JPS61226729A - Optical element and its production - Google Patents

Optical element and its production

Info

Publication number
JPS61226729A
JPS61226729A JP6647685A JP6647685A JPS61226729A JP S61226729 A JPS61226729 A JP S61226729A JP 6647685 A JP6647685 A JP 6647685A JP 6647685 A JP6647685 A JP 6647685A JP S61226729 A JPS61226729 A JP S61226729A
Authority
JP
Japan
Prior art keywords
film
thickness
multilayer film
type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6647685A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuzawa
董 福沢
Hiroyoshi Matsumura
宏善 松村
Takeyuki Hiruma
健之 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6647685A priority Critical patent/JPS61226729A/en
Publication of JPS61226729A publication Critical patent/JPS61226729A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/218Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference using semi-conducting materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve an extinction ratio, a low operating voltage and a high speed modulating characteristics of the titled element by providing a transparent electrode on a plane meeting at a right angle to a direction of a laminated layer, and by substantially coinciding a resonance wavelength of Fabry-Perot resonator with an optical wavelength which shows the max. optical absorption amount on the prescribed impressed voltage value. CONSTITUTION:An N-type GaAlAs film 13 is formed on a substrate made of N-type GaAs, and a super lattice layer 16 and a P-type GaAlAs film 19 are laminated on the film 13 in order, and then removes the N-type GaAs substrate, thereby controlling a thickness of the N-type GaAlAs film 13. The thickness of the N-type GaAlAs film 13 is reduced to control the thickness of the film so as to approach to the max. optical absorption value. The transparent electrode 20 made of a Cr film and an Au film are formed on the P-type GaAlAs film 19, and the electrode 22 made of the Cr film and the Au film are coated on a part of the electrode 20. The transparent electrode 21 made of the Au film is formed on the N-type GaAlAs film 13. The Au-Ge-Ni-alloy film is coated on a part of the electrode 21, and is heated to stabilize the alloy, thereby obtaining the electrode 23. Therefore, the high speed optical modulating element having a high extinction ratio is obtd.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体多層薄膜結晶を用いた光変調または光
双定動作とする光素子に係わり、特に動作特性の優れた
構造およびその製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an optical element that uses a semiconductor multilayer thin film crystal for optical modulation or optical bi-constant operation, and particularly relates to a structure with excellent operating characteristics and a method for manufacturing the same. .

〔発明の背景〕[Background of the invention]

GaAs/GaAIA+超格子多層膜に電場を印加する
と、膜中の励起子の作用により、膜の光吸収スペクトル
が変化すること、すなわち、膜をよく透過する光の波長
が変化することを利用した光変調方法はティー・ウッド
他“ピー・アイ・エヌダイオード構造のGaAs / 
GaAlAs量子井戸による高速光変調″(アップライ
ド・フィジックス・レター第44巻。
When an electric field is applied to a GaAs/GaAIA+ superlattice multilayer film, the light absorption spectrum of the film changes due to the action of excitons in the film. In other words, the wavelength of light that passes through the film changes. The modulation method is as described by T. Wood et al.
"Fast optical modulation using GaAlAs quantum wells" (Uploaded Physics Letters Vol. 44).

1984年1月、第16〜18頁)  (T、 Woo
d et al。
January 1984, pp. 16-18) (T, Woo
d et al.

“H4gh−spead optical modul
ation with GaAs/GaAlAs qu
antuae walls in a p−1−n d
iodestructure”  (Appl、 ph
ys、 Lett、 VOl、 44. Jan。
“H4gh-speed optical module
ation with GaAs/GaAlAs qu
antuae walls in a p-1-nd
iodestructure” (Appl, ph
ys, Lett, VOl, 44. Jan.

1984、ρp16〜18))に報告されており、その
構造を第1図に示し、第2図に実験結果を示す。第2図
から印加電圧が○Vの時と8vの時では859nm附近
の光の吸収量が変化していることがわかる。しかし、こ
の光吸収量の変化量は2倍程度であり、光通信技術など
で実用化することは困難である。
1984, ρp16-18)), its structure is shown in FIG. 1, and the experimental results are shown in FIG. It can be seen from FIG. 2 that the amount of light absorbed around 859 nm changes when the applied voltage is ○V and when it is 8V. However, the amount of change in the amount of light absorption is about twice as much, making it difficult to put it into practical use in optical communication technology.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、実用的な性能、とく消光比。 The purpose of the present invention is to improve practical performance, especially extinction ratio.

低動作電圧、高速変調特性を有する光変調機能の光半導
体素子およびその製造方法を提供することにある。
An object of the present invention is to provide an optical semiconductor device with a light modulation function having low operating voltage and high-speed modulation characteristics, and a method for manufacturing the same.

〔発明の概要〕 本発明を第3図を用いて説明する0本発明の要旨は超格
子多層膜40の電圧印加に伴う励起子の作用およびファ
ブリー・ペロー共振器としての機能をより効果的にする
ために、該超格子多層膜40の表面に透明電極20を設
けること、および多層膜に所定値の電圧を印加した時の
膜としての光吸収量が最大になる波長とファブリー・ペ
ロー・共振器としてのピーク波長を実質的に合致させる
ことにある。
[Summary of the Invention] The present invention will be explained with reference to FIG. 3.The gist of the present invention is to improve the effect of exciton upon voltage application of the superlattice multilayer film 40 and its function as a Fabry-Perot resonator more effectively. In order to achieve this, a transparent electrode 20 is provided on the surface of the superlattice multilayer film 40, and the wavelength and Fabry-Perot resonance are determined at which the amount of light absorbed by the film is maximized when a predetermined voltage is applied to the multilayer film. The aim is to substantially match the peak wavelengths of the instruments.

透明電極は多層膜になるべく均一な電場を効率よく印加
するために設けるが、透明電極の材質によっては光の反
射を率を向上させてファブリー・ペロー共振器としての
特性がよくなる効果もある。
The transparent electrode is provided to efficiently apply an electric field as uniform as possible to the multilayer film, but depending on the material of the transparent electrode, it can also have the effect of improving the light reflection rate and improving the characteristics of the Fabry-Perot resonator.

また、本発明者は、多層膜の光吸収量が最大になる波長
と、ファブリー・ペロー共振器としてのピーク波長が必
ずしも合致していないことに気付き、これを合致される
ことにより実用的特性を有する光変調器が得られること
を見出した。また本発明者はこれらの波長を合致させる
方法として印加電圧を調整する方法を発明し、さらに多
層膜の膜厚、とくに、n型GaAs層3および/または
P型GaAlAs層9の膜厚を調整すれば該合致が容易
になることを見出した。この膜厚調整の最も簡単な方法
は多層膜30を形成した後、n型GaAs層3および/
またはp型GaAlAs層9を徐々に除去することによ
り膜厚を減少させる方法である。したがって、第4図に
示すように、多層膜に所定値の波長の光を吸収させ、吸
収光量が最大に近い値になるまで徐々にn型GaAs層
3および/またはp型GaAlAs層9を除去すればよ
い。
In addition, the inventor noticed that the wavelength at which the amount of light absorption of a multilayer film is maximum does not necessarily match the peak wavelength of a Fabry-Perot resonator, and by matching this, practical characteristics can be achieved. It has been found that an optical modulator having the following properties can be obtained. The present inventor also invented a method of adjusting the applied voltage as a method of matching these wavelengths, and also adjusted the film thickness of the multilayer film, particularly the film thickness of the n-type GaAs layer 3 and/or the P-type GaAlAs layer 9. It has been found that matching can be easily achieved by doing this. The easiest way to adjust the film thickness is to form the multilayer film 30, then add the n-type GaAs layer 3 and/or
Alternatively, the p-type GaAlAs layer 9 may be gradually removed to reduce the film thickness. Therefore, as shown in FIG. 4, the multilayer film absorbs light of a predetermined wavelength, and the n-type GaAs layer 3 and/or the p-type GaAlAs layer 9 are gradually removed until the amount of absorbed light reaches a value close to the maximum. do it.

なお1、多層膜の光吸収率が最大になる波長と、ファブ
リー・ペロー共振器としてのピーク波長の合致は、必ず
しも完全なものである必要はなく、光変調器としての消
光比(異なる印加電圧における吸収光量の比)が実用的
なものが得られる程度に、実質的に合致していればよい
ことは云うまでもない。
1. The wavelength at which the multilayer film has the maximum light absorption rate and the peak wavelength of the Fabry-Perot cavity do not necessarily have to match perfectly, and the extinction ratio (different applied voltages) of the optical modulator does not necessarily have to match perfectly. Needless to say, it is only necessary that the ratio of the amount of absorbed light in

本発明において、半導体材料としてキャリアの移動度が
大きいGaAs系、InP系などを用いれば極めて高速
の光変調素子が可能である。また、優れたファブリー・
ペロー共振器が構成されるので、信頼性に富んだ光双定
素子が可能である。
In the present invention, an extremely high-speed optical modulation element is possible by using GaAs, InP, or the like, which have high carrier mobility, as the semiconductor material. Also, an excellent Fabry
Since a Perot resonator is constructed, a highly reliable optical bistable device is possible.

これらの光素子を用いて、二次元画像処理や並列論理処
理など、光による高速処理が可能となることは云うまで
もない。
It goes without saying that these optical elements can be used to perform high-speed optical processing such as two-dimensional image processing and parallel logic processing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第3図から第8図を用いて説明する。Example 1 This will be explained using FIGS. 3 to 8.

まず、第3図を用いて素子の製作プロセスを説明する。First, the manufacturing process of the device will be explained using FIG.

n型GaAs基板上に、n型GaAlAs膜13を膜厚
2μmにして形成し、その上に超格子層(II厚が8O
AのGaAs膜と、膜厚が12OAのGaAlAs膜を
交互に各50層積層したもの)16を分子線エピタキシ
ャル法にて形成した。続いて、その上にp型GaAlA
s膜19を膜厚2μmにして形成した後、メカノケミカ
ルおよびCCI、F、ガスによるドライエツチング法で
n型GaAs基板を除去した。次にCCQ4ガスを用い
たドライエツチングでn型GaAlAs膜13の膜厚を
調整した。膜厚の調整は第4図に示す装置で行なった。
An n-type GaAlAs film 13 with a thickness of 2 μm is formed on an n-type GaAs substrate, and a superlattice layer (II thickness of 8O
16 was formed by the molecular beam epitaxial method, in which 50 layers each of the GaAs film A and the GaAlAs film having a film thickness of 12 OA were laminated alternately. Next, p-type GaAlA is applied on top of it.
After forming the S film 19 to a thickness of 2 μm, the n-type GaAs substrate was removed by mechanochemical and dry etching using CCI, F, and gas. Next, the thickness of the n-type GaAlAs film 13 was adjusted by dry etching using CCQ4 gas. The film thickness was adjusted using the apparatus shown in FIG.

すなわち、光源51と光電変換素子52および電圧計5
3を用いて試料54の光吸収量を測定するが、この光吸
収量は試粁54の膜厚の変化に伴って周期的に変化する
That is, the light source 51, the photoelectric conversion element 52, and the voltmeter 5
3 is used to measure the amount of light absorption of the sample 54, and this amount of light absorption changes periodically as the film thickness of the sample 54 changes.

したがって、n型GaAlAs膜13の膜厚をエツチン
グで減少させ、光吸収量が最大に近い値になる膜厚に調
整した。
Therefore, the thickness of the n-type GaAlAs film 13 was reduced by etching to adjust the thickness to a value close to the maximum amount of light absorption.

次にp型GaAlAs膜19の上に、膜厚20AのCr
膜および膜厚300AのAu膜からなる透明電極20を
蒸着法により形成し、その上の一部に膜厚300AのC
r膜および膜厚1μmのAu膜からなる電極22を蒸着
法で被着した・また、n型GaAlAs膜13の上には
、膜厚300AのAu膜を透明電極21として形成し、
その上の一部に膜厚1μmのA u −G a −N 
i合金膜を被着し、加熱処理を行って合金を安定化し、
これを電極23とした。
Next, on the p-type GaAlAs film 19, a Cr film with a thickness of 20A is applied.
A transparent electrode 20 made of an Au film with a thickness of 300 A is formed by vapor deposition, and a C film with a thickness of 300 A is formed on a part of the transparent electrode 20 made of an Au film with a thickness of 300 A.
An electrode 22 made of an r film and an Au film with a thickness of 1 μm was deposited by vapor deposition. Also, an Au film with a thickness of 300 A was formed as a transparent electrode 21 on the n-type GaAlAs film 13.
On a part of it, a film thickness of 1 μm A u -G a -N
i Deposit the alloy film, perform heat treatment to stabilize the alloy,
This was used as the electrode 23.

なお、素子の試料としては透明電極シOおよび21を形
成したものとしないものを製作し、それぞれの特性を測
定した。電極22および23に印加する電圧を調整する
と試料の光吸収量を最大にすることができる。
In addition, device samples were prepared with and without transparent electrodes O and 21, and the characteristics of each device were measured. By adjusting the voltage applied to the electrodes 22 and 23, the amount of light absorbed by the sample can be maximized.

測定結果を第5および6図を用いて説明する。The measurement results will be explained using FIGS. 5 and 6.

第5および6図の曲線24,26.27および29は素
子の光吸収量を示す、また曲線25および28は素子の
ファブリー・ペロー共振器とじて光吸収量を示す。
Curves 24, 26, 27 and 29 in FIGS. 5 and 6 show the light absorption of the device, and curves 25 and 28 show the light absorption of the device as a Fabry-Perot resonator.

曲線24および29は透明電極を形成しない試料のもの
で、それぞれ印加電圧が6vとOvの場合である。した
がって光変調素子としての消光比(データ■と記す)は
曲線24のA点と曲線27のB点における光吸収量の比
である0曲線26と29は透明電極20および21を形
成した試料のもので、その消光比(データ■と記す)は
曲線26の0点と曲線29のD点における光吸収量の比
で、データIより格段に優れている。なお1曲線28の
ピークと曲線25のピークがずれているのは電圧印加に
よって多層膜の屈折率が変化するためである。
Curves 24 and 29 are for samples in which no transparent electrode is formed, and the applied voltages are 6 V and Ov, respectively. Therefore, the extinction ratio (denoted as data ■) as a light modulation element is the ratio of the light absorption amount at point A of curve 24 and point B of curve 27. The extinction ratio (denoted as data ■) is the ratio of the light absorption amount at point 0 of curve 26 and point D of curve 29, which is much better than data I. Note that the peak of the first curve 28 and the peak of the curve 25 are shifted because the refractive index of the multilayer film changes due to voltage application.

実施例2 ・  第1図に示す公知の構造の素子を、本発明を適用
して製造した。
Example 2 - An element having a known structure shown in FIG. 1 was manufactured by applying the present invention.

まず、n型InP基板1の上に透明電極として膜厚30
0AのAu膜を被着し、その上にn −InGaAsに
よる膜厚0.5μmのバッファ層2を形成し、さらに膜
厚1μmのn型InP層3、膜厚Q、3pmでn型1n
PとInGaAsからなる超格子バッファ層4および膜
厚0.3μmでInPとInGaAsからなる超格子バ
ッファ層5を形成した。
First, a film with a thickness of 30 mm was formed as a transparent electrode on an n-type InP substrate 1.
A 0A Au film is deposited, a buffer layer 2 of n-InGaAs with a thickness of 0.5 μm is formed on it, an n-type InP layer 3 with a thickness of 1 μm, and an n-type 1n layer with a film thickness Q of 3 pm are formed.
A superlattice buffer layer 4 made of P and InGaAs and a superlattice buffer layer 5 made of InP and InGaAs with a film thickness of 0.3 μm were formed.

続いて、膜厚150AのInGaAsと膜厚120Aの
InPを交互に各50層を積層した超格子層6を形成し
、その上にバッファ層7と8をバッファ層5および4と
同様に形成した1次に膜厚がほぼ1μmのp型InP膜
9を設けた。この時、実施例1と同様に膜9の膜厚を調
整した。その上に透明電極として膜厚20AのCr1l
llと膜厚300AのAu膜を被着した。続いて基板1
の中央部を選択的にエツチングで除去し、さらに基板1
上の一部に電極11を、またp型InP膜9を実施例1
と同様に被着して試料の製作を完了した。なおこの場合
も実施例1と同様に透明電極を被着した試料としない試
料を製作した。
Subsequently, a superlattice layer 6 was formed by alternately laminating 50 layers each of InGaAs with a thickness of 150A and InP with a thickness of 120A, and buffer layers 7 and 8 were formed thereon in the same manner as buffer layers 5 and 4. First, a p-type InP film 9 having a film thickness of approximately 1 μm was provided. At this time, the thickness of the film 9 was adjusted in the same manner as in Example 1. On top of that, Cr1l with a film thickness of 20A is used as a transparent electrode.
ll and an Au film with a thickness of 300 Å was deposited. Next, board 1
The central part of the substrate 1 is selectively removed by etching, and then the substrate 1 is etched.
Example 1: An electrode 11 is placed on a part of the upper part, and a p-type InP film 9 is placed on the upper part of the electrode 11.
The fabrication of the sample was completed in the same manner as above. In this case, as in Example 1, samples were prepared with and without transparent electrodes.

第7および8図を用いて特性の測定結果を説明する6曲
線30と33が透明電極がない場合で。
6. Curves 30 and 33 are for the case where there is no transparent electrode.

その消光比(データ■と記す)は曲線30のE点と曲線
33のF点における光吸収量の比である。
The extinction ratio (denoted as data ■) is the ratio of the light absorption amount at point E of curve 30 and point F of curve 33.

また透明電極を有する試料の光吸収量は曲線32および
曲線35で、この場合の消光比(データ■)はデータ■
より極めてよい。
In addition, the light absorption amount of the sample with a transparent electrode is curve 32 and curve 35, and the extinction ratio (data ■) in this case is data ■
Much better.

なお、本実施例の試料を用いて、10GHzの変調が安
定に実現できた。
Note that modulation of 10 GHz was stably realized using the sample of this example.

なお、本実施例においては、試料の光吸収量が最大にな
るように印加電圧を調整したが、大きな消光比を要しな
い用途においては、必ずしも試料の光吸収量が最大にな
るように印加電圧を調整する必要がないことは当然のこ
とである。
In this example, the applied voltage was adjusted so that the amount of light absorbed by the sample was maximized. However, in applications that do not require a large extinction ratio, the applied voltage is not necessarily adjusted so that the amount of light absorbed by the sample is maximized. It goes without saying that there is no need to adjust.

また、第4図に示す膜の光吸収量の測定は、ドライエツ
チング装置などの膜厚を調整する装置において行なうこ
ともできることは云うまでもない。
It goes without saying that the measurement of the amount of light absorption of the film shown in FIG. 4 can also be carried out in a device for adjusting the film thickness, such as a dry etching device.

実施例3 実施例1と同様のプロセスで光素子を作製した。Example 3 An optical device was manufactured using the same process as in Example 1.

ただし、n型GaAlAs膜の膜厚の調整は行なわなか
った。
However, the thickness of the n-type GaAlAs film was not adjusted.

この試料は、印加電圧が2.5vの時波長μ!nの光に
対する光吸収量が最小となり、8.5vの時最大となっ
た。
This sample has a wavelength μ! when the applied voltage is 2.5V. The amount of light absorption for light of n was the minimum and maximum at 8.5V.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、消光比が大きく、高速な光変調素子が
実現できるので、光通信、光ディスクなどの光波術の高
性能化を図り得る効果がある。
According to the present invention, it is possible to realize a high-speed optical modulation element with a large extinction ratio, so that it is possible to improve the performance of light wave technology such as optical communication and optical disks.

また、実用性のある光双安性素子の可能性を示唆してい
る本発明は、将来の純光コンピュータの基盤技術となる
効果も有している。
Furthermore, the present invention, which suggests the possibility of a practical optical bivalent device, has the effect of becoming a fundamental technology for future pure optical computers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1および2図は、従来技術を説明するための図、第3
図は本発明の光素子の構造断面図、第4図は膜厚の調整
方法を示す図、第5.6.7および8図は実施例1およ
び2の試料の特性を示す図である。 1・・・基板(n型InP基など)、2・・・バッファ
層、3・・・n型InP膜、4,8・・・n型超格子バ
ッファ層、5,7・・・超格子バッファ層、6・・・超
格子層。 9−p型InPaM、10,11,22,23−電極、
13− n型GaAlAs1i、 l 6−超格子層、
19”’p型GaムlAg膜、20.21”・透明電極
、24゜26.29.30,33.32.35・・・素
子の光透過率を示す曲線、25.28,31.34・・
・素子のファブリー・ペロー共振を示す曲線、40・・
・超格子多層膜、51・・・光源、52・・・光電変換
素子、53・・・電圧計、54・・・試料。
1 and 2 are diagrams for explaining the prior art, and 3.
4 is a diagram showing a method of adjusting the film thickness, and FIGS. 5, 6, 7, and 8 are diagrams showing characteristics of samples of Examples 1 and 2. DESCRIPTION OF SYMBOLS 1... Substrate (n-type InP base etc.), 2... Buffer layer, 3... N-type InP film, 4, 8... N-type superlattice buffer layer, 5, 7... Superlattice Buffer layer, 6... superlattice layer. 9-p-type InPaM, 10, 11, 22, 23-electrodes,
13- n-type GaAlAs1i, l 6- superlattice layer,
19''' p-type Ga/Ag film, 20.21''・Transparent electrode, 24° 26.29.30, 33.32.35...Curve showing the light transmittance of the element, 25.28, 31.34・・・
・Curve showing the Fabry-Perot resonance of the element, 40...
- Superlattice multilayer film, 51... Light source, 52... Photoelectric conversion element, 53... Voltmeter, 54... Sample.

Claims (1)

【特許請求の範囲】 1、ファブリー・ペロー共振器を構成し、少なくとも一
対の電極を有し、該電極に印加する電圧値により光吸収
量が最大値を示す光の波長が変化するような多層膜構造
の光素子において、該多層膜の該多層膜を積層する方向
に直交する面に透明電極を有し、かつある印加電圧値(
ゼロを含む)の時に該多層膜の光吸収量が最大値を示す
光の波長と、該多層膜のファブリー・ペロー共振器とし
ての共振波長(高調波を含む)を実質的に一致させ得る
ように構成したことを特徴とする光素子。 2、ファブリー・ペロー共振器を構成し、印加電圧値に
より光吸収量の波長分布が変化するような多層膜を構成
する工程を含む光素子の製造方法において、該多層膜に
透明電極を形成する工程、およびある印加電圧値(ゼロ
を含む)の時に該多層膜の光吸収量が最大値を示す光の
波長と、該多層膜のファブリー・ペロー共振器としての
共振波長(高調波を含む)を実質的に一致させ得るよう
に該多層膜の膜厚を調整する工程を含むことを特徴とす
る光素子の製造方法。
[Claims] 1. A multilayer structure that constitutes a Fabry-Perot resonator and has at least one pair of electrodes, and the wavelength of light at which the amount of light absorption reaches a maximum value changes depending on the voltage applied to the electrodes. In an optical element having a film structure, the multilayer film has a transparent electrode on a surface perpendicular to the direction in which the multilayer films are laminated, and a certain applied voltage value (
The wavelength of light at which the amount of light absorption of the multilayer film is at its maximum value when the amount of light absorbed (including zero) is substantially the same as the resonant wavelength (including harmonics) of the multilayer film as a Fabry-Perot resonator. An optical element characterized in that it is configured as follows. 2. A method for manufacturing an optical device that includes a step of configuring a multilayer film that forms a Fabry-Perot resonator and whose wavelength distribution of light absorption changes depending on the applied voltage value, in which a transparent electrode is formed on the multilayer film. process, and the wavelength of light at which the amount of light absorption of the multilayer film reaches its maximum value at a certain applied voltage value (including zero), and the resonant wavelength (including harmonics) of the multilayer film as a Fabry-Perot resonator. 1. A method for manufacturing an optical device, comprising the step of adjusting the thickness of the multilayer film so that the thicknesses of the multilayer film are substantially the same.
JP6647685A 1985-04-01 1985-04-01 Optical element and its production Pending JPS61226729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6647685A JPS61226729A (en) 1985-04-01 1985-04-01 Optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6647685A JPS61226729A (en) 1985-04-01 1985-04-01 Optical element and its production

Publications (1)

Publication Number Publication Date
JPS61226729A true JPS61226729A (en) 1986-10-08

Family

ID=13316869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6647685A Pending JPS61226729A (en) 1985-04-01 1985-04-01 Optical element and its production

Country Status (1)

Country Link
JP (1) JPS61226729A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127226A (en) * 1986-11-17 1988-05-31 Nec Corp Optical switch
JPH02500690A (en) * 1987-06-29 1990-03-08 ヒューズ・エアクラフト・カンパニー optical data link
WO1990010246A1 (en) * 1989-02-23 1990-09-07 British Telecommunications Public Limited Company Fabry-perot modulator
JPH03234130A (en) * 1990-02-08 1991-10-18 Nec Corp Channel management system
US5426312A (en) * 1989-02-23 1995-06-20 British Telecommunications Public Limited Company Fabry-perot modulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320943A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo-modulator
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320943A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo-modulator
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127226A (en) * 1986-11-17 1988-05-31 Nec Corp Optical switch
JPH02500690A (en) * 1987-06-29 1990-03-08 ヒューズ・エアクラフト・カンパニー optical data link
WO1990010246A1 (en) * 1989-02-23 1990-09-07 British Telecommunications Public Limited Company Fabry-perot modulator
US5426312A (en) * 1989-02-23 1995-06-20 British Telecommunications Public Limited Company Fabry-perot modulator
JPH03234130A (en) * 1990-02-08 1991-10-18 Nec Corp Channel management system

Similar Documents

Publication Publication Date Title
WO2015051722A1 (en) Spatial light modulator based on metamaterial structure and method of manufacturing same
JPH09502813A (en) Hybrid asynchronous Fabry-Perot quantum well optical modulator
JPH10335758A (en) Three dimensional periodic structure its manufacture and manufacture of film
JP2004527778A (en) Electro-optical element structure and method of manufacturing the same
WO1999007043A1 (en) Surface emission semiconductor laser
US3986194A (en) Magnetic semiconductor device
US4947223A (en) Semiconductor devices incorporating multilayer interference regions
CN106898940A (en) A kind of hetero-junctions saturable absorbing mirror and preparation method thereof, pulse optical fiber
Zaman et al. Terahertz metamaterial optoelectronic modulators with GHz reconfiguration speed
Lou et al. Multifield‐Inspired Tunable Carrier Effects Based on Ferroelectric‐Silicon PN Heterojunction
Gholizadeh et al. Low insertion loss and high modulation depth Tunable modulator at Telecommunications Band enable by graphene/hBN multilayer gratings
JPS61226729A (en) Optical element and its production
CN102340097A (en) Silicon-based laser and preparation method thereof
Stolz et al. Prospective for gallium nitride-based optical waveguide modulators
JPS62501173A (en) Optical waveguide technology using bulk materials
US5381260A (en) Uniaxially strained semiconductor multiple quantum well device using direction-dependent thermal expansion coefficients in a host substrate
US5229878A (en) Method and apparatus for modulating light using semiconductor element having quantum well structure
JPS623220A (en) Optical modulator
US11454830B2 (en) Black phosphorus optical modulators for phase, amplitude and polarization control
CN114400499A (en) Vertical cavity surface emitting laser array structure and preparation method thereof
EP0347013B1 (en) A device for optical signal processing showing transistor operation
JPS623221A (en) Optical modulator
JP2003332685A (en) Surface emission semiconductor laser and surface emission semiconductor laser array
CN114063203B (en) Surface plasmon optical modulator and photoelectric device
JPS62270926A (en) Total reflection type optical modulation element