この流動性のある
スラグを吸引除去した後急冷して粒状スラグとす
る排滓方式が開発実施される様になつた。この急
冷スラグには、吸引除去の条件にもよるが、通常
20%以下のT.Feが含まれており、かつこの鉄分
は粒状をしている。しかもスラグ分は急冷効果に
より硬質で、かつ脆い状態となつている。 本発明は上記の如き急冷スラグに着目して、こ
のスラグを出発材料として、付着スラグを解離し
て鉄分濃度を高めると共に粒鉄をロールクラツシ
ヤーで処理し、その表面に鋭角部をもたせ、しか
も効率よく回収せんとするものである。 以下本発明について説明する。 粒鉄を含んだ急冷スラグから鉄分を回収するに
は、まずスラグを粉砕してスラグ分の粒子と鉄の
粒子を解放しなければならないが、さいわいこの
急冷スラグは急冷効果により硬く脆く容易に微粉
に砕くことが出来る。さらに粒鉄に付着したスラ
グ分を除くためにこれを破壊して粒鉄とスラグと
に解離し、同時に鋭角部をもつ粒鉄に変形させれ
ば、研掃材としての鉄の粒子とスラグ分とはフル
イ分級によつて容易に分離できることが分つた。 従つて本発明は、スラグを粉砕、分級する前に
鉄含有量の少ないスラグを磁選処理により事前に
取り除き、次工程の粉砕処理量の軽減と粉砕効率
の向上を計る。そして引きつづきロールクラツシ
ヤーにより粉砕し、分級して3〜4段階の粒度毎
に分ける。ついでさらに粉砕分級して高濃度の鉄
分と低い濃度の鉄分を含むスラグ分に分離する。
この過程で粒鉄の変形が同時に行なわれる。しか
して鉄の粒子径が0.3〜2m/mで、高濃度(T.
Fe90%以上特に93%以上)の鉄分を含有する鋭
角部をもつた粒鉄が回収される。 次に本発明方法の具体的な実施態様を別図の工
程に基づいて説明する。 急冷スラグが粒状であるので2000ガウス程度の
高い磁場強さの磁選機1を用いるのみでスラグ分
と鉄及び鉄分を含んだスラグ分を粗分離する。次
に鉄分を含んだスラグをロールクラツシヤー2で
1次粉砕2して例えば平均粒子径0.7m/m位に粉
砕する。スラグ分は粒鉄に比べて容易に粉砕され
る。そして2〜3段階のスクリーンによつて1次
分級3する。分級された例えば0.3m/m以下の微
紛は鉄含有量の少ないスラグ分として除去する。
各フルイ上に残つた鉄及び鉄を含んだスラグを粒
度毎に2次粉砕4して、さらに鉄とスラグを解放
する。解放された鉄とスラグの混合物を2〜3段
階のスクリーンによつて2次分級5し、前記と同
様に0.3m/m以下の微粉は鉄含有量の少ないスラ
グとして除去し、各フルイ上に残つた粒子を回収
すれば高い濃度の粒鉄が回収できる。 以上の工程について少し詳細に説明すると、鉄
分を含まないスラグ単味を除去する磁選機1は鉄
分を出来るだけ無駄にしないために、2000ガウス
程度の磁場をもつ接面磁選機が良い。また供給さ
れる粒状スラグ中の鉄粒の平均粒子径は0.7m/m
位なので、1次粉砕2の後、0.3m/m以下はカツ
トする。これは粉砕された微粉スラグを除いてお
いた方が粉砕効率がよいことが知られているから
である。また粉砕はなるべく狭い範囲内の粒度を
持つ方が有効なので、分級には0.3〜1.0m/mの間
で3〜4段階に分級するのが好ましい。 分級3された粒度毎に2次粉砕4し、これを分
級5する。2次の分級クラスは、成品の要求粒度
によつてスクリーン数を変動する。こうして得ら
れたフルイ上の鉄粒子は主としてロールクラツシ
ヤーによる2次粉砕4により研掃材に適した変形
が与えられ、且つ高い鉄濃度を持つことになる。
また1次及び2次の粉砕手段には〜のケース
が考えられる。
The present invention relates to a method for efficiently recovering high-concentration iron-containing abrasive material from the granulated slag by suctioning and removing the slag floating above the hot metal and molten steel in the treatment process. It is something. Various methods have been considered to separate and remove or recover iron from slag. That is, there are magnetic beneficiation, wind classification, etc., but in either case, the operations and processes are complicated or the separation is insufficient. Moreover, since the recovered granular iron is recovered in granular form, it is unsuitable as an abrasive material for use in removing scales and the like. Therefore, the iron-containing materials recovered from, for example, converter slag are usually only used for reuse as sintering raw materials or for remelting. The present invention separates slag and iron to increase the iron concentration, and also uses the granular iron as an abrasive to break it into a required shape and recover it. That is, the present invention adopts a method of crushing slag with a roll crusher and classifying it with a screen, which solves the problems of conventional methods such as only being able to recover rounded granulated iron or having a low Fe concentration. The purpose of the present invention is to provide a method for recovering high value-added abrasive material from iron-containing slag. In recent years, split refining technology has been developed in the steel manufacturing process. In other words, in order to reduce the load of converter refining, for example, the steps of removing Si, S, and P at the hot metal stage are
It has been practiced to carry out one or more types.
The slag generated from the processing agent used in each treatment step must be sufficiently removed before proceeding to the next treatment step, and conventionally a method such as slag scraping has been adopted. However, in recent years, a slag removal method has been developed in which this fluid slag is removed by suction and then rapidly cooled to form granular slag. This quenched slag usually contains
It contains less than 20% T.Fe, and this iron is in granular form. Moreover, the slag component is hard and brittle due to the quenching effect. The present invention focuses on the above-mentioned rapidly cooled slag, uses this slag as a starting material, dissociates the adhering slag to increase the iron concentration, and processes the granulated iron with a roll crusher to give the surface an acute angle. Moreover, it is intended to be collected efficiently. The present invention will be explained below. In order to recover iron from quenched slag containing granular iron, the slag must first be crushed to release the slag particles and iron particles. Fortunately, this quenched slag is hard and brittle due to the quenching effect, and can be easily turned into fine powder. It can be broken into pieces. Furthermore, in order to remove the slag attached to the granular iron, if it is broken and dissociated into granular iron and slag, and at the same time transformed into granular iron with acute angles, the iron particles and slag can be used as an abrasive material. It was found that these can be easily separated by sieve classification. Therefore, the present invention aims to reduce the amount of pulverization in the next step and improve the pulverization efficiency by removing slag with a low iron content by magnetic separation before pulverizing and classifying the slag. Then, it is crushed by a roll crusher and classified into three to four levels of particle size. The slag is then further crushed and classified to separate it into slag containing a high concentration of iron and a slag containing a low concentration of iron.
During this process, the grained iron is deformed at the same time. However, the particle size of iron is 0.3 to 2 m/m, and the concentration is high (T.
Iron granules with sharp edges containing iron (90% or more, especially 93% or more) are recovered. Next, a specific embodiment of the method of the present invention will be described based on the steps shown in the separate drawings. Since the rapidly cooled slag is granular, only the magnetic separator 1 with a high magnetic field strength of about 2000 Gauss is used to roughly separate the slag from the iron and slag containing iron. Next, the slag containing iron is subjected to primary crushing 2 using a roll crusher 2 to crush it to, for example, an average particle size of about 0.7 m/m. Slag is more easily crushed than granulated iron. Then, it is subjected to primary classification 3 using a 2- to 3-stage screen. For example, classified fine powder of 0.3 m/m or less is removed as slag with low iron content.
The iron and iron-containing slag remaining on each sieve are subjected to secondary crushing 4 for each particle size to further release iron and slag. The released mixture of iron and slag is subjected to secondary classification5 through 2 to 3 stages of screens, and in the same way as above, fine particles of 0.3 m/m or less are removed as slag with low iron content, and then placed on each sieve. If the remaining particles are collected, a high concentration of granulated iron can be recovered. To explain the above process in a little more detail, the magnetic separator 1 that removes the slag that does not contain iron is preferably a tangential magnetic separator with a magnetic field of about 2000 Gauss in order to avoid wasting iron as much as possible. In addition, the average particle size of iron particles in the supplied granular slag is 0.7m/m.
Therefore, after the first crushing 2, parts below 0.3m/m are cut. This is because it is known that the pulverization efficiency is better if the pulverized fine powder slag is removed. Furthermore, since it is more effective for pulverization to have a particle size within as narrow a range as possible, it is preferable for classification to be performed in 3 to 4 stages between 0.3 and 1.0 m/m. Secondary pulverization 4 is performed for each particle size classified 3, and this is classified 5. In the secondary classification class, the number of screens varies depending on the required particle size of the product. The iron particles thus obtained on the sieve are given a deformation suitable for use as an abrasive mainly by secondary crushing 4 using a roll crusher, and have a high iron concentration.
Furthermore, the following cases can be considered for the primary and secondary crushing means.

【表】 即ち、本例においては、2次粉砕4には粒鉄の
研掃材としての変形を安定且つ効果的に行なうた
めに必ずロールクラツシヤーを用いるものであ
る。 本発明は、以上のように急冷スラグの特性を利
用して実施し、高品位の鉄分で鋭角をもつた形に
変形した粒鉄を効率的に回収し得るものであつ
て、粉砕前にスラグ単味分を除去するので粉砕量
を軽減し、粉砕エネルギーが少なくてすむ。また
磁場を利用した分離ではスラグのだき込みがあつ
てFe濃度は低くなるが、本発明ではT.Fe90%以
上特に93%以上という高品位の粒鉄として回収し
粒鉄中のスラグ分が少ないので良質の研掃材が得
られる。 また、付着スラグ解離の為に粉砕するが、少な
くとも最終の粉砕段階でロールクラツシヤーを用
い同時に粒鉄をも変形して、表面に鋭角部を持つ
た粒鉄に変形させているので研掃材としてより大
きな効果が出せる。 次に具体的な実施例を示す。 実施例 1 溶銑の分割処理工程から吸引し急冷したT.
Fe17%を含有する粒状スラグ約1000Kgを、2000
ガウスの磁場を持つ磁選機で粗磁選して、スラグ
単味分を除去した鉄含有スラグ約400Kgをロール
クラツシヤー(ロール間隔0m/mで圧着粉砕)
にて粉砕する。これをスクリーン1m/m、0.5m/
m、0.3m/mで分級すると各々のT.Feは96%、81
%、53%を含有したものになる。Fe濃度の低い
0.5m/mと0.3m/mのフルイ上の鉄含有スラグを更
にロールクラツシヤー(ロール間隔0m/mで圧
着粉砕)にて粉砕し、スクリーン0.5m/m、0.3
m/mで分級すると最終の回収粒銑は第1表のよ
うに濃度の高い鋭角部を持つ粒鉄が回収され、こ
の粒銑のビツカース硬度は浸炭処理、焼入れ焼戻
し等の熱処理を施さなくても600〜700HVで通常
の研掃材の450〜500HV以上であつた。
[Table] That is, in this example, a roll crusher is always used in the secondary crushing 4 in order to stably and effectively deform the granulated iron as an abrasive material. The present invention utilizes the characteristics of rapidly cooled slag as described above to efficiently recover granulated iron that has been deformed into an acute-angled shape with high-grade iron. Since the simple substances are removed, the amount of grinding is reduced, and less energy is required for grinding. In addition, in separation using a magnetic field, slag is mixed in and the Fe concentration is low, but in the present invention, high-grade granulated iron with 90% or more T.Fe, especially 93% or more, is recovered, and the slag content in the granulated iron is small. Therefore, high quality abrasive material can be obtained. In addition, grinding is performed to break up the adhered slag, but at least in the final grinding stage, a roll crusher is used to simultaneously deform the granulated iron and transform it into granulated iron with acute angles on the surface. It can produce greater effects as a material. Next, specific examples will be shown. Example 1 T.
Approximately 1000 kg of granular slag containing 17% Fe was
Approximately 400 kg of iron-containing slag, which has been subjected to rough magnetic separation using a magnetic separator with a Gaussian magnetic field to remove the simple slag content, is crushed using a roll crusher (press crushing with a roll spacing of 0 m/m).
Grind. This is screen 1m/m, 0.5m/
When classified at m, 0.3m/m, each T.Fe is 96%, 81
%, containing 53%. Low Fe concentration
The iron-containing slag on the 0.5m/m and 0.3m/m sieves is further crushed using a roll crusher (press crushing with a roll spacing of 0m/m), and then the iron-containing slag on the sieves of 0.5m/m and 0.3
When classified by m/m, the final recovered granulated pig iron is granulated iron with a high concentration of sharp edges, as shown in Table 1, and the Vickers hardness of this granulated pig iron is high even without heat treatment such as carburizing, quenching and tempering. It was also 600 to 700 HV, higher than the 450 to 500 HV of normal abrasives.

【表】 *印は研掃材として使用
実施例 2 実施例1と同じサンプルで、磁選によりスラグ
単味分を除去した鉄含有スラグ約400Kgを用い
て、振動ボールミルで鉄球20ψを11.5Kg入れたも
のに試料0.5Kgを入れ20分間粉砕する。 粉砕されたスラグをスクリーン1m/m、0.5m/
m、0.3m/mで分級すると各々のT.Feは86%、94
%、94%を含有したものになる。各フルイ上の鉄
含有スラグを更にロールクラツシヤー(ロール間
隔0m/mで圧着粉砕)にて粉砕しこれをスクリ
ーン1m/m、0.5m/m、0.3m/mで分級すると最
終の回収粒鉄は第2表のように濃度の高い鋭角部
を持つた粒鉄として回収され、硬度も実施例1と
同じであつた。
[Table] *marked is an example of use as an abrasive material 2 Using the same sample as Example 1, approximately 400 kg of iron-containing slag from which the simple slag was removed by magnetic separation, 11.5 kg of iron balls of 20ψ were placed in a vibrating ball mill. Pour 0.5 kg of sample into the container and crush for 20 minutes. The crushed slag is screened at 1m/m, 0.5m/
When classified at 0.3 m/m, each T.Fe is 86% and 94
%, containing 94%. The iron-containing slag on each sieve is further crushed using a roll crusher (press crushing with a roll spacing of 0 m/m) and then classified using screens of 1 m/m, 0.5 m/m, and 0.3 m/m to obtain the final recovered particles. As shown in Table 2, the iron was recovered as granular iron with a high concentration of sharp edges, and its hardness was the same as in Example 1.

【表】 *印は研掃材として使用
このように、本発明方法により回収された粒鉄
は、鋭角部も持ちしかも鉄分が高い濃度のもので
あるので、例えば鉄鋼材料のサビ除去、表面研磨
等のためのグリツドとしての新用途が開けるもの
であり、スラグ中に含有される鉄分の有効活用に
大きく寄与するものである。
[Table] *marked is used as abrasive material As shown above, the granulated iron recovered by the method of the present invention has sharp edges and has a high concentration of iron, so it can be used, for example, for removing rust from steel materials and for surface polishing. This opens up new uses as a grid for slag, etc., and greatly contributes to the effective use of iron contained in slag.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法の工程の一例を示したものであ
る。
The figure shows an example of the steps of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 粒鉄を含む急冷スラグを磁選してスラグ単味
分と含鉄スラグ分に分離する第一工程と、鉄分含
有スラグを少なくも最終段階でロールクラツシヤ
ーを用いて粉砕し、スクリーンで分級する操作を
1回又は2回以上繰返し行なつて粒鉄とスラグと
に解離すると共に粒鉄とスラグに分級し、かつ、
粒鉄を研掃材に変形させる第二工程と、T.Fe90
%以上の高濃度鉄分含有研掃材を回収する第三工
程とから成ることを特徴とする急冷スラグから研
掃材を回収する方法。
1. A first step in which rapidly cooled slag containing iron particles is separated into plain slag and iron-containing slag by magnetic separation, and at least in the final step, the iron-containing slag is crushed using a roll crusher and classified using a screen. Repeating the operation once or twice or more to dissociate into granular iron and slag, and classifying into granular iron and slag, and
The second process of transforming granular iron into abrasive material and T.Fe90
A method for recovering an abrasive material from quenched slag, comprising a third step of recovering an abrasive material containing a high concentration of iron of % or more.
JP9773883A 1983-06-01 1983-06-01 Method for recovering abrasive material from quickly cooled slag Granted JPS59222537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9773883A JPS59222537A (en) 1983-06-01 1983-06-01 Method for recovering abrasive material from quickly cooled slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9773883A JPS59222537A (en) 1983-06-01 1983-06-01 Method for recovering abrasive material from quickly cooled slag

Publications (2)

Publication Number Publication Date
JPS59222537A JPS59222537A (en) 1984-12-14
JPS6221053B2 true JPS6221053B2 (en) 1987-05-11

Family

ID=14200233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9773883A Granted JPS59222537A (en) 1983-06-01 1983-06-01 Method for recovering abrasive material from quickly cooled slag

Country Status (1)

Country Link
JP (1) JPS59222537A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239179A (en) * 1985-08-13 1987-02-20 Nippon Jiryoku Senko Kk Sand-blast material and manufacture therefor
JPH0739857B2 (en) * 1986-01-23 1995-05-01 大同特殊鋼株式会社 Incinerator ash melting treatment furnace slag method and device
JPH09196352A (en) * 1996-01-20 1997-07-29 Daido Steel Co Ltd Device for solidifying and treating melted item in waste product melting furnace

Also Published As

Publication number Publication date
JPS59222537A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US4732606A (en) Process of treating aluminum-containing fused slag
CA2299263C (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
EP0148779B1 (en) Slag disposal method
JPS60135533A (en) Treatment of stainless steel slag
EP0267170B1 (en) Treatment of middlings
US4860957A (en) Treatment of middlings
JPS6221053B2 (en)
US11549155B2 (en) Reduced iron production method and production apparatus
JPS5950731B2 (en) How to recover metallic iron powder from converter dust
US1875531A (en) Pboduction of abrasive floubs
US3675859A (en) Method and apparatus for separating particulate materials
US2368489A (en) Production of metal powder
US2890795A (en) Metallurgical processing of uranium ores
US6355088B1 (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
JPH034610B2 (en)
RU2104795C1 (en) Method of separating copper slags
KR100548871B1 (en) Method for recovering iron from slag
US670775A (en) Process of making alloys of iron and hydrogen.
JPH02149606A (en) Manufacture of iron powder from converter dust
JPS61158807A (en) Dry purification of kish graphite
CN102766704B (en) Steelmaking desulfurization slag treatment system and steelmaking desulfurization slag treatment method
RU2052520C1 (en) Method for reprocessing disintegrating metallurgical slags
JPS59207825A (en) Method for recovering scaly graphite
KR100797255B1 (en) Treatment method of iron bearing concentrate for high iron content
RU2104797C1 (en) Method of separating brass slags