JPS612249A - Scanning-type electron microscope - Google Patents

Scanning-type electron microscope

Info

Publication number
JPS612249A
JPS612249A JP12172384A JP12172384A JPS612249A JP S612249 A JPS612249 A JP S612249A JP 12172384 A JP12172384 A JP 12172384A JP 12172384 A JP12172384 A JP 12172384A JP S612249 A JPS612249 A JP S612249A
Authority
JP
Japan
Prior art keywords
sample
magnetic path
electron microscope
disk
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12172384A
Other languages
Japanese (ja)
Other versions
JPH0619963B2 (en
Inventor
Hideo Todokoro
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59121723A priority Critical patent/JPH0619963B2/en
Publication of JPS612249A publication Critical patent/JPS612249A/en
Publication of JPH0619963B2 publication Critical patent/JPH0619963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable both short-focus operation and insertion of a large sample by dividing the objective into two sections in the direction perpendicular to the lens axis to form a lens gap and enabling a sample to be placed in this gap. CONSTITUTION:The over magnetic path 10 and the excitation coil 7 of an objective are fixed to the upper surfaces of a sample chamber 14. An under magnetic path 11 fixed to a supporting stand 15 is located under the lower surface of the sample chamber 14. A sample stage 16 to which a sample 3 is fixed is installed in the gap formed between the upper and the lower magnetic paths 10 and 11. The sample stage 16 is horizontally moved by driving shafts 18a and 18b which are driven by a sample-driving part 17. Because of the above structure, it is possible to place a large sample 3 in the microscope and to operate an objective 1 with a short focal distance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は走査形電子顕微鏡に係り、特に強力で微細電子
ビームを得るに好適なレンズ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a scanning electron microscope, and particularly to a lens structure suitable for obtaining a powerful and minute electron beam.

〔発明の背景〕[Background of the invention]

第1図は走査形電子顕微鏡(SEM)の2次電子検出方
法のいくつかを示したものである。(a)は対物レンズ
1の下方で、試料3の斜め上方に2次電子検出器2を設
けた最も一般的な検出方法である。ここでは−次電子4
の照射で発生した2次電子5は試料3上で2次電子検出
器2に吸引、検出される。この場合、対物レンズの下面
と試料3との間の距離WDは5IlI11〜30III
11程度となる。この方式は、大きい試料を挿入できる
ことや試料を傾斜させることができる等の特徴をもって
いる。
FIG. 1 shows some methods of detecting secondary electrons using a scanning electron microscope (SEM). (a) is the most common detection method in which a secondary electron detector 2 is provided below an objective lens 1 and obliquely above a sample 3. Here, the −order electron 4
The secondary electrons 5 generated by the irradiation are attracted to the secondary electron detector 2 on the sample 3 and detected. In this case, the distance WD between the lower surface of the objective lens and the sample 3 is 5IlI11 to 30III
It will be about 11. This method has features such as the ability to insert large samples and the ability to tilt the sample.

しかし、対物1ノンズ1が長焦点になるため電子ビーム
を細く絞ることが難しい。
However, since the objective lens 1 has a long focal point, it is difficult to narrow down the electron beam.

このため、(l])のように試料3を対物レンズの下面
に接近さ・IU、2次電子検出器2を対物レンズ1の上
方に置き、対物レンズ1を短焦点で動作させる方法が行
ICわれでいる(特願昭57−195814号参照)。
For this reason, the method shown in (l) is to bring the sample 3 close to the bottom surface of the objective lens, place the IU and secondary electron detector 2 above the objective lens 1, and operate the objective lens 1 at a short focus. IC is here (see Japanese Patent Application No. 195814/1983).

2次組?−5は対物レンズ1の磁場にとらえられ、らせ
ん状に上方に登り、磁場がなくなった場所で2次電子検
出器2に吸引、検出される。
Second group? -5 is captured by the magnetic field of the objective lens 1, climbs upward in a spiral pattern, and is attracted and detected by the secondary electron detector 2 at a place where the magnetic field disappears.

さらに短焦点にするため(C)のように試料3を対物レ
ンズ1のギャップ内に置く方法が考えられでいる。この
方法が最も電子ビームを細く絞り得る方法であるが試料
の大きさに制約があり、特殊な用途に限られCいる。我
々の目標の1つである測長SEMでは、径が5〜6イン
チのウェーハを対象とするり、IΣBテスタにおいては
さらにプローブカードを装着しなければならない。この
ため    ′これらの用途においては二次電子検出の
方法としてこれまで上記第1図(a)や(b)の方法が
用いられてきた。
In order to achieve an even shorter focus, a method has been considered in which the sample 3 is placed within the gap of the objective lens 1 as shown in (C). This method is the method by which the electron beam can be focused most narrowly, but there are restrictions on the size of the sample, and it is limited to special applications. One of our goals, the CD-SEM, targets wafers with a diameter of 5 to 6 inches, and an IΣB tester must also be equipped with a probe card. Therefore, in these applications, the methods shown in FIGS. 1(a) and 1(b) have been used to detect secondary electrons.

〔発明の目的〕[Purpose of the invention]

本発明は前述の問題点を解消し、対物レンズの短焦点動
作と大形試料の挿入とを両立させるレンズ構造を有する
走査形電子顕微鏡を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a scanning electron microscope having a lens structure that allows the short focus operation of the objective lens to be compatible with the insertion of a large sample.

〔発明の概要〕[Summary of the invention]

本発明の原理的構成を第2図に示す。前記従来例の第1
図(c)の対物レンズ1は励磁コイル7と磁路6とで構
成されている。励磁コイル7の励磁により磁束が磁路6
を流れる。磁路ギャップ8では磁束が空間を流れる。こ
こで1次電子ビームにレンズ作用を与える。試料3は磁
路6に囲まれている。このため試料3の大きさに制限が
あった。
FIG. 2 shows the basic configuration of the present invention. The first example of the conventional example
The objective lens 1 shown in FIG. 3(c) is composed of an excitation coil 7 and a magnetic path 6. Due to the excitation of the excitation coil 7, the magnetic flux flows into the magnetic path 6.
flows. In the magnetic path gap 8, magnetic flux flows through the space. Here, a lens effect is applied to the primary electron beam. The sample 3 is surrounded by a magnetic path 6. For this reason, there was a limit to the size of Sample 3.

本発明では、対物レンズを第2図のように、励磁コイル
7、上磁路10、下磁路11の3部品で構成し、外側の
磁路にもギャップ11を設けた。こうすることにより、
大きな試料3が挿入できるようになり、しかも対物レン
ズ1を短焦点で動作できる。
In the present invention, as shown in FIG. 2, the objective lens is composed of three parts: an excitation coil 7, an upper magnetic path 10, and a lower magnetic path 11, and a gap 11 is also provided in the outer magnetic path. By doing this,
A large sample 3 can now be inserted, and the objective lens 1 can be operated with a short focus.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の実施例を示す。対物レンズの上磁路1
0と励磁コイル7が試料室14の上面に固定されている
。試料室14の下面から支持台15で下磁路11が固定
されている。上磁路10と下磁路11のギャップ間に試
料3を固定した試料ステージ1にがnII Flされて
いる。この試料ステージ16は真空外部にある試料駆動
部17から駆動軸18a、18bで水平移動される。本
発明では、平板状のものであれば、制限がなく、5イン
チや6インチのウェーハでも挿入することができる。1
次電子うけ電子銃、コンデンサレンズ、走査コイル、ス
チグマ補正器等を含んで光学系19から放射され、試料
3上を走査する。1次電子4で発生した2次電子5は対
物レンズの磁場内を貫通し、上に登る。レンズ上方には
、シンチレータ22、ポスト高電圧20、ライトガイド
21、ホトマルチ23で構成される2次電子検出器2が
設置されている。レンズ上方に登ってきた2次電子5は
ポスト高電圧に吸引、加速され、シンチレータ22を光
らせ、ライドガイド21でホトマル23に導かれ、電気
信号側;変換される。この信号により走査像を作る。こ
の実施例では、試料交換の構造を示していないが、予備
室を設けて試料3のみを着脱する方法、あるいは試料室
14を大気圧にし試料ステージ全体を外部に引出して試
料変換を行う等、一般の試料変換方法が適用できる。
FIG. 3 shows an embodiment of the present invention. Objective lens upper magnetic path 1
0 and an excitation coil 7 are fixed to the upper surface of the sample chamber 14. The lower magnetic path 11 is fixed from the lower surface of the sample chamber 14 with a support stand 15 . A sample stage 1 on which a sample 3 is fixed between the gap between the upper magnetic path 10 and the lower magnetic path 11 is placed nII Fl. This sample stage 16 is horizontally moved by drive shafts 18a and 18b from a sample drive section 17 located outside the vacuum. In the present invention, there is no restriction as long as the wafer is flat, and even 5-inch or 6-inch wafers can be inserted. 1
The secondary electron is emitted from the optical system 19, which includes an electron gun, a condenser lens, a scanning coil, a stigma corrector, etc., and scans over the sample 3. Secondary electrons 5 generated by primary electrons 4 penetrate the magnetic field of the objective lens and rise upward. A secondary electron detector 2 composed of a scintillator 22, a post high voltage 20, a light guide 21, and a photomulti 23 is installed above the lens. The secondary electrons 5 that have climbed above the lens are attracted and accelerated by the post high voltage, make the scintillator 22 glow, are led to the photomultiplier 23 by the ride guide 21, and are converted into an electrical signal. This signal creates a scanned image. Although this example does not show the structure for sample exchange, there are several methods, such as providing a preliminary chamber and attaching and detaching only the sample 3, or setting the sample chamber 14 to atmospheric pressure and pulling out the entire sample stage outside to perform sample exchange. General sample conversion methods can be applied.

尚、この実施例の下磁路11には開口24を設けたが、
電子ビーム4は、この間口24に達しない構造となって
いるため、この開口24は省略できる。この場合、上磁
路10と下磁路l】との軸合せ精度が緩和できる利点が
生じる。
Although the opening 24 was provided in the lower magnetic path 11 in this embodiment,
Since the structure is such that the electron beam 4 does not reach this opening 24, this opening 24 can be omitted. In this case, there is an advantage that the alignment precision between the upper magnetic path 10 and the lower magnetic path 1 can be relaxed.

また本発明では励磁コイル7が試料3の上に設けたが、
試料3の下方に設けても同様の効果が得られる。
Further, in the present invention, the excitation coil 7 is provided on the sample 3, but
A similar effect can be obtained even if it is provided below the sample 3.

本発明の対物レンズでは外側にギャップを設けたため、
励磁コイルに流す電流が増加する。このた励磁電流の増
加が2倍以上になると励磁コイル7の発熱でコイルが損
傷する。あるいは対物レンズを小形化・できない等の問
題が生じるようになる。
Since the objective lens of the present invention has a gap on the outside,
The current flowing through the excitation coil increases. On the other hand, if the excitation current increases by more than twice, the excitation coil 7 generates heat and the coil is damaged. Alternatively, problems such as the inability to downsize the objective lens arise.

この問題に対しては、外側のギャップで生じる磁気抵抗
を内側のギャップで生じる磁気抵抗よりも小さくするこ
とによって対処できる。この関係を保つには、第4図に
示す如き対物レンズの外側のギャップ部の磁路の肉厚t
、と内側のギャップのばよい。ここでり。は外側ギャッ
プ部の直径、D、は内側のギャップ部の直径である。例
えば、tlを3nwn、D+を16mn、D、を120
nvnとし、toを0.4nwn とすれば上記の関係
が満され、励磁電流は2倍内でよい。もし、toを4n
wnにすれば、励磁電流の増加はわずか10%になる。
This problem can be addressed by making the reluctance created by the outer gap smaller than the reluctance created by the inner gap. In order to maintain this relationship, the thickness of the magnetic path at the gap outside the objective lens must be t, as shown in Figure 4.
, and the inner gap is fine. Here it is. is the diameter of the outer gap, and D is the diameter of the inner gap. For example, tl is 3nwn, D+ is 16mn, D is 120
If nvn is set and to is set to 0.4nwn, the above relationship is satisfied, and the excitation current may be within twice. If to is 4n
If it is set to wn, the excitation current will increase by only 10%.

第5図は本発明の他の実施例である。ここでは下磁路2
5が試料ステージを兼ね、下磁路25の上に試料3が装
着されている。この下磁路には開口(第3図−24)が
設けられていないので、下磁路25を水平移動させても
上磁路10と下磁路25の間で生じる磁束はほとんど変
化しない。下磁路25の移動方法、2次電子の検出方法
等は第3図の実施例と同様である。
FIG. 5 shows another embodiment of the invention. Here, lower magnetic path 2
5 also serves as a sample stage, and the sample 3 is mounted on the lower magnetic path 25. Since this lower magnetic path is not provided with an opening (FIG. 3-24), the magnetic flux generated between the upper magnetic path 10 and the lower magnetic path 25 hardly changes even if the lower magnetic path 25 is moved horizontally. The method of moving the lower magnetic path 25, the method of detecting secondary electrons, etc. are the same as in the embodiment shown in FIG.

尚、この実施例において、下磁路25の外径D2と上磁
路の外径り、の関係をD2≧D、+d(dは試料ステー
ジの移動範囲)を満すようにすることで、下磁路25を
動かしたことによるレンズ性能への影響をほとんど皆無
にすることができる。
In this example, by setting the relationship between the outer diameter D2 of the lower magnetic path 25 and the outer diameter of the upper magnetic path to satisfy D2≧D, +d (d is the movement range of the sample stage), The effect on lens performance caused by moving the lower magnetic path 25 can be almost completely eliminated.

第6図は本発明の他の実施例である。この実施例では下
磁路25上に試料3とプローブカード26が装着されて
いる。この実施例の試料3はプロセスを完了したウェー
ハで、パッケージに組立てられていないものである。こ
の実施例は、ウェーハ内に作られた集積回路を、試料室
内で動作させ、電子ビームで電気特性を測定するEBテ
スタである6ウエーハ内の回路に電源電圧と信号電圧を
供給するためにプローブカード26の針27を接触させ
る。接触を正確に行なうために試料3を下磁路25上で
移動させる移動機構28a、28bと、プローブカード
26の上下機構29a、29bが設けられている。プロ
ーブカード26にはリード線30が接触され、これがハ
ーメチック31を介して真空夕)に導かれている。リー
ド線32は集積回路を動作させる電源に接続されている
。下磁路25を釆0−たXY移動機構36a、36bは
駆動軸18a、18bを介して真空外の試料駆動部17
で移動操作できる。この移動台は、試料室前壁34に固
定された移動板35に乗っており、試料変換時には試料
室外に引出す。また、この実施例には、吸引グリッド3
4と反射グリッド33が設けられているが、これは試料
内の電位鎖を信号差としてより明瞭に示すためのもので
ある。吸引グリッド34にはプラスの電位(例えば10
0V)が印加され、試料で発生した2次電子を効率よく
反射グリッド33へ導く役目をし、反射グリッド33に
はマイナス電位(例えば−5V)が印加され、2次電子
に対し電位障壁を形成し、エネルギーの高い2次電子の
みを検出する。尚、反射グリッド33を用いる電位の測
定については、特願昭58−112729号に詳述され
ている。
FIG. 6 shows another embodiment of the invention. In this embodiment, a sample 3 and a probe card 26 are mounted on the lower magnetic path 25. Sample 3 of this example is a wafer that has undergone a process and has not been assembled into a package. This embodiment is an EB tester that operates integrated circuits fabricated within a wafer in a sample chamber and measures electrical characteristics with an electron beam.6 This is an EB tester that operates integrated circuits fabricated within a wafer and uses probes to supply power supply voltage and signal voltage to the circuits within the wafer. The needle 27 of the card 26 is brought into contact. To ensure accurate contact, moving mechanisms 28a and 28b for moving the sample 3 on the lower magnetic path 25 and vertical mechanisms 29a and 29b for the probe card 26 are provided. A lead wire 30 is brought into contact with the probe card 26 and guided to the vacuum tube via a hermetic wire 31. Lead wire 32 is connected to a power source that operates the integrated circuit. The XY moving mechanisms 36a and 36b connected to the lower magnetic path 25 are connected to the sample drive unit 17 outside the vacuum via drive shafts 18a and 18b.
You can move it with . This moving table is mounted on a moving plate 35 fixed to the front wall 34 of the sample chamber, and is pulled out of the sample chamber when changing the sample. This embodiment also includes a suction grid 3
4 and a reflection grid 33 are provided to more clearly show potential chains within the sample as signal differences. The suction grid 34 has a positive potential (for example, 10
0V) is applied, which serves to efficiently guide the secondary electrons generated in the sample to the reflection grid 33, and a negative potential (for example, -5V) is applied to the reflection grid 33, forming a potential barrier against the secondary electrons. However, only high-energy secondary electrons are detected. Note that the measurement of potential using the reflective grid 33 is detailed in Japanese Patent Application No. 112729/1982.

第7図は本発明の他の実施例で、第6図で示した実施例
の試料変換を速やかに行なえるように試料交換室41と
試料交換機構42とを設けたものである。この実施例で
は下磁路25は、XYの水平移動だけでなく高さくZ)
をもったXvZ移動機構上に乗っている。XY移動では
、プローブカード26と下磁路25が一体として動くが
、Z移動では下磁路25のみが上下する。XYの移動は
、駆動軸18a、18b、Z軸は駆動軸18cで真空外
から操作できる。プローブカード26のリード線39は
ハーメチック38で真空外に導かれ、回路を動作させる
電源に接続されている。
FIG. 7 shows another embodiment of the present invention, in which a sample exchange chamber 41 and a sample exchange mechanism 42 are provided so that the sample exchange of the embodiment shown in FIG. 6 can be carried out quickly. In this embodiment, the lower magnetic path 25 not only moves horizontally in XY but also moves vertically (Z)
It rides on the XvZ movement mechanism with. In the XY movement, the probe card 26 and the lower magnetic path 25 move together, but in the Z movement, only the lower magnetic path 25 moves up and down. The XY movement can be operated from outside the vacuum using the drive shafts 18a, 18b, and the Z axis is the drive shaft 18c. Lead wires 39 of the probe card 26 are guided outside the vacuum by a hermetic 38 and connected to a power source for operating the circuit.

試料3の装着は下記の手順で行う= (i)下磁路25
を標準位置より2〜3側下げる、(+i )バルブ40
を開ける、(iii )試料交換機構42を用いて試料
3を下磁路25に載せる、(1v)バルブ40を閉じる
、(V)走査像を見ながらウェーハ内のパッド(針を立
てる場所)とプローブカード26の針との一致度を調べ
、合致させる、(■1)Z軸で下磁路25を徐々に上げ
る、(vii)走査像内の電圧コントラスト(反射グリ
ッド33を働かせる)を用いて電位が回路に導入された
ことを確認する、(vm)Z軸による下磁路25の上昇
を停止する。
Mount sample 3 using the following procedure = (i) Lower magnetic path 25
Lower the valve 40 by 2 to 3 sides from the standard position (+i)
(iii) Place the sample 3 on the lower magnetic path 25 using the sample exchange mechanism 42. (1v) Close the valve 40. (V) While looking at the scanned image, place the sample 3 on the pad (place where the needle is placed) inside the wafer. Check the degree of coincidence with the needle of the probe card 26 and make them match. (1) Gradually raise the lower magnetic path 25 on the Z axis. (vii) Using the voltage contrast in the scanned image (activating the reflection grid 33). (vm) Stop the rise of the lower magnetic path 25 by the Z-axis, confirming that the potential has been introduced into the circuit.

試料の脱着は、以下の手順で行う= (1)下磁路25
を徐々に下げてプローブカード26の針とウェーハとの
I亥触をはずす、(11)バルブ4oを開ける、(ii
i )試料交換機構42を用いて、試料交換室41へ試
料3をもどす、(iv)バルブ4゜を閉じる、(V)試
料交換室41を大気にする、(vl)交換窓(図では省
略)を開けて試料3をとり出す。
The sample is attached and detached using the following procedure = (1) Lower magnetic path 25
(11) Open valve 4o, (ii)
i) Return the sample 3 to the sample exchange chamber 41 using the sample exchange mechanism 42, (iv) Close the valve 4°, (V) Make the sample exchange chamber 41 atmospheric, (vl) Open the exchange window (omitted in the figure) ) and take out sample 3.

〔発明の効」5,1 以上詳述し、たごどく、本発明によれば、ウェーハのよ
うな人さな試料を短い焦点距離の対物レンズでwt祭で
き、高分解能での像a察や電位の測定に効果がある。
[Effects of the Invention] 5.1 As described in detail above, according to the present invention, a human-sized sample such as a wafer can be captured using an objective lens with a short focal length, and images can be observed with high resolution. It is effective for measuring electrical potential.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の二次電子検出方法を示す対物レンズと
試料部の縦断面図、第2図は本発明の走査形電子顕微鏡
の原理的構成を示す要部縦断面図、第3〜7図は本発明
の実施例になる走査形電子顕′f3r   図 第 2  図 第 3  図 纂 4 図 罫 5  図
FIG. 1 is a vertical cross-sectional view of an objective lens and sample section showing a conventional secondary electron detection method, FIG. 2 is a vertical cross-sectional view of main parts showing the basic configuration of the scanning electron microscope of the present invention, and Figure 7 shows a scanning electron microscope 'f3r' which is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、電子を放射する電子源と、該電子源から放射された
電子を試料上に集束する対物レンズを含むレンズ系と、
集束電子を試料上に走査する走査電源と2次電子検出器
を含む像表示系とからなる走査形電子顕微鏡において、
対物レンズ部にレンズ軸に直交する方向に2分割してレ
ンズギャップを形成し、かつ該ギャップ間に試料を挿入
できるようにした磁界形電子レンズを用いたことを特徴
とする走査形電子顕微鏡。 2、分割された磁路の一方が中央に開口をもつた円板で
かつ円板の中央部と外周部がレンズギャップになつてい
ることを特徴とする特許請求の範囲第1項記載の走査形
電子顕微鏡。 3、開口のない円板形の磁路を用いたことを特徴とする
特許請求の範囲第1項記載の走査形電子顕微鏡。 4、円板磁路上に試料を乗せ、円板形の磁路を移動させ
ることができるようにしたことを特徴とする特許請求の
範囲第3項記載の走査形電子顕微鏡。 5、円板の磁路の直径を、円板形の磁路の移動量と磁界
レンズの直径の和以上としたことを特徴とする特許請求
の範囲第5項記載の走査形電子顕微鏡。 6、円板形の磁路上に試料と試料に電圧を導入するため
のプローブカードを設置したことを特徴とする特許請求
の範囲第6項記載の走査形電子顕微鏡。 7、プローブカードを円板形の磁路に対して水平および
上下に動かすことができるようにしたことを特徴とする
特許請求の範囲第6項記載の走査形電子顕微鏡。 8、プローブカードおよび円板形の磁路を一体として水
平移動可能とし、かつ円板形の磁路の高さのみを独立に
移動可能としたことを特徴とする特許請求の範囲第6項
記載の走査形電子顕微鏡。 9、円板形の磁路に対向して設けられた磁路の電子通路
に2次電子を吸引する吸引グリッドと吸引グリッドの外
側に2次電子のエネルギーを分別する反射グリッドを設
けたことを特徴とする特許請求の範囲第6項、第7項、
第8項記載の走査形電子顕微鏡。
[Claims] 1. A lens system including an electron source that emits electrons and an objective lens that focuses the electrons emitted from the electron source onto a sample;
In a scanning electron microscope consisting of a scanning power source that scans focused electrons onto a sample and an image display system that includes a secondary electron detector,
A scanning electron microscope characterized by using a magnetic field type electron lens in which an objective lens part is divided into two parts in a direction perpendicular to the lens axis to form a lens gap, and a sample can be inserted between the gaps. 2. Scanning according to claim 1, characterized in that one of the divided magnetic paths is a disk having an opening at the center, and the center and outer circumference of the disk form a lens gap. Shape electron microscope. 3. A scanning electron microscope according to claim 1, which uses a disk-shaped magnetic path without openings. 4. A scanning electron microscope according to claim 3, characterized in that a sample is placed on a disk magnetic path, and the disk-shaped magnetic path can be moved. 5. The scanning electron microscope according to claim 5, wherein the diameter of the magnetic path of the disk is greater than or equal to the sum of the amount of movement of the disk-shaped magnetic path and the diameter of the magnetic field lens. 6. A scanning electron microscope according to claim 6, characterized in that a sample and a probe card for introducing a voltage to the sample are installed on the disc-shaped magnetic path. 7. A scanning electron microscope according to claim 6, characterized in that the probe card can be moved horizontally and vertically with respect to the disk-shaped magnetic path. 8. The probe card and the disc-shaped magnetic path are integrally movable horizontally, and only the height of the disc-shaped magnetic path is movable independently. scanning electron microscope. 9. An attraction grid that attracts secondary electrons into the electron path of the magnetic path provided opposite to the disk-shaped magnetic path, and a reflection grid that separates the energy of the secondary electrons are provided outside the attraction grid. Characterizing claims 6 and 7,
The scanning electron microscope according to item 8.
JP59121723A 1984-06-15 1984-06-15 Scanning electron microscope Expired - Lifetime JPH0619963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121723A JPH0619963B2 (en) 1984-06-15 1984-06-15 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121723A JPH0619963B2 (en) 1984-06-15 1984-06-15 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPS612249A true JPS612249A (en) 1986-01-08
JPH0619963B2 JPH0619963B2 (en) 1994-03-16

Family

ID=14818284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121723A Expired - Lifetime JPH0619963B2 (en) 1984-06-15 1984-06-15 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH0619963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181252A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Charged particle beam device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258355A (en) * 1975-11-07 1977-05-13 Hitachi Ltd X-ray detecting unit for electronic microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258355A (en) * 1975-11-07 1977-05-13 Hitachi Ltd X-ray detecting unit for electronic microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181252A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Charged particle beam device

Also Published As

Publication number Publication date
JPH0619963B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
KR100309323B1 (en) Scanning electron microscopy and scanning electron microscopy
US5493116A (en) Detection system for precision measurements and high resolution inspection of high aspect ratio structures using particle beam devices
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
US20030089859A1 (en) Objective lens for a charged particle beam device
US6365897B1 (en) Electron beam type inspection device and method of making same
JP3285092B2 (en) Scanning electron microscope and sample image forming method using scanning electron microscope
TWI435361B (en) Electronic ray device and method for observing a test piece using such electronic ray device
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
US10991543B2 (en) Charged particle beam device
JP3966350B2 (en) Scanning electron microscope
JPS612249A (en) Scanning-type electron microscope
JP2001148232A (en) Scanning electron microscope
US4866280A (en) Objective lens of an electron beam apparatus
JPS59155941A (en) Electron-beam inspection device
JP3014369B2 (en) Electron beam device equipped with sample height measuring means
JP2008107335A (en) Cathode luminescence measuring device and electron microscope
JP3219030B2 (en) Sample image display method and semiconductor manufacturing method using the display method
KR100711198B1 (en) Scanning electron microscope
WO1996008835A1 (en) Particle beam detector providing z-axis and topographic contrast
JP2807668B2 (en) Electron beam defect inspection method and apparatus
JP3310688B2 (en) Scanning electron microscope
JP3494208B2 (en) Scanning electron microscope
JPH0668831A (en) Reflected electron detector in scanning electron microscope or the like
JP2966804B2 (en) Electron beam inspection equipment
JPH0425664B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term