JPS61226978A - Light-emitting element - Google Patents

Light-emitting element

Info

Publication number
JPS61226978A
JPS61226978A JP60067006A JP6700685A JPS61226978A JP S61226978 A JPS61226978 A JP S61226978A JP 60067006 A JP60067006 A JP 60067006A JP 6700685 A JP6700685 A JP 6700685A JP S61226978 A JPS61226978 A JP S61226978A
Authority
JP
Japan
Prior art keywords
gap
insulating film
gap substrate
onto
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60067006A
Other languages
Japanese (ja)
Other versions
JPH067601B2 (en
Inventor
Yasushi Mori
寧 森
Katsuyuki Naito
勝之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6700685A priority Critical patent/JPH067601B2/en
Publication of JPS61226978A publication Critical patent/JPS61226978A/en
Publication of JPH067601B2 publication Critical patent/JPH067601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Abstract

PURPOSE:To improve luminous efficiency and stability by using an organic high molecular compound, which has mechanical and thermal strength higher than an LB film and is formed through a vacuum deposition method, as an insulating film for a MIS junction. CONSTITUTION:A GaP layer is formed onto a single crystal GaP substrate through epitaxial growth, sulfur and nitrogen are each doped to the GaP layer, and an indium electrode is shaped previously onto the back of the GaP substrate so as to be brought into ohmic-contact. The GaP substrate is mounted to a holder in a vacuum tank to which two evaporating sources are fitted. When the vacuum tank is evacuated and heated and an insulating film consisting of a high molecular compound is evaporated onto the GaP layer on the GaP substrate and the GaP substrate is thermally treated, an insulating film composed of polyimide is shaped onto the GaP layer on the GaP substrate through heat treatment. Accordingly, a light-emitting element having remarkably excellent luminous efficiency and stability is acquired.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はMIS (Metal In5ulator 
semi−conductor )接合の発光素子の改
良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to MIS (Metal Instructor)
The present invention relates to improvements in light emitting devices using semi-conductor junctions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体の禁制帯幅が大きく、良好なpn接合を得るとと
が困難な青色発光素子については、MIS接合が採用さ
れている。しかし、かかる青色発光素子に用いられる窒
化ガリウム、硫化セレン、セレン化亜鉛、炭化シリコン
等の半導体においては、シリコン半導体の酸化シリコン
に相当する良好々絶縁薄膜を形成することが困難であっ
た。
MIS junctions are used for blue light-emitting elements in which it is difficult to obtain a good pn junction due to the large forbidden band width of the semiconductor. However, in semiconductors such as gallium nitride, selenium sulfide, zinc selenide, and silicon carbide used in such blue light emitting devices, it has been difficult to form a good insulating thin film corresponding to silicon oxide of a silicon semiconductor.

このようなことから、最近、ラングミュアブロジェット
の方法により有機物の超薄膜を半導体表面に形成し、絶
縁体として用いる試みが主として英国ダーラム大学のJ
、J、ロパーツ教授のグループが中心となって進められ
ている。MIS接合に用いる有機絶縁膜は、電子或いは
正孔のトンネル効果が生じる程度にその膜厚が十分に薄
く(通常、100X前後、又はそれ以下)、ピンホール
等の欠陥がないことが必要である。更に、電子、正孔を
捕獲するトラップ準位が絶縁膜中、或いは絶縁膜と金属
、半導体との界面に存在しないとと、通電発光に伴なう
発熱によって、絶縁膜の劣化が生じないこと、が必要で
ある。
For this reason, recent attempts have been made to form ultra-thin films of organic matter on semiconductor surfaces using Langmuir-Blodgett's method and use them as insulators, mainly in the J.
, J., and the group led by Professor Loparts is taking the lead. The organic insulating film used for MIS junctions must be sufficiently thin (usually around 100X or less) to create a tunneling effect for electrons or holes, and must be free of defects such as pinholes. . Furthermore, if there is no trap level that captures electrons and holes in the insulating film or at the interface between the insulating film and the metal or semiconductor, the insulating film will not deteriorate due to the heat generated by energizing and emitting light. ,is necessary.

前記ロバーツ教授の報告によると、カドミウムステアリ
ン酸のラングミュアブロジェット膜(以下LB膜と略す
)を用いたGaP発光素子では、その発光効率が絶縁膜
の膜厚と共に上昇し、形成した最も厚い175X以上で
も、更に効率が上昇するようにみられ、又発光効率が時
間と共に減少している。同教授は、更に銅フタロシアニ
ン誘導体により形成したLB膜を絶縁膜に用いたGaP
発光素子においては、絶縁膜の厚さが40スでその発光
効率が最大になり、その効率が8.6XIO%とpn接
合を用いた素子に匹適する発光効率が得られたことを報
告しているが、40Xという膜厚は5IO2を絶縁膜に
用いたGaP発光素子においても観測されている。
According to the report by Professor Roberts, in a GaP light-emitting device using a Langmuir-Blodgett film (hereinafter abbreviated as LB film) of cadmium stearate, the luminous efficiency increases with the thickness of the insulating film, and the thickest formed layer is 175X or more. However, the efficiency appears to increase further, and the luminous efficiency decreases over time. The professor also proposed a GaP film using an LB film formed from a copper phthalocyanine derivative as an insulating film.
It has been reported that the luminous efficiency of the light emitting device reaches its maximum when the insulating film is 40 μm thick, and the luminous efficiency is 8.6XIO%, which is comparable to a device using a pn junction. However, a film thickness of 40X has also been observed in a GaP light emitting device using 5IO2 as an insulating film.

上述した2つの例のうちカドミウムステアリン酸の場合
は、その電気、発光特性から電子のトンネル現象に基づ
く注入型素子として動作しているとは考え難く、しかも
その発光効率も低い。他方、銅フタロシアニン誘導体を
用いた素子は、注入型素子として動作していると考えら
れ、LB膜のMIS接合への応用の可能性を示唆してい
る。しかし、発光の経時変化が観測されており、更に熱
的安定性とトラップ準位の少ない絶縁膜の開発が望まれ
ている。
Of the two examples mentioned above, in the case of cadmium stearic acid, it is difficult to imagine that it operates as an injection type element based on the electron tunneling phenomenon due to its electrical and luminescent properties, and its luminous efficiency is also low. On the other hand, devices using copper phthalocyanine derivatives are considered to operate as injection-type devices, suggesting the possibility of application of LB films to MIS junctions. However, changes in light emission over time have been observed, and it is desired to develop an insulating film with even higher thermal stability and fewer trap levels.

〔発明の目的〕[Purpose of the invention]

本発明は、LB膜に比べて熱的安定性の高い蒸着法によ
り形成される有機高分子化合物の絶縁膜を用いた発光素
子を提供しようとするものである。
The present invention aims to provide a light emitting element using an insulating film of an organic polymer compound formed by a vapor deposition method that has higher thermal stability than an LB film.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記従来の問題点を解消すべく鋭意研究
した結果、MIS接合の絶縁膜としてLB膜に比較して
機械的、熱的強度が高い真空蒸着法により形成される有
機高分子化合物を用いることによって、発光効率の向上
と安定性の優れた発光素子を見い出した。
As a result of intensive research to solve the above-mentioned conventional problems, the present inventors discovered that an organic polymer formed by a vacuum evaporation method has higher mechanical and thermal strength than an LB film as an insulating film for MIS bonding. By using the compound, we have discovered a light-emitting device with improved luminous efficiency and excellent stability.

上記真空蒸着法により形成される有機高分子としては、
例えばポリイミド、?リアミド、エポキシ樹脂等を挙げ
ることができる。
The organic polymer formed by the above vacuum evaporation method includes:
For example, polyimide? Examples include lyamide, epoxy resin, and the like.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 まず、単結晶GaP基板上にエピタキシャル成長により
GaP層を形成した後、このGaP 層にイオウ及び窒
素を夫々10  cm  、 10  cnr  ドー
プした。なお、前記GaP基板裏面には予めインジウム
電極がオーミックコンタクトとなるように形成されてい
る。
Example 1 First, a GaP layer was formed on a single crystal GaP substrate by epitaxial growth, and then the GaP layer was doped with 10 cm and 10 cnr of sulfur and nitrogen, respectively. Note that an indium electrode is previously formed on the back surface of the GaP substrate so as to form an ohmic contact.

次いで、前記GaP基板を2つの蒸発源が設置された真
空槽中のホルダに取付けた。前記一方の蒸発源はピロメ
リット酸2無水物(PMDA)が充填された試験管から
なり、他方の蒸発源はジアミノジフェニルエーテル(O
DA)が充填された試験管からなる。これらの試験管は
、熱遮蔽板で隔離され、夫々個別のヒータが設置されて
いる。つづいて、真空槽を10  torrに排気し、
各試験管を150℃±2℃に加熱し、GaP基板のGa
P層上に高分子化合物の絶縁膜を蒸着した後、GaP基
板を190℃、1時間の熱処理を行なった。この蒸着工
程においては、試験管上に配置したシャッタを開閉する
ことによシ、蒸着量の制御を行なった。なお、前記条件
での高分子化合物の0nm 蒸着速度は  /rrlinである。前記PMDA、 
ODAはポリイミドの原料であり、熱処理によj) G
aP基板のGaP層上にポリイミドの絶縁膜が形成され
た。このポリイミドの主成は、赤外吸収スペクトルによ
シ確認した。
Next, the GaP substrate was attached to a holder in a vacuum chamber in which two evaporation sources were installed. One evaporation source consists of a test tube filled with pyromellitic dianhydride (PMDA), and the other evaporation source consists of diaminodiphenyl ether (O
It consists of a test tube filled with DA). These test tubes are separated by a heat shield and each is equipped with an individual heater. Next, the vacuum chamber was evacuated to 10 torr,
Heat each test tube to 150°C ± 2°C, and
After depositing an insulating film of a polymer compound on the P layer, the GaP substrate was heat-treated at 190° C. for 1 hour. In this vapor deposition process, the amount of vapor deposition was controlled by opening and closing a shutter placed above the test tube. Note that the 0 nm vapor deposition rate of the polymer compound under the above conditions is /rrlin. The PMDA,
ODA is a raw material for polyimide, and it is heated through heat treatment.
A polyimide insulating film was formed on the GaP layer of the aP substrate. The main component of this polyimide was confirmed by infrared absorption spectrum.

次いで、1分間の蒸着により形成したポリイミド膜(厚
さ10nm )上に全電極を真空蒸着により形成した。
Next, all electrodes were formed by vacuum evaporation on the polyimide film (thickness: 10 nm) formed by evaporation for 1 minute.

こうした一連の方法によりAu/ポリイミド/ n−G
aPのMIS接合EL素子を製造した。
Through this series of methods, Au/polyimide/n-G
An aP MIS junction EL device was manufactured.

得られたEL索子のAu電極側を正にして3■の電圧を
印加したところ、黄緑色の発光がAu電極の下に認めら
れた。発光時の電流は、〜100献であった。EL光の
スぜクトルは590℃m付近に鋭いピークを持っていた
When a voltage of 3 cm was applied with the Au electrode side of the obtained EL cord facing positive, yellow-green light emission was observed under the Au electrode. The current during light emission was ~100 min. The EL light spectrum had a sharp peak around 590°C.

実施例2 PMDA、ODAの代りに酸無水物としてベンゾフェノ
ンテトラカルがン酸2無水物、ベンゼンテトラカルボン
酸2無水物、ジアミンとしてジアミノナフタレン、p−
フェニレンジアミンを用いて実施例1と同様な方法でG
aP基板のGaP層上に真空蒸着、熱処理ポリイミド膜
を形成し、更にAu電極を形成したEL素子を製造した
ところ、6一 ゝ(施例1と同様な発光を観測することができだ。
Example 2 In place of PMDA and ODA, benzophenonetetracarboxylic acid dianhydride and benzenetetracarboxylic acid dianhydride were used as acid anhydrides, and diaminonaphthalene and p- were used as diamines.
G in the same manner as in Example 1 using phenylenediamine.
When an EL device was manufactured by forming a vacuum-deposited and heat-treated polyimide film on the GaP layer of the aP substrate and further forming an Au electrode, it was possible to observe the same luminescence as in Example 1.

実施例3 蒸着すべき原料として、テレフタル酸クロリド、!=4
.4’−ジアミノジフェニルエーテル(又ハル−フェニ
レンジアミン)を使用して実施例1と同様な方法でGa
P基板のGaP層に真空蒸着、熱処理して芳香族ポリア
ミド薄膜を形成し、更にAu電極を形成してEL素子を
製造したところ、実施例1と同様な発光を観測すること
ができた。
Example 3 Terephthalic acid chloride is used as the raw material to be deposited! =4
.. Ga
When an aromatic polyamide thin film was formed on the GaP layer of the P substrate by vacuum evaporation and heat treatment, and an Au electrode was further formed to produce an EL device, light emission similar to that in Example 1 could be observed.

実施例4 蒸着すべき原料としてビスフェノールA及び2.2−ジ
(4−(1,2−エポキシプロビル)オキシフェニル〕
プロパン(ビスフェノールAとエピクロルヒドリンの反
応物)と、少量のメラミン(触媒)を実施例1と同様な
方法で真空蒸着、熱処理してエポキシ樹脂薄膜を形成し
、更にAu電極を形成してEL素子を製造したところ、
実施例1と同様な発光を観測することができた。
Example 4 Bisphenol A and 2,2-di(4-(1,2-epoxypropyl)oxyphenyl) as raw materials to be deposited
Propane (a reaction product of bisphenol A and epichlorohydrin) and a small amount of melamine (catalyst) were vacuum-deposited and heat-treated in the same manner as in Example 1 to form an epoxy resin thin film, and then an Au electrode was formed to form an EL element. When manufactured,
Light emission similar to that in Example 1 could be observed.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば発光の効率、安定性
の著しく優れた発光素子を提供+きる。
As detailed above, according to the present invention, it is possible to provide a light emitting element with extremely excellent light emission efficiency and stability.

Claims (1)

【特許請求の範囲】[Claims] 金属、絶縁膜及び半導体を接合したMIS接合の発光素
子において、前記絶縁膜として真空蒸着法により合成し
た絶縁性有機高分子化合物を用いることを特徴とする発
光素子。
1. A light emitting device using an MIS junction in which a metal, an insulating film, and a semiconductor are bonded together, characterized in that the insulating film is an insulating organic polymer compound synthesized by a vacuum evaporation method.
JP6700685A 1985-03-30 1985-03-30 Light emitting element Expired - Lifetime JPH067601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6700685A JPH067601B2 (en) 1985-03-30 1985-03-30 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6700685A JPH067601B2 (en) 1985-03-30 1985-03-30 Light emitting element

Publications (2)

Publication Number Publication Date
JPS61226978A true JPS61226978A (en) 1986-10-08
JPH067601B2 JPH067601B2 (en) 1994-01-26

Family

ID=13332408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6700685A Expired - Lifetime JPH067601B2 (en) 1985-03-30 1985-03-30 Light emitting element

Country Status (1)

Country Link
JP (1) JPH067601B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352609A (en) * 2001-05-28 2002-12-06 Fine Rubber Kenkyusho:Kk Light transmissive coating material for light source and light source having this coating material
KR100631898B1 (en) 2005-01-19 2006-10-11 삼성전기주식회사 Gallium nitride based light emitting device having ESD protection capability and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352609A (en) * 2001-05-28 2002-12-06 Fine Rubber Kenkyusho:Kk Light transmissive coating material for light source and light source having this coating material
JP4540256B2 (en) * 2001-05-28 2010-09-08 株式会社ファインラバー研究所 Translucent covering member for light source and light source provided with the covering member
KR100631898B1 (en) 2005-01-19 2006-10-11 삼성전기주식회사 Gallium nitride based light emitting device having ESD protection capability and method for manufacturing same

Also Published As

Publication number Publication date
JPH067601B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US11245076B2 (en) Perovskite optoelectronic device, preparation method therefor and perovskite material
US5399502A (en) Method of manufacturing of electrolumineschent devices
CN108075020B (en) Light-emitting diode based on cesium-lead halogen perovskite thin film material and preparation method thereof
JP2588280B2 (en) Compound semiconductor light emitting device
Dmochowski et al. Large-versus small-lattice-relaxation models of the DX centers in Ga 1− x Al x As
JPH0152910B2 (en)
US8097885B2 (en) Compound semiconductor film, light emitting film, and manufacturing method thereof
JPS61226978A (en) Light-emitting element
CN112259701A (en) Perovskite thin film and preparation method and application thereof
CN105720148A (en) ZnO-GaN combined ultraviolet luminescent tube with Cu-doped ZnO active layer and preparation method thereof
KR100292830B1 (en) Organic light-emitting device having improved luminous efficiency
Matsushima et al. Electroluminescence enhancement in dry-processed organic-inorganic layered perovskite films
KR100289595B1 (en) Group III-nitride semiconductor light emitting device
Liu et al. High‐Efficiency Blue‐Emission Crystalline Organic Light‐Emitting Diodes by Engineering Thermally Activated Delayed Fluorescence Nanoaggregates
JPH03278584A (en) Hetero-junction device and manufacture thereof
JPH05335080A (en) Manufacture of electroluminescent element and protective film
CN111613706B (en) Silicon-based red light emission enhanced heterojunction diode and preparation method thereof
JPS624326A (en) Semiconductor element
JP4142374B2 (en) Light emitting element
CN115101684A (en) Organic light-emitting diode and preparation method and application thereof
Mimura et al. A visible light-emitting diode using a PN junction of porous silicon and microcrystalline silicon carbide
JPH02181974A (en) Semiconductor device and manufacture thereof
CN117096245A (en) Passivation method of thermal evaporation perovskite LED luminescent layer, perovskite luminescent layer and LED device
JPS5956478A (en) Thin-film luminescent element and preparation of same
CN117417742A (en) Preparation method of alcohol-resistant perovskite quantum dot