JPS61226151A - Continuous casting method for metal and particularly steel - Google Patents

Continuous casting method for metal and particularly steel

Info

Publication number
JPS61226151A
JPS61226151A JP6823585A JP6823585A JPS61226151A JP S61226151 A JPS61226151 A JP S61226151A JP 6823585 A JP6823585 A JP 6823585A JP 6823585 A JP6823585 A JP 6823585A JP S61226151 A JPS61226151 A JP S61226151A
Authority
JP
Japan
Prior art keywords
casting
continuous casting
energy
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6823585A
Other languages
Japanese (ja)
Inventor
Peetaa Pureshiuteyunitsuhi Furitsutsu
フリツツ‐ペーター プレシウテユニツヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDOKU JUKOGYO KK
Original Assignee
NICHIDOKU JUKOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDOKU JUKOGYO KK filed Critical NICHIDOKU JUKOGYO KK
Priority to JP6823585A priority Critical patent/JPS61226151A/en
Publication of JPS61226151A publication Critical patent/JPS61226151A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the cracking of a steel ingot by the constitution consisting in transmitting the overheating energy and solidification energy emitted from a casting by the spontaneous radiation of heat so that the casting shell in a secondary cooling region grows slowly. CONSTITUTION:The casting 1 is formed with the casting shell 1a by a cating mold 2 in a primary cooling region 2a and is guided by a supporting mechanism 3 consisting of supporting rollers 3a in a secondary cooling region 2b, by which the casting is fed to a rolling mechanism. The overheating energy and solidification energy emitted from the casting 1 are transmitted only by the radiation of the heat so that the casting shell 1a in the cooling region 2b grows slowly. The casting 1 solidifies thoroughly during this time and is maintained at the temp. corresponding to the heat capacity necessary for the rolling process at the terminal of a track 5. The cracking of the steel ingot is thus prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は連続鋳造鋳型内での溶湯の一次冷却とこれに続
く連続鋳造鋳型外での二次冷却による金属、特に鋼の連
続鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for continuous casting of metals, particularly steel, by primary cooling of a molten metal within a continuous casting mold followed by secondary cooling outside the continuous casting mold.

従来の技術 従来の金属、特に綱の連続鋳造方法では、連続鋳造鋳型
につづく二次冷却域で鋳造体に水を噴射し、冷却してい
る。
BACKGROUND OF THE INVENTION In conventional continuous casting methods for metals, particularly steel, the cast body is cooled by injecting water in a secondary cooling zone following the continuous casting mold.

発明が解決しようとする問題点 上記従来構成によれば、水による冷却(二次冷却)の際
には事実上材料表面の過冷却が生じ、これにより鋳造材
料中の応力とあいまって鋳造体の中1q割れが生じる。
Problems to be Solved by the Invention According to the above-mentioned conventional structure, during cooling with water (secondary cooling), supercooling of the material surface actually occurs, and this, together with stress in the casting material, causes damage to the cast body. A middle 1q crack occurs.

現場の作業では水の急冷作用の緩和を招来する実験が行
われた。しかしすべての場合において依然として増大お
よび減少する温度経過が生じ、鋳造体内部の液状体の危
険な膨張に至った。その他、鋳造体内部の液状体から凝
固した鋳造体表面への温度伝達は極めて不十分であった
。連続鋳造鋳型末端の鋳造体は1800℃C心では15
00℃)の温度を有し、連続鋳造機の末端では約120
0℃の表面温度であり、この時鋳造体の心は丁度凝固し
ている。この方法は比較的長い凝固区間を必要とする。
During field work, experiments were conducted to alleviate the rapid cooling effect of water. However, in all cases an increasing and decreasing temperature course still occurred, leading to a dangerous expansion of the liquid inside the casting body. In addition, the temperature transfer from the liquid inside the cast body to the solidified surface of the cast body was extremely insufficient. The cast body at the end of the continuous casting mold has a temperature of 15 at 1800°C core.
00°C), and at the end of the continuous casting machine approximately 120°C
The surface temperature is 0°C, and at this time the core of the cast body has just solidified. This method requires a relatively long coagulation interval.

本発明は上記問題点を解消した金属、特に鋼の連続鋳造
方法を提供することを目的とする。
An object of the present invention is to provide a method for continuous casting of metal, particularly steel, which eliminates the above-mentioned problems.

問題を解決するための手段 上記問題を解決するため、本発明の金属、特に鋼の連続
鋳造方法は、連続鋳造鋳型内での一次冷却とこれに続く
連続鋳造鋳型外での二次冷却による金属、特に鋼の連続
鋳造方法であって、二次冷却域にある鋳造体から発せら
れる過熱エネルギーおよび凝固エネルギーと連続鋳造鋳
型と鋳造物案内軌道の末端との間で鋳造殻成長が緩慢に
なるようにして奪い去り、その際、過熱エネルギーと凝
固エネルギーの伝達を専ら熱放射により行ない。
Means for Solving the Problems In order to solve the above problems, the continuous casting method for metals, particularly steel, of the present invention provides a method for continuously casting metals, particularly steels, by primary cooling within a continuous casting mold followed by secondary cooling outside the continuous casting mold. , especially a continuous casting method for steel, in which the superheating energy and solidification energy emanating from the casting body in the secondary cooling zone and the continuous casting mold and the end of the casting guide track slow down the growth of the casting shell. At this time, the superheating energy and coagulation energy are transferred exclusively through thermal radiation.

また鋳造体案内軌道の末端での鋳造体の温度をそれに続
く圧延過程に必要な熱容量に相当する温度とするもので
ある。
Further, the temperature of the cast body at the end of the cast body guide track is set to a temperature corresponding to the heat capacity required for the subsequent rolling process.

本発明の根底となる課題は、鋳造体断面領域の熱負荷を
避け、従って鋳物材料の内部および表面の割れに至る危
険な熱応力を除去することにある。
The underlying problem of the invention is to avoid thermal loading of the casting cross-sectional area and thus eliminate dangerous thermal stresses that can lead to internal and surface cracking of the casting material.

この課題は本発明により次のようにして解決される。す
なわち二次冷却領域にある鋳造体から過熟エネルギーお
よび凝固エネルギーを奪い去り。
This problem is solved by the present invention as follows. In other words, overripe energy and solidification energy are removed from the cast body in the secondary cooling area.

そのために連続鋳造鋳型と鋳造体案内軌道の末端との間
で鋳造殻成長を緩慢にし、その際、過熱エネルギーと凝
固エネルギーの伝達を専ら熱放射の方途により行い、ま
た連続鋳造装置末端と圧延機構への流入の間の滞留時間
の間の損失に相当するエネルギー追加を考慮して鋳造体
案内軌道の末端での温度を圧延過程に必要とする熱容量
に相当する温度とするものである。この種の冷却は噴射
水冷却の意味での急激なものではなく、自然の熱放射を
通じての熱排出による穏やかなものである。
To this end, the growth of the cast shell is slowed down between the continuous casting mold and the end of the casting guide track, and in this case, the superheating energy and solidification energy are transferred exclusively by heat radiation, and the end of the continuous casting device and the rolling mechanism are The temperature at the end of the casting guide track is such that it corresponds to the heat capacity required for the rolling process, taking into account the energy addition corresponding to the loss during the residence time during the flow into the casting body. This type of cooling is not rapid in the sense of jet water cooling, but is gentle, with heat removal through natural thermal radiation.

この冷却により連続鋳造装置末端での絶対最終温度が上
昇し、これにより直後の圧延過程のための新しい加熱は
省略することができる。さらに温度勾配は鋳造体の断面
全体を通じて減少する。これにより鋳物組織の中の不利
な樹状結晶は後退し。
This cooling increases the absolute final temperature at the end of the continuous caster, so that additional heating for the immediate rolling process can be omitted. Furthermore, the temperature gradient is reduced over the entire cross-section of the casting. This causes unfavorable dendrites in the casting structure to recede.

再加工に有利なグロボライト組織の生成が促進される。Generation of globolite structure, which is advantageous for reprocessing, is promoted.

本発明の改良においては過熱エネルギーと凝固エネルギ
ーの奪取が熱放射の反射により制御される。これにより
緩慢な冷却であるが、しかし鋳造体断面全体を通じて均
等に行われるため1割れ形成が避けられる。
In the refinement of the invention, the extraction of superheating energy and coagulation energy is controlled by reflection of thermal radiation. This results in slow cooling, but evenly throughout the entire casting cross-section, thus avoiding the formation of single cracks.

さらに熱放射の反射を二次冷却の支持機構内での熱吸収
の変化により制御することが提案される。
Furthermore, it is proposed to control the reflection of thermal radiation by varying the heat absorption within the support mechanism of the secondary cooling.

用的に行うことができる。It can be done conveniently.

本発明による方法を実施するための装置はさらに、支持
機構の支持間隔を80〜120111とし、支持機構の
間の間隔を最小にまで縮小し、また支持機構を構成する
ローラの表面を絶縁層により被覆している。
The device for carrying out the method according to the invention furthermore has the support spacing of the support mechanisms of 80 to 120111, reducing the spacing between the support mechanisms to a minimum, and covering the surfaces of the rollers constituting the support mechanisms with an insulating layer. Covered.

絶縁層が金属セラミックの被覆からなることが提案され
る。求められる緩慢な熱排出は支持機構のローラの絶縁
層により制御されるため、温度勾配の均等化が鋳造体断
面全体で生じ1割れのない冷却が達成される。
It is proposed that the insulating layer consists of a metal-ceramic coating. The required slow heat dissipation is controlled by the insulating layer of the rollers of the support mechanism, so that an equalization of the temperature gradient occurs over the entire casting cross section and crack-free cooling is achieved.

実施例 以下、本発明の一実施例を図に基づいて説明する。鋳造
体(1)は連続鋳造鋳IM(2)の中で、すなわちその
鋳型(2)を構成する鋼壁の後方の冷却水の循環で冷却
され、鋳造殻(1a)が形成され、これがなお液状の心
α・を包む、連続鋳造鋳型(2)は−次冷却域(2a)
を形成し、連続鋳造鋳型(2)の外側にある概ね支持ロ
ーラ(3a)からなる支持機構(3)は二次冷却域(2
b)の中にある。鋳造体(1)は連続鋳造鋳型(2)の
出口においてその表面で約1800”C1心恨・で約1
500’Cの温度を有するため、現場の実験の調査によ
れば放射による熱排出は充分な冷却となる。鋳造殻(1
a)は外から中へと成長するため、鋳造体(1)はその
軌道(5)に沿って移動する間に完全凝固する。軌道(
5)の末端(図示されていない)で鋳造体(1)はなお
熱容量をもっており、その熱容量は連続鋳造装置の末端
と圧延機構との間滞留時間に詔ける熱損失を考慮して与
えられる。また鋳造体(1)は圧延材長さに応じて分割
される。二次冷却域(2b)での熱奪取の制御は、支持
機#i (3)内の熱吸収によって調整される。すなわ
ち排出される鋳造体(1)の熱量の調整は先ず予め知ら
れた過熱エネルギーと凝固工ネルギーに従い、従ってそ
の量が計算できるため。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. The cast body (1) is cooled in the continuous casting IM (2), i.e. by the circulation of cooling water behind the steel walls forming its mold (2), forming a cast shell (1a), which is further The continuous casting mold (2) surrounding the liquid core α is in the -secondary cooling zone (2a).
A support mechanism (3) consisting generally of support rollers (3a) outside the continuous casting mold (2) forms a secondary cooling zone (2).
It is in b). The cast body (1) has a diameter of about 1800" C1 on its surface at the exit of the continuous casting mold (2).
With a temperature of 500'C, field experimental studies indicate that radiative heat removal provides sufficient cooling. Cast shell (1
a) grows from the outside to the inside, so that the casting (1) completely solidifies while moving along its trajectory (5). Orbit (
At the end (not shown) of 5), the cast body (1) still has a heat capacity, which is given by taking into account the heat losses that occur during the residence time between the end of the continuous casting device and the rolling mechanism. Moreover, the cast body (1) is divided according to the length of the rolled material. Control of heat removal in the secondary cooling zone (2b) is regulated by heat absorption in support machine #i (3). That is, the amount of heat of the cast body (1) to be discharged is adjusted according to the superheating energy and solidification energy that are known in advance, and therefore the amount can be calculated.

一つの支持機構(3)に阿り当てられるエネルギー量は
直径“Dll、支持間隔“Y”およびそれぞれ二つの支
持機構(3)の間の間隙@X11により計算できる。支
持機構(3)の支持間隔1Y′は80〜120關であり
、また支持ローラ(8a)の表面の間の間隔は最小間隙
■”まで縮小されている。支持ローラ(3a)は絶縁層
(6)を備えて怠り、とのHJ (6)は実施例におい
ては金属セラミック被覆からなっている。この絶縁層(
6)は摩耗および/または割れに対する安全が保証され
るまで熱した鋳造体(1)により熱せられる。また鋳造
体(1)の熱エネルギーは支持機構(3)内を通る冷却
媒体(7)、たとえば冷却水によって排出される。鋳造
体(1)は熱い状態で移動し、鋳造体中央(8)から鋳
造体外域(9)に向かっての温度勾配は低い。支持ロー
ラ(3a)を支持する軸受αOは冷却媒体(7)によっ
て冷却される。従って放射熱から保護されている。
The amount of energy applied to one support mechanism (3) can be calculated by the diameter "Dll", the support spacing "Y" and the gap @X11 between each two support mechanisms (3). The distance 1Y' is between 80 and 120 degrees, and the distance between the surfaces of the support rollers (8a) is reduced to a minimum gap of 2''. The supporting roller (3a) is provided with an insulating layer (6), and the HJ (6) consists of a metal-ceramic coating in the embodiment. This insulating layer (
6) is heated by the hot casting body (1) until safety against wear and/or cracking is guaranteed. The thermal energy of the casting (1) is also discharged by a cooling medium (7), for example cooling water, which passes through the support mechanism (3). The casting body (1) moves in a hot state and the temperature gradient from the casting body center (8) towards the casting outer region (9) is low. The bearing αO supporting the support roller (3a) is cooled by a cooling medium (7). It is therefore protected from radiant heat.

上記の連続鋳造装置はいわゆる乾燥運転連続鋳造装置で
あり、支持機構(3)または軸受αOの冷却を除き分別
された支持ローラ(8a )IIIから鋳造体(1)に
向けて冷却水を噴射することは不要である。このような
乾燥連続鋳造装置は、一つには連続鋳造装置の運転がよ
り少ない手数で済み、他方では著しくエネルギーが節約
されるため特別な意味をもっている。これは切断された
連続鋳造片の圧延のために必要な熱エネルギーが不用で
、特別な予熱炉での加熱が不必要であることを意味する
The above-mentioned continuous casting apparatus is a so-called dry operation continuous casting apparatus, in which cooling water is injected toward the cast body (1) from the separated support roller (8a) III, except for cooling the support mechanism (3) or bearing αO. That is unnecessary. Such dry continuous casting apparatuses are of special significance because, on the one hand, the continuous casting apparatus requires fewer operations and, on the other hand, significant energy savings are achieved. This means that no thermal energy is required for rolling the cut continuous cast pieces and no heating in special preheating furnaces is necessary.

熱負荷は第3図から明らかな通りであり、比較例の曲線
1の根底となるのは表面での鋳造材料の高い熱負荷をも
つ噴射水冷却である。比較例の曲線2では、はるかに小
さい温度熱負荷で穏やかに冷却されるが、これでも現場
では特殊な場合表面割れを完全には排除できない。これ
に対して本願発明の実施例によれば、曲線8に示すごと
く、無視できるほど小さい熱負荷を示し、この場合絶対
温度は比較的高くにある。鋳造棒案内軌道(5)の末端
(1’、 2’、 8’)で個々の冷却方式は(El)
、(E2)。
The heat load is as is clear from FIG. 3, and the basis of curve 1 of the comparative example is the injection water cooling with a high heat load of the casting material at the surface. Comparative curve 2 provides gentle cooling with a much lower temperature heat load, but even this cannot completely eliminate surface cracking in special cases in the field. In contrast, the embodiment of the present invention, as shown by curve 8, shows a negligibly small heat load, in which case the absolute temperature is relatively high. The individual cooling methods at the ends (1', 2', 8') of the cast rod guide track (5) are (El)
, (E2).

(E3)のエネルギー容量をもっている。It has an energy capacity of (E3).

本発明を次に第4図によるエンタルピーグラフを用いて
明らかにする。連続鋳造型(2)の中の金属溶場のエン
タルピーをE kokで表わし、その時の温度をTko
kで表わす。−次冷却(2a)の後と二次冷却(2b)
の領域において鋳型エンタルピー(E kok )から
圧延ロエンタルピー(Ewalzanst ) t テ
(7) j−* kギーが奪われ、これにより圧延口温
度(Twalzanst)が得られる。
The invention will now be explained using the enthalpy graph according to FIG. The enthalpy of the metal melt field in the continuous casting mold (2) is expressed as E kok, and the temperature at that time is Tko.
Represented by k. - After secondary cooling (2a) and secondary cooling (2b)
The rolling loenthalpy (Ewalzanst) tte(7) j-*k ghee is taken away from the mold enthalpy (Ekok) in the region of , and thus the rolling mouth temperature (Twalzanst) is obtained.

次に本発明の好適な実施態様を述べる。Next, preferred embodiments of the present invention will be described.

1、過熱エネルギーと凝固エネルギーの奪取を熱放射の
反射により制御することを特徴とする金属、特に鋼の連
続鋳造方法。
1. A continuous casting method for metals, especially steel, characterized by controlling the absorption of superheating energy and solidification energy by reflecting thermal radiation.

2、熱放射の反射が二次冷却域の支持機構への熱吸収の
変化により制御することを特徴とする金属、特に鋼の連
続鋳造方法。
2. A method for continuous casting of metals, in particular steel, characterized in that the reflection of thermal radiation is controlled by a change in the absorption of heat into the support structure of the secondary cooling zone.

8、鋳造棒案内軌道を構成Tる支持機構の支持間隔(ト
)を80から1201EIIとし、その支持機構の間の
間隔を最小間隔間まで縮小し、また支持機構を構成する
ローラの表面を絶縁層で被覆したことを特徴とする金属
、特に鋼の連続鋳造装置。
8. The support spacing (T) of the support mechanisms that make up the casting rod guide track is reduced from 80 to 1201EII, the spacing between the support mechanisms is reduced to the minimum spacing, and the surfaces of the rollers that make up the support mechanism are insulated. Apparatus for continuous casting of metals, especially steels, characterized in that they are coated with a layer.

4、絶縁層が金属セラミック被覆からなることを特徴と
する金属、特に鋼の連続鋳造装置。
4. An apparatus for continuous casting of metal, especially steel, characterized in that the insulating layer consists of a metal-ceramic coating.

発明の効果 以上述べたごとく本発明によれば、二次冷却領域にある
鋳造体から過熱エネルギーおよび凝固エネルギーを奪い
去り、そのために連続鋳造鋳型と鋳造棒案内軌道の末端
との間で鋳造殻成長を緩慢にし、その際、過熱エネルギ
ーと凝固エネルギーの伝達を専ら熱放射の方途により行
い、また連続鋳造装置末端と圧延機構への流入の間の滞
留時間の間の損失に相当するエネルギー追加を考慮して
鋳造棒案内軌道の末端で鋳造体がそれに続く圧延過程に
必要とする熱容量に相当する温度とされるのである。こ
の種の冷却は噴射水冷却の意味での急激なものではなく
、自然の熱放射を通じての熱排出による穏やかなもので
ある。この冷却により連続鋳造装置末端での絶対最終温
度が上昇し、これにより直後の圧延過程のための新しい
加熱は省略することができる。さらに温度勾配は鋳造体
の断面全体を通じて減少する。これにより鋳物組織の中
の不利な樹状結晶は後退し、再加工に有利なグロボライ
ト組織の生成が促進される。また過熱エネルギーと凝固
エネルギーの奪取が熱放射の反射により制御される。こ
れによりll慢な冷却であるがしかし鋳造体断面全体を
通じて均等に行われるため、割れ形成が避けられる。
Effects of the Invention As described above, according to the present invention, superheating energy and solidification energy are removed from the cast body in the secondary cooling region, and therefore the casting shell growth is prevented between the continuous casting mold and the end of the casting rod guide track. , the transfer of superheating energy and solidification energy is carried out exclusively by means of thermal radiation, and the additional energy corresponding to the losses during the residence time between the end of the continuous caster and the entry into the rolling mechanism is taken into account. At the end of the casting rod guide track, the temperature of the cast body corresponds to the heat capacity required for the subsequent rolling process. This type of cooling is not rapid in the sense of jet water cooling, but is gentle, with heat removal through natural thermal radiation. This cooling increases the absolute final temperature at the end of the continuous caster, so that additional heating for the immediate rolling process can be omitted. Furthermore, the temperature gradient is reduced over the entire cross-section of the casting. As a result, unfavorable dendrites in the casting structure recede, and the formation of a globolite structure, which is advantageous for reworking, is promoted. Also, the extraction of superheating energy and coagulation energy is controlled by reflection of thermal radiation. This results in slow but uniform cooling over the entire casting cross-section, thereby avoiding crack formation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は湾曲連続鋳造装置の概略縦断面図、第2図は第
1図の線■−■矢視図、第3図は3種の冷却法における
表面温度経過に関するグラフ、第4図は鋼と温度の関係
を示すエンタルピーグラフである。 (1)・・・鋳造体、(2)・・・鋳型、 (2a)・
・・−次冷却域。 (2b)・・・二次冷却域、(3)・・・支持機構、(
5)・・・軌道代理人  森  本  義  弘 第1図 第3図 1′2′  3′ 1奄−IL(本莱円章見謔り 第4図
Fig. 1 is a schematic vertical cross-sectional view of a curved continuous casting device, Fig. 2 is a view taken along the line ■-■ in Fig. 1, Fig. 3 is a graph regarding the surface temperature progression in three types of cooling methods, and Fig. 4 is It is an enthalpy graph showing the relationship between steel and temperature. (1)... Cast body, (2)... Mold, (2a)...
...-Next cooling region. (2b)...Secondary cooling area, (3)...Support mechanism, (
5) ...Orbital Agent Yoshihiro Morimoto Figure 1 Figure 3 1'2'3' 1 Am-IL (Honrai Ensho Mimane Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、連続鋳造鋳型内での一次冷却とこれに続く連続鋳造
鋳型外での二次冷却による金属、特に鋼の連続鋳造方法
であって、二次冷却域にある鋳造体から発せられる過熱
エネルギーおよび凝固エネルギーを連続鋳造鋳型と鋳造
物案内軌道の末端との間で鋳造殻成長が緩慢になるよう
にして奪い去り、その際、過熱エネルギーと凝固エネル
ギーの伝達を専ら熱放射により行ない、また鋳造体案内
軌道の末端での鋳造体の温度をそれに続く圧延過程に必
要な熱容量に相当する温度とすることを特徴とする金属
、等に鋼の連属鋳造方法。
1. Continuous casting method for metals, especially steel, by primary cooling within the continuous casting mold followed by secondary cooling outside the continuous casting mold, in which the superheating energy emitted from the cast body in the secondary cooling area and The solidification energy is removed between the continuous casting mold and the end of the casting guide track by slowing the growth of the casting shell, and at this time, the superheating energy and solidification energy are transferred exclusively by thermal radiation, and the casting body A continuous casting method for metals, etc., and steel, characterized in that the temperature of the cast body at the end of the guide track is set to a temperature corresponding to the heat capacity required for the subsequent rolling process.
JP6823585A 1985-03-29 1985-03-29 Continuous casting method for metal and particularly steel Pending JPS61226151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6823585A JPS61226151A (en) 1985-03-29 1985-03-29 Continuous casting method for metal and particularly steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6823585A JPS61226151A (en) 1985-03-29 1985-03-29 Continuous casting method for metal and particularly steel

Publications (1)

Publication Number Publication Date
JPS61226151A true JPS61226151A (en) 1986-10-08

Family

ID=13367921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6823585A Pending JPS61226151A (en) 1985-03-29 1985-03-29 Continuous casting method for metal and particularly steel

Country Status (1)

Country Link
JP (1) JPS61226151A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109503A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Direct rolling method for hot cast billet
JPS56141947A (en) * 1980-04-09 1981-11-05 Mitsubishi Heavy Ind Ltd Continuous casting plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109503A (en) * 1979-02-16 1980-08-23 Nippon Steel Corp Direct rolling method for hot cast billet
JPS56141947A (en) * 1980-04-09 1981-11-05 Mitsubishi Heavy Ind Ltd Continuous casting plant

Similar Documents

Publication Publication Date Title
KR100304759B1 (en) Continuous casting equipment operation method
US3587718A (en) Continuous casting apparatus
US3589429A (en) Method for continuous casting, cooling and shaping of metal bars
US4911226A (en) Method and apparatus for continuously casting strip steel
JPS61226151A (en) Continuous casting method for metal and particularly steel
JPS58167064A (en) Continuous casting method of steel
US4030532A (en) Method for casting steel ingots
JPH11129059A (en) Method and device for heat supply of continuous casting mold powder
JP2006181583A (en) Method for producing continuously cast slab
JPH06179051A (en) Method and device for continuously producing strip
SU916307A1 (en) Method of making tube-like hollow articles of slag melts
Battan et al. DIRECT HOT CHARGING OF CC BLOOMS OF SPECIALTY STEELS FOR ROLLING
Battan et al. Direct hot charging of CC specialty steel blooms
US4524821A (en) Apparatus to improve casting band life
Battan et al. DeltaCogne SpA, lll00 Aosta, Italy
DE3274812D1 (en) Method for the thermo-mechanical treatment of hot rolled steel
JPH0428441B2 (en)
JPS58163559A (en) Continuous casting method of steel
JPS58157563A (en) Supporting roll of ingot in continuous casting installation
JPS63238953A (en) Method for casting molten metal by using twin rolls
JPS63286258A (en) Method for winding continuous casting thin slab
JPH0515404Y2 (en)
RU2063297C1 (en) Process of continuous casting of steel billets of large cross-section
CA1090528A (en) Cooling apparatus for twin-belt casting machine
JPS5870960A (en) Continuous casting method for steel