JPH02181974A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH02181974A JPH02181974A JP1002419A JP241989A JPH02181974A JP H02181974 A JPH02181974 A JP H02181974A JP 1002419 A JP1002419 A JP 1002419A JP 241989 A JP241989 A JP 241989A JP H02181974 A JPH02181974 A JP H02181974A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor device
- film
- xcx
- atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000010409 thin film Substances 0.000 claims abstract description 45
- 239000007789 gas Substances 0.000 claims abstract description 23
- 238000010521 absorption reaction Methods 0.000 claims abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 239000010408 film Substances 0.000 abstract description 49
- 229910006992 Si1-xCx Inorganic materials 0.000 abstract description 7
- 238000000295 emission spectrum Methods 0.000 abstract description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract 2
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 9
- 108091008695 photoreceptors Proteins 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010048010 Withdrawal syndrome Diseases 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical group [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Photovoltaic Devices (AREA)
- Photoreceptors In Electrophotography (AREA)
- Thin Film Transistor (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、aSi+−8Cx:H薄膜中を電荷移動させ
ることにより動作する半導体装置に関するものであり、
例えば、薄膜トランジスタ、太陽電池、電子写真感光体
、撮像素子9発光ダイオードなどが挙げられる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device that operates by moving charges in an aSi+-8Cx:H thin film.
Examples include a thin film transistor, a solar cell, an electrophotographic photoreceptor, and a light emitting diode of the image sensor 9.
従来の技術
a −S L I−XCX: H薄膜は表面硬度およ
び疎水性に優れることから、一般に多湿あるいは表面を
摩擦する環境下で使用される素子の保護層あるいは表面
層として使用されている。さらにa−8tr−xCx:
H薄膜は耐熱性にも優れているため高温下でも安定に
動作する機能素子への応用も試みられている。また、a
−Si1−xCx: H薄膜はa−8i:H薄膜に比
べて禁止帯幅が大きいため大面積の可視発光ダイオード
への適用が試みられている。BACKGROUND ART A-S L I-XCX: Because H thin films have excellent surface hardness and hydrophobicity, they are generally used as protective layers or surface layers of devices used in humid environments or environments where surfaces are abraded. Furthermore a-8tr-xCx:
Since H thin films also have excellent heat resistance, attempts are being made to apply them to functional devices that operate stably even at high temperatures. Also, a
Since the -Si1-xCx:H thin film has a larger forbidden band width than the a-8i:H thin film, attempts have been made to apply it to large-area visible light emitting diodes.
上記の効果は膜中の炭素量すなわちXを大きくすること
により、より一層向上させることができるが、Xの増加
にしたがい、a−Si1−3C,:H薄膜の光導電性が
著しく減少することが報告されている。。このため、a
−8iし、C,:H薄膜の光導電性は炭素含有量Xが0
.4以下の小さい場合でもa−8i:Hに比べて小さく
、a −S i+−xCx:H薄膜を使った半導体装置
の電気的特性を悪化させており、a −S 11−XC
X: H薄膜の応用も電気的特性にあまり影響を与え
ない、例えば電子写真感光体の表面保護層やキャリヤ注
入阻止層のような膜厚の薄いものでしかなかった。The above effect can be further improved by increasing the amount of carbon in the film, that is, X, but as X increases, the photoconductivity of the a-Si1-3C,:H thin film decreases significantly. has been reported. . For this reason, a
-8i, the photoconductivity of the C,:H thin film is
.. Even if it is smaller than 4, it is smaller than a-8i:H and deteriorates the electrical characteristics of a semiconductor device using a-S i+-xCx:H thin film, and a-S 11-XC
Applications of X:H thin films have been limited to thin films that do not significantly affect electrical characteristics, such as surface protective layers and carrier injection blocking layers of electrophotographic photoreceptors.
最近、モノシランガス(以下、S r Haと記す)と
CH4の混合ガスを大量の水素で希釈したプラズマCV
D法によりa S 1I−x Cx : H(x−
0,1[i)薄膜を製作すると、赤外吸収スペクトルに
おける2900cm−’付近の吸収係数が小さく、すな
わちCHe、CH3結合を少なくすることができ、光導
電性が向上することが報告されている(松1)彰久他、
ジャーナル オブ アプライド フィジックス、198
13年60巻、4025〜4027頁ロJ 、App
I 、Phys 、GO(198B)pり4025−4
027.コ )。Recently, plasma CV in which a mixed gas of monosilane gas (hereinafter referred to as S r Ha) and CH4 is diluted with a large amount of hydrogen has been developed.
By method D, a S 1I-x Cx : H(x-
It has been reported that when a 0,1 [i) thin film is produced, the absorption coefficient near 2900 cm-' in the infrared absorption spectrum is small, that is, the number of CHe and CH3 bonds can be reduced, and the photoconductivity is improved. (Matsu 1) Akihisa et al.
Journal of Applied Physics, 198
13, Vol. 60, pp. 4025-4027 RoJ, App
I, Phys, GO (198B) pli 4025-4
027. Ko ).
発明が解決しようとする課題
我々が作製したa S s I−XCX: H膜を評
価したところ、赤外吸収スペクトルにおける2900c
m−’付近の吸収の小さくして、CH2,CH3結合の
発生を抑制しても、必ずしも光導電性の優れた膜が得ら
れない事実が明らかになった。従って、高次の水素結合
であるCH2結合、CHa結合だけでなく、a −S
i +−xCx: H薄膜の光導電性を高め、キャリヤ
移動度およびキャリヤ寿命を一層向上させるパラメータ
が存在するものと思われる。Problems to be Solved by the Invention When we evaluated the a S s I-XCX:H film that we had produced, it was found that the infrared absorption spectrum was 2900c.
It has become clear that even if the absorption in the vicinity of m-' is reduced to suppress the generation of CH2 and CH3 bonds, a film with excellent photoconductivity cannot necessarily be obtained. Therefore, not only CH2 bonds and CHa bonds, which are higher-order hydrogen bonds, but also a-S
It is believed that there are parameters that enhance the photoconductivity of the i + -xCx:H thin film and further improve carrier mobility and carrier lifetime.
本発明は、上記パラメータを見いだし、a−81+−x
Cx: H膜を用いた半導体装置の応答速度、光感度
または電流値などの特性を向上させるものである。The present invention finds the above parameters and a-81+-x
Cx: Improves characteristics such as response speed, photosensitivity, or current value of a semiconductor device using an H film.
課題を解決するための手段
上記目的を達成するために本発明の半導体装置は、少な
くとも水素原子を含有し、かつシリコン原子および炭素
原子を主成分とする非晶質の薄膜(a−S t +−x
Cx : H薄膜と略記する。但し、0<X≦0.
4)を構成要素に含み、a S i +−xCx’
H薄膜の赤外吸収スペクトルにおいて2090cm−
’の吸収係数が2000cr ’の吸収係数の3倍以下
であり、a−81+−xCx: H薄膜を電荷を移動
させる機能を有することを特徴とするものである。Means for Solving the Problems In order to achieve the above objects, the semiconductor device of the present invention comprises an amorphous thin film (a-S t + -x
Cx: Abbreviated as H thin film. However, 0<X≦0.
4) as a component, a S i +−xCx'
In the infrared absorption spectrum of H thin film, 2090 cm-
It is characterized by having an absorption coefficient of 2000cr' or less than 3 times that of 2000cr', and having a function of moving charges through the a-81+-xCx:H thin film.
そして、この半導体装置の製造方法のa−8iツー、C
,: H薄膜を形成する工程において、原料ガスとして
シリコン原子および水素原子を分子内に含むガスと炭素
原子を分子内に含むガスを真空容器内に導入し、原料ガ
スに減圧下で電界を印加して放電によりプラズマを発生
させ、プラズマからの波長Ei5G、3nmの発光強度
が波長414.2nmの発光強度に比べて0.8倍以上
となる条件下でa−Si1−−Cx: H薄膜を形成
することを特徴とするものである。A-8i two, C of this semiconductor device manufacturing method
,: In the process of forming an H thin film, a gas containing silicon atoms and hydrogen atoms in its molecules and a gas containing carbon atoms in its molecules are introduced into a vacuum container as source gases, and an electric field is applied to the source gases under reduced pressure. The a-Si1--Cx:H thin film was produced under conditions such that the emission intensity at wavelength Ei5G, 3 nm from the plasma was 0.8 times or more compared to the emission intensity at wavelength 414.2 nm. It is characterized by forming.
作用
a −S 1 +−xCx: H薄膜の赤外吸収スペ
クトルにおいて、2000cm−’の吸収ピークはSi
H結合によるもの、2090c+r’の吸収ピークはS
iH2結合によるものであることが知られている。以下
では、2000cr ’の吸収係数を(X (2000
)、2090cm−1の吸収係数をα(2090)のよ
うに記述し、SiH結合、SiH結合のいずれの水素結
合が多いか、つまり膜の水素結合状態を表すパラメータ
として、α(2090)/α(2000)を用いる。Effect a -S 1 + -xCx: In the infrared absorption spectrum of the H thin film, the absorption peak at 2000 cm-' is Si
The absorption peak of 2090c+r' is due to H bonding, and the absorption peak of 2090c+r' is S
It is known that this is due to iH2 binding. Below, the absorption coefficient of 2000cr' is expressed as (X (2000
), the absorption coefficient at 2090cm-1 is written as α(2090), and α(2090)/α is used as a parameter representing whether there are more hydrogen bonds, SiH bonds or SiH bonds, that is, the hydrogen bonding state of the film. (2000) is used.
a −S t +−xCx: H薄膜の密度を低下さ
せ、光導電性を悪化させる原子結合は、原子結合ネット
ワークの骨格を形成しないCH2結合、CH3結合のよ
うな高次結合であることが従来例で報告されていた。し
かし、本発明者は上記のCH2結合、CH3結合を発生
を抑制した状態では、a−3!+−xCつ: H薄膜の
光導電性を低下させる要因はSiH2結合であることを
見いだした。また、この傾向は炭素含有量Xが0.4以
下の場合により顕著であることを判明した。さらに、S
iH2結合はa Si+−、C,: H膜作製時にa
−8i:H膜にくらべて非常に発生し易<Na−8t:
H膜ではSiH2結合が発生し難いような作製条件下に
おいても、α(2090)/α(2000)はa−8t
:H膜の場合の3倍以上になってしまうことが確認でき
た。従って、α(2090)/α(2000)を小さく
する製作条件を明らかにすることは、非常に重要である
。a −S t +−xCx: Conventionally, the atomic bonds that reduce the density of the H thin film and deteriorate the photoconductivity are higher-order bonds such as CH2 bonds and CH3 bonds that do not form the skeleton of the atomic bond network. It was reported in the example. However, the present inventor found that in a state in which the generation of the above CH2 bonds and CH3 bonds was suppressed, a-3! +-xC: It has been found that the factor that reduces the photoconductivity of H thin films is SiH2 bonds. It was also found that this tendency is more pronounced when the carbon content X is 0.4 or less. Furthermore, S
iH2 bond is a Si+-,C,:H film is prepared by
-8i: Very easy to generate compared to H film <Na-8t:
Even under production conditions in which SiH2 bonding is difficult to occur in the H film, α(2090)/α(2000) is a-8t.
: It was confirmed that the amount was more than three times that of the case of the H film. Therefore, it is very important to clarify the manufacturing conditions that reduce α(2090)/α(2000).
一般的に非晶質薄膜の作製に用いられているプラズマC
VD法において、プラズマ発光分光法は発光性のラジカ
ルしか観測できないという欠点を持っているが、プラズ
マの診断法として最も簡便でプラズマに影響を与えずに
行うことができる特長がある。本発明者は、プラズマC
VD法においてSi原子および水素原子を分子内に含む
ガスと炭素原子を分子内に含むガスの混合ガスを用いて
a S 11−X Cx : H膜の作製を行い、プ
ラズマ発光スペクトルと膜の水素結合状態並びに光導電
性について詳細に調べた。その結果、波長B5G 、3
imの水素のバルマー系列の発光(Hαと略記する)強
度と波長414.2imの活性種SiHの発光強度との
強度比と膜の水素結合状態α(2090)/α(200
0)との間には強い相関がみられ、Hαの発光強度がS
iHの発光強度に比べて大きくなるように、放電条件を
設定するとα(2090)/α(2000)が小さくな
り、光導電性が向上することを見いだした。Plasma C commonly used to create amorphous thin films
In the VD method, plasma emission spectroscopy has the disadvantage that only luminescent radicals can be observed, but it has the advantage that it is the simplest plasma diagnostic method and can be performed without affecting the plasma. The inventor has discovered that plasma C
In the VD method, an a S 11-X Cx : H film was prepared using a mixed gas of a gas containing Si atoms and hydrogen atoms in the molecule and a gas containing carbon atoms in the molecule, and the plasma emission spectrum and hydrogen The bonding state and photoconductivity were investigated in detail. As a result, the wavelength B5G, 3
The intensity ratio between the Balmer series emission intensity (abbreviated as Hα) of hydrogen at im and the emission intensity of active species SiH at wavelength 414.2 im and the hydrogen bond state of the film α(2090)/α(200
0), there is a strong correlation between Hα emission intensity and S
It has been found that if the discharge conditions are set so that the intensity is greater than the iH emission intensity, α(2090)/α(2000) becomes smaller and the photoconductivity improves.
上記のような結果が得られた原因について、正確なこと
はわからないが、活性種SiHの発光強度は、プラズマ
中の成膜に寄与すると思われるSin Hmラジカル(
但し、ml nは整数でO≦m≦2n+2)の密度を
、Hαの発光強度はHラジカルの密度を反映していると
思われていることから、現在では以下のようなことが考
えられる。Hαの発光強度がSiHの発光強度より大き
い状態は、Hラジカルの密度が大きい状態であり、Si
原子およびH原子を含む分子の解離が進んでH原子の少
ない5inH*ラジカルによる成膜が行われている、あ
るいはHラジカルによる膜成長表面に結合しているH原
子の引き抜き反応が促進されているなどの現象により、
α(2090)/α(2000)が減少していると思わ
れる。Although the exact cause of the above results is not known, the emission intensity of the active species SiH is due to the Sin Hm radical (
However, since it is thought that ml n is an integer and the density of O≦m≦2n+2) and the emission intensity of Hα reflects the density of H radicals, the following is currently considered. A state in which the emission intensity of Hα is higher than that of SiH is a state in which the density of H radicals is high, and Si
The dissociation of atoms and molecules containing H atoms progresses, resulting in film formation using 5inH* radicals with fewer H atoms, or the H radicals promote the withdrawal reaction of H atoms bonded to the film growth surface. Due to phenomena such as
It seems that α(2090)/α(2000) is decreasing.
従って、Si原子およびH原子を含む分子のガスと炭素
原子を含む分子のガスの混合ガスを用いタプラスマCV
D法において、プラズマ発光スペクトルのHαの発光強
度SiHの発光強度を制御することにより、a−Si1
−xCx: H膜の水素結合状態α(2090)/α
(2000)を制御でき、光導電性の向上を図ることが
できる。よって、従来では、光導電性およびキャリヤ移
動度が小さくてa−Si1−xCx: H膜を用いる
ことのできなかった半導体装置においてもa S 1
I−XCX: H膜を使用できるようになる。Therefore, using a mixed gas of a molecular gas containing Si atoms and H atoms and a molecular gas containing carbon atoms, Taplasma CV
In method D, by controlling the emission intensity of Hα in the plasma emission spectrum and the emission intensity of SiH, a-Si1
-xCx: Hydrogen bond state α(2090)/α of H film
(2000) can be controlled, and photoconductivity can be improved. Therefore, even in semiconductor devices where a-Si1-xCx:H film could not be used conventionally due to its low photoconductivity and carrier mobility, aS1
I-XCX: Enables use of H membrane.
実施例
第1図にa −S i+−wcx: H薄膜の代表的な
赤外吸収スペクトルの一例を示す。このサンプルは、2
900cm−1のCH2,CHa結合による吸収はほと
んど見られていない。2090cm−1のSiH2結合
、2000c「1のSiH結合Q他にIooocm−’
のCH結合、7GOcm−1のSiC結合、 G40
cm−1のSfH,SiH2゜5iHa結合による吸収
ピークが顕著にみられる。EXAMPLE FIG. 1 shows an example of a typical infrared absorption spectrum of an a-S i+-wcx:H thin film. This sample is 2
Almost no absorption due to CH2 and CHa bonds at 900 cm-1 is observed. SiH2 bond at 2090cm-1, 2000c 'SiH bond Q at 1 and Iooocm-'
CH bond of , SiC bond of 7GOcm-1, G40
The absorption peak due to the SfH, SiH2°5iHa bond at cm-1 is clearly seen.
このような赤外吸収スペクトルとa −S L I−X
CX:H膜の光導電性との関連を調べた。その結果、a
−S 1I−XCX: H膜中を電荷を移動させるこ
とにより機能する半導体装置、例えば、太陽電池。Such an infrared absorption spectrum and a-S L I-X
The relationship between CX:H film and photoconductivity was investigated. As a result, a
-S 1I-XCX: A semiconductor device, such as a solar cell, that functions by moving charges through an H film.
電子写真感光体、撮像素子、光センサ、発光ダイオード
、薄膜トランジスタあるいは薄膜ダイオードなどに使用
されるべきa−Si1□C,:H薄膜の水素結合状態の
満たすべき条件は、α(2090)/α(2000)≦
3であることを、この時キャリヤ移動度(μ)とキャリ
ヤ寿命(τ)との積(以下μτ積と表す。)が10−”
(c m2/ V )以上にすることができることを見
いだした。また、好適にはα(2090)/α(200
0)≦2でμτ≧10−” (c m2/ V )、最
適にはα(209G)/α(2000)≦1.5でμτ
≧10−7 (Cm’/V)である。但し、第1図のa
(2090)/ (x (2θ00)は1.2である
。The condition that must be met for the hydrogen bonding state of a-Si1□C,:H thin film to be used in electrophotographic photoreceptors, image sensors, optical sensors, light emitting diodes, thin film transistors, thin film diodes, etc. is α(2090)/α( 2000)≦
3, the product of carrier mobility (μ) and carrier lifetime (τ) (hereinafter referred to as μτ product) is 10-"
(cm2/V) or more. Also, preferably α(2090)/α(200
0)≦2 and μτ≧10−” (c m2/V ), optimally α(209G)/α(2000)≦1.5 and μτ
≧10-7 (Cm'/V). However, a in Figure 1
(2090)/(x (2θ00) is 1.2.
a−Si1−xCx: H薄膜のX値は、X値が0.
4を超えると膜中に2900cr ’のCH2,CHa
結合による吸収係数が急増し、著しくキャリヤ移動度お
よびキャリヤ寿命が減少することから0<X≦0.4が
望ましく、好適には0.01≦X≦0.35、最適には
0゜Ol:a×≦0.3である。a-Si1-xCx: The X value of the H thin film is 0.
If it exceeds 4, 2900cr' of CH2, CHa is present in the film.
Since the absorption coefficient due to bond increases rapidly and the carrier mobility and carrier lifetime decrease significantly, 0<X≦0.4 is desirable, preferably 0.01≦X≦0.35, and optimally 0°Ol: a×≦0.3.
第2図に平行平板型容量結合方式プラズマCVD装置に
おいて、H2希釈したS i H4とC2H’2のプラ
ズマ発光スペクトルの一例を示す。288.2nmの活
性種Si 、414.2nmの活性種S i H,43
1,2nmの活性種CH,658,3nmのHJの発光
強度が、顕著にみられている。FIG. 2 shows an example of plasma emission spectra of S i H4 diluted with H2 and C2H'2 in a parallel plate capacitively coupled plasma CVD apparatus. 288.2 nm active species Si, 414.2 nm active species S i H, 43
The emission intensity of active species CH of 1 and 2 nm and HJ of 658 and 3 nm is clearly observed.
a −S 11−XCX: H膜のSi原子を与える原
料ガスとしてS I Hat S 12H61S I
HaF+ S tH2F21 5iHFs+ 5
iHsC1+ 5iH2C12+5iHC1む S
i (CHa) aなどを用い、C原子を与える原料ガ
スとしてCHJ、 C2H6,CIHI。a -S 11-XCX: S I Hat S 12H61S I as a source gas providing Si atoms of the H film
HaF+ S tH2F21 5iHFs+ 5
iHsC1+ 5iH2C12+5iHC1mu S
CHJ, C2H6, CIHI as a raw material gas that provides C atoms using i (CHa) a, etc.
C4H111+ C2H4,Ca Ha、 Ct
Ha、 C* Haなどを使用し、さまざまのプラズ
マCVD装置を用いて、さらにさまざまの放電条件で、
a −S i+ −x Cx :H膜の水素結合状態α
(2090)/α(2000)とプラズマ発光スペクト
ルとの関連を調べた。その結果、HJの発光強度とSi
Hの発光強度の比(これを■。C4H111+ C2H4, Ca Ha, Ct
Using Ha, C*Ha, etc., using various plasma CVD equipment, and under various discharge conditions,
a −S i+ −x Cx: Hydrogen bond state α of H film
The relationship between (2090)/α(2000) and the plasma emission spectrum was investigated. As a result, the emission intensity of HJ and Si
Ratio of luminescence intensity of H (this is ■.
α/Isl、lと表す)が0.8以上でα(2090)
/α(2000)≦3となることが見いだされた。好適
には1.α/Is+H≧1でα(2090)/α(20
00)≦2、最適には、INα/111)1≧1.5で
α(2090)/α(2000)≦1.5である。さら
に、上記のI++α/Isn+の条件を満足した状態で
、288.2nmのSiの発光強度と414.2nmの
SiHの発光強度の比(以下、Is+/l51sと略記
する)を0.8以上にすることにより、より一層α(2
090)/α(2000)を小さくできることも確認し
た。α/Isl, expressed as l) is 0.8 or more and α (2090)
It was found that /α(2000)≦3. Preferably 1. α/Is+H≧1 and α(2090)/α(20
00)≦2, optimally, INα/111)1≧1.5 and α(2090)/α(2000)≦1.5. Furthermore, while satisfying the above condition of I++α/Isn+, the ratio of the Si emission intensity at 288.2 nm to the SiH emission intensity at 414.2 nm (hereinafter abbreviated as Is+/l51s) is set to 0.8 or more. By doing so, α(2
It was also confirmed that 090)/α(2000) can be made small.
また、上記の原料ガスを用いた場合、これを水素または
ヘリウムで希釈すると容易に上記のINα/Is+Hの
状態を得ることも確認できた。Furthermore, when the above raw material gas was used, it was also confirmed that the above state of INα/Is+H could be easily obtained by diluting it with hydrogen or helium.
a S 11−XCX: H薄膜の水素台を量も、5
iHa、 CH2,CH3結合などの高次結合数の増
加を抑制するために1原子%以上50原子%以下が望ま
しく、品温下での膜中からの水素の離脱を防ぎ耐熱性を
向上させるために、好適には1原子%以上40原子%以
下、最適には1原子%以上35原子%以下が望まれる。a S 11-XCX: The amount of hydrogen for the H thin film was 5.
In order to suppress the increase in the number of higher-order bonds such as iHa, CH2, CH3 bonds, etc., the content is preferably 1 atomic % or more and 50 atomic % or less, and in order to prevent hydrogen from leaving the film at the product temperature and improve heat resistance. Preferably, the content is preferably 1 atomic % or more and 40 atomic % or less, and most preferably 1 atomic % or more and 35 atomic % or less.
さらにa−8iC:H薄膜のキャリヤの伝導性を制御す
るために不純物を添加してもよい。p型伝導性を与える
p型不純物として周期表第士族に属するB+ A L
G a、 I n等があり、好適にはB、A1.
Gaが用いられ、n型伝導性を与えるn型不純物として
周期表第 族に属するP+As+sb等があり、好適に
はP* Asが用いられる。Further, impurities may be added to control the carrier conductivity of the a-8iC:H thin film. B+ A L, which belongs to Group 3 of the periodic table, is a p-type impurity that provides p-type conductivity.
G a, I n, etc., preferably B, A1.
Ga is used, and as an n-type impurity that provides n-type conductivity, there are P+As+sb, which belongs to Group 3 of the periodic table, and P*As is preferably used.
以下、具体的な実施例について述べる。Specific examples will be described below.
実施例1
透明絶縁性基板上に0.1μmの厚さのCrによるゲー
ト電極301を直流スパッタ法により形成し、透明絶縁
性基板302を高周波プラズマCVD装置の反応容器内
の接地電極に配置した。反応容器内部を5XIP’T
o r r以下に排気した後、N2:IO〜!00SC
el+ S i H4: 10〜50sccm導入
した。次に反応容器内の圧力を0.2〜1.OT Or
rに調節した後、!O〜[00W、 13.56M
HZの高周波電力を印加して放電を開始し、基板上に
ゲート絶縁膜用の0.4μmのSi+−ウN8膜303
を形成した後放電を止めた。次に反応容器内を5xlO
−”T o r r以下に排気した後、C2H2: 0
.5〜5secm、 S i Hi: 5〜lO10
5c、 H2:50〜200sccm導入し、圧カニ
0.1−1.0T Or rl 高周波電カニlO
〜50Wで0.08μmのa −S I I−* CX
:H膜304を形成した。この時、I+4α/l5I
Hは0.8〜3であった。続いて、PHaを添加してn
型a −81+−xCx: H膜305を0,02μ
m形成し、パターニングした。つぎに、ソース電極30
6. ドレイン電極307としてAIIO27μmを
電子ビーム蒸着法により堆積して第3図の構造断面図で
表わされるような薄膜トランジスタ(A)を製作した。Example 1 A gate electrode 301 made of Cr having a thickness of 0.1 μm was formed on a transparent insulating substrate by direct current sputtering, and the transparent insulating substrate 302 was placed on a ground electrode in a reaction vessel of a high-frequency plasma CVD apparatus. 5X IP'T inside the reaction vessel
After exhausting to below o r r, N2:IO~! 00SC
el+ S i H4: 10 to 50 sccm was introduced. Next, the pressure inside the reaction vessel was increased to 0.2 to 1. OT Or
After adjusting to r,! O ~ [00W, 13.56M
A high-frequency power of HZ is applied to start the discharge, and a 0.4 μm Si+-UN8 film 303 for the gate insulating film is deposited on the substrate.
After forming, the discharge was stopped. Next, the inside of the reaction vessel was
-” After exhausting to below T o r r, C2H2: 0
.. 5~5sec, S i Hi: 5~lO10
5c, H2: Introduce 50-200sccm, pressure crab 0.1-1.0T Or rl high frequency electric crab lO
0.08μm a-SI I-*CX at ~50W
:H film 304 was formed. At this time, I+4α/l5I
H was 0.8-3. Subsequently, PHa was added and n
Type a -81+-xCx: H film 305 is 0.02μ
m was formed and patterned. Next, the source electrode 30
6. A thin film transistor (A) as shown in the structural cross-sectional view of FIG. 3 was fabricated by depositing 27 μm of AIIO as a drain electrode 307 by electron beam evaporation.
またこれとは別に上記a S I I−XCX: H
膜成膜時における形成条件をC2H2: 0.5〜5s
ecm、 S i HJ: 5〜lO105c、
圧カニ o、a〜i、o’r Or rt 高周波電
カニ5〜30Wとした薄膜トランジスタCB)も製作し
た。但し、a−81I−XCX: H膜成膜時のIH
a/Is++は0゜6〜0.8であった。In addition, apart from this, the above a S I I-XCX: H
The formation conditions during film formation were C2H2: 0.5 to 5 s.
ecm, S i HJ: 5~lO105c,
Pressure crab o, ai, o'r Or rt A thin film transistor CB) with a high frequency electric crab of 5 to 30 W was also manufactured. However, a-81I-XCX: IH during H film formation
a/Is++ was 0°6-0.8.
また、上記と同じ条件でa −S i + −* CX
: H膜を単結晶Siウェーハ上に堆積し、赤外吸
収スペクトルを測定したところ、 (A)の場合、α(
2090)/α(2000)は1.0〜2.8であるの
に対し、 (B)の場合、α(2090)/α(200
0)は3.0〜4.0であった。Also, under the same conditions as above, a −S i + −* CX
: When the H film was deposited on a single crystal Si wafer and the infrared absorption spectrum was measured, in the case of (A), α(
2090)/α(2000) is 1.0 to 2.8, whereas in the case of (B), α(2090)/α(200
0) was 3.0 to 4.0.
薄膜トランジスタ(A)、および(B)のドレイン電流
−ゲート電圧特性は、(B)の方が(A)に比べてON
I流立ち上がり特性が悪く、最大ON電流も、2桁以上
小さかった。これは、(B)のa−311−XC*:
H膜中のSiH2結合が多いため膜の密度が小さく、
(A)のa −811−X Cx : H膜に比べて
キャリヤトラップとして働く禁止帯内の局在準位が増加
し、キャリヤ移動度およびキャリヤ寿命の減少したため
である。The drain current-gate voltage characteristics of thin film transistors (A) and (B) are that (B) is ON compared to (A).
The I current rise characteristics were poor, and the maximum ON current was also smaller by more than two orders of magnitude. This is (B) a-311-XC*:
Because there are many SiH2 bonds in the H film, the density of the film is low;
This is because, compared to the a-811-X Cx:H film in (A), the localized levels within the forbidden band that act as carrier traps increased, resulting in a decrease in carrier mobility and carrier lifetime.
実施例2
ITO膜を蒸着した透明絶縁性基板を高周波プラズマC
VD装置内に配置し、H希釈した50ppml1度のB
2He : 50〜200sccmt CHa :
2〜lO105c、 SiH4:2〜1Oscci
を導入し、圧カニ0.2〜1.OT 。Example 2 A transparent insulating substrate on which an ITO film was deposited was exposed to high-frequency plasma C.
Place in the VD device and add 50 ppml of 1 degree B diluted with H.
2He: 50-200sccmt CHa:
2~lO105c, SiH4:2~1Oscci
Introduced pressure crab 0.2~1. OT.
r rX 高周波型カニ20〜50Wでp型a −S
11−XCx:H膜を0.05〜0.3μm形成し、
次に、上記のB2H6をH2希釈したIppmm度のB
e He : 2〜IOsccmに置換し、かつ、C
Haを遮断してi型a−si:)(膜を0.3〜0.7
μm形成した。さらに上記のB 2 HsをH2希釈し
たlOppm濃度のP Hs : 2〜10105cに
置換してn型a−8i:H膜を0.07〜0.3 μm
積層し、続いてA1電極を直流スパッタ法により形成し
て太陽電池(A)を製作した。r rX High frequency crab 20~50W, p type a-S
11-XCx:H film is formed with a thickness of 0.05 to 0.3 μm,
Next, the above B2H6 was diluted with H2 and the B2H6 was diluted with H2.
e He: substituted with 2 to IOsccm, and C
I-type a-si by blocking Ha:) (0.3-0.7
μm was formed. Furthermore, the above B 2 Hs was replaced with 1 Oppm concentration of PHs: 2 to 10105c diluted with H2 to form an n-type a-8i:H film with a thickness of 0.07 to 0.3 μm.
A solar cell (A) was manufactured by laminating the layers and then forming an A1 electrode by direct current sputtering.
上記のp型a −S I I−x CX : H膜は
、実施例1と同様の方法により、I、lα/ Is++
: 1〜3.2、α(2090)/α(2000):
0.8〜2であることを確認した。The above p-type a-S I I-x CX:H film was prepared using the same method as in Example 1 to prepare I, lα/Is++
: 1-3.2, α(2090)/α(2000):
It was confirmed that the value was 0.8 to 2.
また、(A)とは別に太陽電池(B)として、Inα/
l5IH: 0.[i〜0.8、α(2090)/α
(2000): 3〜3.3であるp型a S I+
−xCx: H膜を用いたものも製作した。In addition to (A), as a solar cell (B), Inα/
l5IH: 0. [i~0.8, α(2090)/α
(2000): p-type a S I+ which is 3-3.3
-xCx: A device using an H film was also manufactured.
AM−1,100mW/cm2の光をITO電極側から
照射したときの短絡電流および変換効率は、(B)に比
べて(A)の太陽電池の方が優れていた。When AM-1, 100 mW/cm2 light was irradiated from the ITO electrode side, the short circuit current and conversion efficiency of the solar cell of (A) were better than that of (B).
これは窓層として用いているp型a −S i I−X
cX:H膜が、(B)に比べて(A)の方がち密であり
キャリヤのμτ積が大きいためである。This is a p-type a-S i I-X used as a window layer.
This is because the cX:H film in (A) is denser than in (B) and the μτ product of carriers is larger.
実施例3
鏡面研磨したAIドラム上にS i H41C2H21
B a HaをHeで希釈した高周波プラズマCVD法
により、IHα/ I sls: 1〜2、Is+/I
s+H: 0.9〜1.4、α(2090)/α(20
00): 1.0−1.8である電荷輸送層用p型a
−S s +−xCx: H膜を15μIn形成し、
さらに電荷発生層用p型a−3t:H膜を1〜3μmを
積層して電子写真感光体(A)を作製した。また、電荷
輸送層用p型a −S s I−X Cx : H膜が
Inα/I SIH: 0.4〜0.8、Inα/l5
IH,l: 0.G=0.8、α(2090)/α(2
000): 3.1〜3.5である電子写真感光体(B
)も作製し、これらの感光体を+6.3kVでコロナ帯
電したところ、(A)は表面電位+600〜900vを
得、31xの白色光の露光に対して残留電位は+50V
以下であったが、(B)は表面電位+700〜1050
Vを得たが、残留電位は+100〜300Vと大きかっ
た。(B)の大きな残留電位の原因は、電荷輸送層用の
p型a S 1 +−XCX: H膜のキャリヤのμ
τ積が小さいためである。Example 3 S i H41C2H21 on a mirror-polished AI drum
IHα/I sls: 1-2, Is+/I
s+H: 0.9-1.4, α(2090)/α(20
00): p-type a for charge transport layer which is 1.0-1.8
-S s + -xCx: H film of 15μIn is formed,
Further, a p-type a-3t:H film for a charge generation layer was laminated to a thickness of 1 to 3 μm to prepare an electrophotographic photoreceptor (A). In addition, the p-type a-S s I-X Cx:H film for the charge transport layer is Inα/I SIH: 0.4 to 0.8, Inα/l5
IH,l: 0. G=0.8, α(2090)/α(2
000): Electrophotographic photoreceptor (B
) were also prepared, and when these photoreceptors were corona charged at +6.3 kV, (A) obtained a surface potential of +600 to 900 V, and the residual potential was +50 V when exposed to 31x white light.
(B) has a surface potential of +700 to 1050
Although V was obtained, the residual potential was as large as +100 to 300V. The cause of the large residual potential in (B) is the carrier μ of the p-type a S 1 +-XCX:H film for the charge transport layer.
This is because the τ product is small.
実施例4
鏡面研磨したA1ドラム上にプラズマCVD法により、
電荷注入阻止層としてp型a−8i:H膜を0.1−1
.0μs、 i型a−si:H膜を15〜20μm1
表面保護層として第1図に示した赤外吸収スペクトルを
示すa −S L −X Cx : H膜を0.05
〜0.2μs順次積層して電子写真感光体(A)を製作
した。また(A)と同様にa (2090)/(! (
2000): 3.15であるaS 11−−CX:
H膜を表面保護層とした電子写真感光体(B)も製作し
た。Example 4 On a mirror-polished A1 drum, by plasma CVD method,
A p-type a-8i:H film was used as a charge injection blocking layer at 0.1-1
.. 0μs, i type a-si:H film 15-20μm1
As a surface protective layer, an a-SL-X Cx:H film having an infrared absorption spectrum shown in FIG. 1 was used at a concentration of 0.05
An electrophotographic photoreceptor (A) was manufactured by sequentially laminating layers for ~0.2 μs. Also, similar to (A), a (2090)/(! (
2000): aS 11--CX which is 3.15:
An electrophotographic photoreceptor (B) using H film as a surface protective layer was also produced.
これらの感光体を市販の複写機に実装し繰り返し帯電お
よび露光をおこなったところ、(B)は帯電露光を繰り
返すうちに残留電位の増加がみられたが(A)では変化
がみられなかった。これは(B)の表面保護層のa −
S r +−x Cx : H膜のキャリヤのμτ積が
小さいためである。When these photoreceptors were installed in a commercially available copying machine and repeatedly charged and exposed to light, an increase in residual potential was observed in (B) with repeated charging and exposure, but no change was observed in (A). . This is a − of the surface protective layer in (B).
This is because the μτ product of carriers in the S r +−x Cx :H film is small.
発明の効果
本発明によれば、半導体装置の応答速度、光感度および
動作電流などの動作特性が向上する。Effects of the Invention According to the present invention, operating characteristics such as response speed, photosensitivity, and operating current of a semiconductor device are improved.
第1図は、本発明の一実施例において作製したa−Si
1〜、C,: H薄膜の赤外吸収スペクトルを示す図
、第2図は本発明の実施例において得られたプラズマ発
光スペクトルの一例を示す図、第3図は本発明の一実施
例における薄膜トランジスタの構造を示す断面図である
。
304”・a −S 1 +−x Cx : H膜、
305・n型a−3i+−xCx: H膜。
代理人の氏名 弁理士 粟野重孝 はか18泗
発 光
強 攬
圀
第3図
0及
q文
係
敗
囚
X1l−・
?04
!o5
iヒートを石i
遺 i@TdA 礒 往 暮 板
511−χNχ順
Q−51r−x Cz: HH
n % Q −5N−xCx : Hmソースを極
ト し イ ン t 号FIG. 1 shows a-Si prepared in one embodiment of the present invention.
1 to C,: A diagram showing an infrared absorption spectrum of a H thin film, FIG. 2 is a diagram showing an example of a plasma emission spectrum obtained in an example of the present invention, and FIG. 3 is a diagram showing an example of a plasma emission spectrum obtained in an example of the present invention. 1 is a cross-sectional view showing the structure of a thin film transistor. 304”・a −S 1 +−x Cx: H film,
305・n-type a-3i+-xCx: H film. Agent's name: Patent attorney Shigetaka Awano Haka 18, Mitsutsuki Yukuni 3rd figure 0 and q sentence section defeated prisoner X1l-・? 04! o5 I heat the stone i @ TdA Ito board 511-χNχ order Q-51r-x Cz: HH n% Q-5N-xCx: Hm source to extreme Int No.
Claims (5)
および炭素原子を主成分とする非晶質の薄膜(以下a−
Si_1_−_xC_x:H薄膜と略記する。 但し、0<X≦0.4)を備え、前記a−Si_1_−
_xC_x:H薄膜の赤外吸収スペクトルにおいて20
90cm^−^1の吸収係数が2000cm^−^1の
吸収係数の3倍以下であり、前記a−Si_1_−_x
C_x:H薄膜中を電荷を移動させるよう構成したこと
を特徴とする半導体装置。(1) An amorphous thin film containing at least hydrogen atoms and mainly composed of silicon atoms and carbon atoms (hereinafter referred to as a-
Si_1_-_xC_x: Abbreviated as H thin film. However, 0<X≦0.4), and the a-Si_1_-
_xC_x: 20 in the infrared absorption spectrum of the H thin film
The absorption coefficient at 90 cm^-^1 is 3 times or less than the absorption coefficient at 2000 cm^-^1, and the a-Si_1_-_x
C_x: A semiconductor device characterized in that it is configured to move charges in a H thin film.
量が1原子%以上50原子%以下であることを特徴とす
る請求項1に記載の半導体装置。(2) The semiconductor device according to claim 1, wherein the a-Si_1_-_xC_x:H thin film has a hydrogen content of 1 atomic % or more and 50 atomic % or less.
、原料ガスとしてシリコン原子および水素原子を分子内
に含むガスと炭素原子を分子内に含むガスを真空容器内
に導入し、前記原料ガスに減圧下で電界を印加して放電
によりプラズマを発生させ、前記プラズマの発光からの
波長656.3nmの発光強度が波長414.2nmの
発光強度に比べて0.8倍以上となる条件下でa−Si
_1_−_xC_x:H薄膜を形成することを特徴とす
る半導体装置の製造方法。(3) The method for manufacturing a semiconductor device according to claim 1, wherein a gas containing silicon atoms and hydrogen atoms in its molecules and a gas containing carbon atoms in its molecules are introduced into a vacuum container as source gases, and the Conditions in which an electric field is applied to the raw material gas under reduced pressure to generate plasma by discharge, and the emission intensity at a wavelength of 656.3 nm from the emission of the plasma is 0.8 times or more compared to the emission intensity at a wavelength of 414.2 nm. a-Si below
_1_-_xC_x: A method for manufacturing a semiconductor device, characterized by forming an H thin film.
強度が波長414.2nmの発光強度に比べて、0.8
倍以上であることを特徴とする請求項3に記載の半導体
装置の製造方法。(4) The emission intensity at a wavelength of 288.2 nm from plasma emission is 0.8 compared to the emission intensity at a wavelength of 414.2 nm.
4. The method of manufacturing a semiconductor device according to claim 3, wherein the manufacturing method is twice as large.
スを混合することを特徴とする請求項3に記載の半導体
装置の製造方法。(5) The method for manufacturing a semiconductor device according to claim 3, wherein at least hydrogen gas or helium gas is mixed with the raw material gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1002419A JPH02181974A (en) | 1989-01-09 | 1989-01-09 | Semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1002419A JPH02181974A (en) | 1989-01-09 | 1989-01-09 | Semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02181974A true JPH02181974A (en) | 1990-07-16 |
Family
ID=11528731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1002419A Pending JPH02181974A (en) | 1989-01-09 | 1989-01-09 | Semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02181974A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04176871A (en) * | 1990-11-08 | 1992-06-24 | Canon Inc | Formation of deposited film |
WO1997022141A1 (en) * | 1995-12-14 | 1997-06-19 | Seiko Epson Corporation | Method of manufacturing thin film semiconductor device, and thin film semiconductor device |
US6391690B2 (en) | 1995-12-14 | 2002-05-21 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
-
1989
- 1989-01-09 JP JP1002419A patent/JPH02181974A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04176871A (en) * | 1990-11-08 | 1992-06-24 | Canon Inc | Formation of deposited film |
WO1997022141A1 (en) * | 1995-12-14 | 1997-06-19 | Seiko Epson Corporation | Method of manufacturing thin film semiconductor device, and thin film semiconductor device |
US6391690B2 (en) | 1995-12-14 | 2002-05-21 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
US6660572B2 (en) | 1995-12-14 | 2003-12-09 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61189626A (en) | Formation of deposited film | |
JPH02181974A (en) | Semiconductor device and manufacture thereof | |
JPS6180160A (en) | Electrophotographic sensitive body | |
Kakalios et al. | Doping modulated amorphous semiconductors | |
Matsuura et al. | Interface electronic properties between silicon and silicon nitride deposited by direct photochemical vapor deposition | |
Futagi et al. | An amorphous SiC thin film visible light-emitting diode with a μc-SiC: H electron injector | |
JPH02225674A (en) | Production of thin unsingle crystal film | |
JPS61237418A (en) | Formation of deposited film | |
JPS61189627A (en) | Formation of deposited film | |
JPS61279117A (en) | Deposition film forming method | |
JPS61234032A (en) | Forming method for accumulated film | |
JPS61196519A (en) | Deposition film forming method | |
JPS61194712A (en) | Formation of deposited film | |
Uchida et al. | Posthydrogenation of low‐pressure chemical‐vapor‐deposited amorphous silicon using a novel internal lamp system and its application to thin‐film transistor fabrication | |
JPS63114977A (en) | Formation of thin film | |
JPS61237419A (en) | Formation of deposited film | |
JPH08288530A (en) | Non-single crystal silicon carbide semiconductor thin film and manufacture thereof | |
JPS61248416A (en) | Formation of deposited film | |
JPS61198622A (en) | Formation of deposited film | |
JPH08288278A (en) | Non-single crystal silicon carbide semiconductor thin-film and its manufacture | |
JPS61276972A (en) | Formation of deposited film | |
JPH059737A (en) | Amorphous silicon carbide alloy produced by by using arom. carbon source | |
JPS63179078A (en) | Formation of thin film | |
JPS61191023A (en) | Formation of deposited film | |
JPS61199630A (en) | Formation of deposited film |