JPS61224384A - Wavelength selecting optical switch - Google Patents

Wavelength selecting optical switch

Info

Publication number
JPS61224384A
JPS61224384A JP60063423A JP6342385A JPS61224384A JP S61224384 A JPS61224384 A JP S61224384A JP 60063423 A JP60063423 A JP 60063423A JP 6342385 A JP6342385 A JP 6342385A JP S61224384 A JPS61224384 A JP S61224384A
Authority
JP
Japan
Prior art keywords
light
active layer
wavelength
semiconductor
junction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063423A
Other languages
Japanese (ja)
Inventor
Masahiro Ikeda
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60063423A priority Critical patent/JPS61224384A/en
Publication of JPS61224384A publication Critical patent/JPS61224384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation

Abstract

PURPOSE:To eliminate the necessity of dividing the light including multiple wavelengths in advance and to enable the use of plural means for a control CONSTITUTION:A wavelength selecting switch is composed of a semiconductor P-N junction element 1, an active layer 2 of that, an injection current source 3, an input fiber 4, and an output fiber 5. An impurity concentration of the active layer 2 is restrained to be about 1X10<17>cm<-3> or under. When a signal light including two wavelengths lambda1 and lambda2 from the input fiber 4 is connected to the active layer 2 of the P-N junction element 1, the relative intensity of the P-N junction element 1, the relative intensity of the light of wavelengths lambda1 and lambda2 changes according to the change of the injection current in forward direction to the element 1 and the light is outputted from the output fiber 5. As the impurity concentraion of the active layer 2 is made about 1X10<17>cm<-3>, the absorption of the long wavelength light by free carriers can be prevented. The control of wavelength selection by free carriers enables the high-velocity operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信や、光論理回路の構成に用いる、透過
信号光の波長を高速で切、替えることの可能な小型の波
長選択光スイッチに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a compact wavelength-selective light that can switch the wavelength of transmitted signal light at high speed and is used in optical communication and the construction of optical logic circuits. It is related to switches.

ようなTBモードと7Mモードとの変換形が知られてい
る。(参考文献、 R900Alfernessほか、
’ Appl。
Conversion forms between the TB mode and the 7M mode are known. (References, R900Alferness et al.
'Appl.

Phys、 Lett、、  Vol、 MO,PP、
 lr & / −r 62./り12)第3図はその
実施例であって、J/FiTi 拡散光導波路、ココF
i接地電極、23は制御用電極、2仏はモード変換用電
極、2J−はLiNb0.結晶基板である。これを動作
させるには21の導波路出射端に検光子を配置し、ある
波長λ、でTEモニドの光信号が入射した時に7Mモー
ドに変換されて出射し、検光子を通過するようにする。
Phys, Lett,, Vol, MO, PP,
lr & / -r 62. /12) Figure 3 shows an example of the J/FiTi diffused optical waveguide, CocoF.
i ground electrode, 23 is a control electrode, 2 is a mode conversion electrode, 2J- is LiNb0. It is a crystal substrate. To operate this, an analyzer is placed at the output end of waveguide 21, and when a TE monide optical signal enters at a certain wavelength λ, it is converted to 7M mode, emitted, and passes through the analyzer. .

次に制御用電極23に電圧を印加するとLiNb0.の
電気光学効果によって他の波長λ2でTEモードから包
モードに変換されるようになる。したがって電圧のオン
Next, when a voltage is applied to the control electrode 23, LiNb0. Due to the electro-optic effect of , the TE mode is converted to a hull mode at another wavelength λ2. Hence the voltage on.

オフで波長選択光スイッチとして動作させる事が可能で
ある。上記説明から明らかなように、この種の波長選択
素子では信号光がTFfモードか7Mモードのどちらか
の偏波状態である必要があシ、一般の光通信用フフイバ
で伝送される偏波状態の乱れた信号光に対しては正常な
動作をしない。またこの素子は光の位相制御によって動
作させるため。
When turned off, it can be operated as a wavelength selective optical switch. As is clear from the above explanation, in this type of wavelength selection element, the signal light needs to be in either the TFf mode or 7M mode polarization state, which is the polarization state transmitted by a general fiber for optical communication. It does not operate normally in response to disturbed signal light. Also, this element operates by controlling the phase of light.

高い製作精度を要求される。温度変化に対して不安定、
挿入損失が大きい等の欠点がある。また中心波長の制御
幅は20Vで約2面と非常に小さ□い範囲しか動作しな
い欠点があった。
High manufacturing precision is required. Unstable due to temperature changes,
It has drawbacks such as high insertion loss. In addition, the control width of the center wavelength was 20V and had the disadvantage that it operated only in a very small range of about 2 planes.

半導体PN接合素子を用いて、多波長を含む光から特定
の波長の光を選択的に分波する光合分波器が発明者によ
シ出願されている(特願昭J−r−r弘/♂≠)。第6
図はその実施例であって半導体PN接合素子3jC具体
的には半導体レーザ素子)の順方向に注入電流源3!か
らバイアス電流を流しておくと、キャリアの反転分布が
形成され、特定の波長域に対して光増幅機能を有するこ
とを利用したものであシ、注入電流の’ON −OFF
によ勺、その特定波長の出力をスイッチングできる。し
かし、この装置では多波長を含む光をあらかじめ分岐路
3≠で分け、分波しようとする光の波長だけ、特定波長
の異なる半導体PN接合素子を用意して、それぞれに入
射しなければならないという欠点があった。
The inventor has filed an application for an optical multiplexer/demultiplexer that selectively demultiplexes light of a specific wavelength from light containing multiple wavelengths using a semiconductor PN junction element (Patent Application No. /♂≠). 6th
The figure shows an example of this, in which a current source 3! is injected in the forward direction of a semiconductor PN junction device 3jC (specifically, a semiconductor laser device). This method takes advantage of the fact that when a bias current is passed through the injected current, an inverted population of carriers is formed, which has an optical amplification function for a specific wavelength range.
In other words, the output of that particular wavelength can be switched. However, with this device, light containing multiple wavelengths must be separated in advance by branch path 3≠, and semiconductor PN junction elements with different specific wavelengths must be prepared for the wavelength of the light to be demultiplexed, and input to each of them. There were drawbacks.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、単一の半導体PN接合素子を用いて、波長選
択光スイッチを構成するものであ夛、多波長を含む光を
あらかじめ分割する必要がなく、スイッチングを行なわ
せるための制御手段として複数の手段を用いることがで
きるという特徴を有する。
The present invention uses a single semiconductor PN junction element to configure a wavelength-selective optical switch, so there is no need to pre-divide light containing multiple wavelengths, and multiple control means are used to perform switching. It has the feature that it can use the following means.

〔問題を解決するための手段および作用〕本発明は、波
長を選択するスイッチングを行なわせるにあたシ、光の
位相情報を制御するのではなく、半導体材料の損失の波
長特性を制御するようにし念ものである。具体的には、
活性層の不純物濃度を一定以下に制限した半導体PN接
合素子(具体的には半導体レーザ素子)を用い、該素子
の活性層に所定の波長を含む光を入射し流入電流Oの時
には、該半導体レーザ素子の発振波長にあたる波長の光
は吸収させ、発振波長よシ長波長で該素子の活性層のバ
ンドギャップエネルギに相当する波長よシ長い波長の光
は、吸収係数が小さいことを利用して透過光として出力
させる。この時に、熱エネルギによって誘起される自由
キャリアによってこの長波長側の光が嘱収されないよう
に、活性層の不純物濃度を一定以下(約/ x/ Q”
0flk −3以下)にしておく必要がある。該素子の
活性層に順方向に電流を注入すると、自由キャリア数が
増大し、発振波長に相当する波長の光については。
[Means and effects for solving the problem] The present invention does not control the phase information of light, but controls the wavelength characteristics of the loss of the semiconductor material when performing switching to select the wavelength. It's something to remember. in particular,
Using a semiconductor PN junction device (specifically, a semiconductor laser device) in which the impurity concentration of the active layer is limited to a certain level or less, when light containing a predetermined wavelength is incident on the active layer of the device and the inflow current is O, the semiconductor Light with a wavelength corresponding to the oscillation wavelength of the laser element is absorbed, and light with a wavelength longer than the oscillation wavelength and corresponding to the band gap energy of the active layer of the element has a small absorption coefficient. Output as transmitted light. At this time, the impurity concentration of the active layer is kept below a certain level (approximately / x / Q"
0flk -3 or less). When a current is injected into the active layer of the device in the forward direction, the number of free carriers increases, and for light with a wavelength corresponding to the oscillation wavelength.

吸収特性は増幅特性に反転する。注入電流Oのときに透
過していた長波長側の光は、注入による自由キャリア数
の増加によシ吸収が大きくなって透過しなくなる。この
ように活性層の自由キャリア数を制御することによシ、
単一の素子を用いて三波長を含む光からどちらかの波長
の光を選択的に出力゛することができる。活性層の自由
キャリア数を制御する方法には、以上のような注入電流
による方法以外に、活性層にバンドギャップエネルギ以
上の光子エネルギを有する制御光を入射する方法がある
。この場合は光による光の直接制御が実現されろうまた
、電子ビームの注入、熱を加える等の方法によっても、
本発明の波長選択光スイッチや動作の基本となる活性層
の自由キャリア数を制御することが可能である。
Absorption characteristics are reversed to amplification characteristics. The light on the long wavelength side that was transmitted when the injection current was O becomes absorbed due to the increase in the number of free carriers due to the injection, and is no longer transmitted. By controlling the number of free carriers in the active layer in this way,
Using a single element, it is possible to selectively output light of one of the three wavelengths. In addition to the method using injection current as described above, methods for controlling the number of free carriers in the active layer include a method of injecting control light having a photon energy higher than the band gap energy into the active layer. In this case, direct control of light by light would be realized.Also, by injection of electron beams, application of heat, etc.
It is possible to control the number of free carriers in the active layer, which is the basis of the wavelength selective optical switch and operation of the present invention.

〔実施例〕〔Example〕

0 実施例/ 第7図は、本発明の第1の実施例であり、lは半導体P
N接合素子、2け活性層、3は注入電流源、弘は入力用
7アイバ、夕は出力用ファイバである。入力用ファイバ
≠および出力用ファイパリは、その先端を半球状に加工
することによシレンズ効果をも念せ、入力用ファイバ≠
からは、2波長λ1 λ、を含む信号光を半導体PN接
合素子lの活性層2に結合する。半導体PN接合素子l
からの出力は、出力用ファイバjに結合される。
0 Example/ FIG. 7 shows the first example of the present invention, l is the semiconductor P
N junction element, 2 active layers, 3 is an injection current source, Hiroshi is 7 fibers for input, and Y is an output fiber. The input fiber ≠ and the output fiber pari are processed into a hemispherical shape to create a cylindrical lens effect, and the input fiber ≠
, a signal light including two wavelengths λ1 and λ is coupled to the active layer 2 of the semiconductor PN junction element l. Semiconductor PN junction element
The output from is coupled to output fiber j.

第2図は、本発明の波長選択光スイッチの動作を確認す
るための実験系の構成例を示す。tは光源、7#′i受
光器、rは選択レベルメータである。
FIG. 2 shows an example of the configuration of an experimental system for confirming the operation of the wavelength selective optical switch of the present invention. t is a light source, 7#'i light receiver, and r is a selection level meter.

半導体PN接合素子/としては、7.30μmで発振す
る半導体レーザ素子の両端面に反射防止膜を施したもの
を使用し、活性層コの不純物濃度を約/ X / Q1
7(jljk−”以下とした。光源6は素子lの発振波
長である43μm(λ、)の光とそれよシ長いtjμm
(λ、)の光を発生するものを用いた。上記のように活
性層2の不純物濃度を制限したのは、不純物により発生
する自由キャリアによって、このtj′μmの光が吸収
されるのを防ぐ念めである。
As the semiconductor PN junction device, a semiconductor laser device that oscillates at 7.30 μm with an anti-reflection film applied to both end faces is used, and the impurity concentration in the active layer is approximately /X/Q1.
7 (jljk-").The light source 6 has light of 43 μm (λ,), which is the oscillation wavelength of element l, and a longer wavelength of tj μm.
A device that generates light of (λ,) was used. The reason why the impurity concentration of the active layer 2 is limited as described above is to prevent this light of tj' μm from being absorbed by free carriers generated by the impurities.

IOの光検出器としてはGe−APDを用いた。Ge-APD was used as the IO photodetector.

第2図の実験系を用い、43μmと/、3μmの光を波
長選択光スイッチに入射し、出射光を7の光検出器で検
出し、PN接合の順方向への注入電流。
Using the experimental system shown in Figure 2, light of 43 μm and/or 3 μm is input into a wavelength selective optical switch, the output light is detected by photodetector 7, and a current is injected in the forward direction of the PN junction.

を変化させて、出力特性を//の選択レベルメータで測
定した。第3図は、光出力の注入電流依存性について測
定した結果である。横軸は注入電流、縦軸は入力光信号
レベルで規格化した光出力をデシベル表示したものであ
る。この図から明らかなように注入電流が0の時には/
、33μmの波長の光が出力され、/、30μmの光信
号は約70 dBの減衰があるが、注入電流を増加する
につれてこの関係は逆転し注入電流100mkの点では
/、30μmの光信号は出力され、/、33μmの光信
号は約≠0.dBの減、衰になる。/、 J 04mの
光信号に対しては半導体レーザの発振波長に相当するた
め、順方向電流を活性層に注入すると自由キャリアが増
加し入力信号光に対して吸収特性が増幅特性へと反転し
たためである。一方tjjμmの信号光は該活性層のバ
ンドギャップエネルギで決る波長よシ長波長であるため
本来吸収係数が小さく、電流がOの時には若干の吸収が
あるものの透過して出力される。注入電流を増加させる
につれて吸収が増加するのは、自由キャリアの増加によ
る吸収の増加である。自由キャリアによる吸収は自由キ
ャリアの数に比例する。この場合には約j OdBの吸
収の増加が観測された。この図から明らかなように注入
電流の制御によって波長選択光スイッチの動作を行わせ
ることができる。活性層2への信号光の結合および透過
光の取り出しについては。
The output characteristics were measured using a selective level meter. FIG. 3 shows the results of measuring the dependence of optical output on injection current. The horizontal axis is the injected current, and the vertical axis is the optical output normalized to the input optical signal level, expressed in decibels. As is clear from this figure, when the injection current is 0, /
, 33 μm wavelength light is output, /, 30 μm optical signal has an attenuation of about 70 dB, but as the injection current increases, this relationship is reversed, and at an injection current of 100 mk, /, 30 μm optical signal The output optical signal of /, 33 μm is about ≠ 0. This results in a dB decrease or attenuation. /, J For an optical signal of 04 m, this corresponds to the oscillation wavelength of a semiconductor laser, so when a forward current is injected into the active layer, free carriers increase and the absorption characteristic reverses to an amplification characteristic for the input signal light. It is. On the other hand, since the signal light of tjj μm has a longer wavelength than the wavelength determined by the band gap energy of the active layer, its absorption coefficient is originally small, and when the current is O, it is transmitted and output although there is some absorption. The increase in absorption as the injection current increases is due to the increase in free carriers. Absorption by free carriers is proportional to the number of free carriers. In this case an increase in absorption of approximately j OdB was observed. As is clear from this figure, the wavelength selective optical switch can be operated by controlling the injection current. Regarding the coupling of signal light to the active layer 2 and the extraction of transmitted light.

一般のレンズを用いた光学系を用いることも有効である
It is also effective to use an optical system using general lenses.

0 実施例2 第μ図は、本発明の第二の実施例であり、りは半導体P
N接合素子、10は活性層、llは光導波膜、/2は入
射レンズ、13は出射レンズ、l≠はシリンドリカルレ
ンズ、llは制御光、/4は信号光である。
0 Example 2 Figure μ shows the second example of the present invention.
N junction element, 10 is an active layer, 11 is an optical waveguide film, /2 is an input lens, 13 is an output lens, 1≠ is a cylindrical lens, 11 is a control light, and /4 is a signal light.

本実施例では、半導体PN接合素子りの活性層10を残
して、ノ・イメサ屋に(断面凸字形に)エツチングし、
ポリイiドをスピナで塗布してスラブ型の光導波膜//
を作製した。この光導波膜に横方向からシリンドリカル
レンズl≠を介して、制御光/jを入射し光導波膜ll
を介して活性層ioの側面に該制御光を照射することに
よシ、活性層中の自由キャリア数を制御する。本構成例
では活性層10への信号光の結合および取り出しにレン
ズ/2./3を用いた。第一の実施例のように7了イパ
を用いることもできる。信号光として、tよμmの光を
入射し、制御光として43μm の光を用いた。制御光
を入射しない時、信号光は透過するが、約/mWの制御
光を入射することにより、信号光を/ OdB程度減衰
させることができ、スイッチング動作を確認した7制御
光の効果は、シIJ 7ドリカルレンズlμによる光導
波層llへの結合効率を改善し、光導波層の厚さを活性
層10の厚さに対して最適化することによシ向上させる
ことができる。また、信号光をtjjlmと43μmの
波長の光を含むものセすれば、第一の実施例と同様に各
々の波長の光を選択的に透過させることが可能となる。
In this example, the active layer 10 of the semiconductor PN junction element is left and etched into a square shape (with a convex cross section).
Slab-type optical waveguide film by applying polyide with a spinner//
was created. Control light /j is incident on this optical waveguide film from the lateral direction via a cylindrical lens l≠, and the optical waveguide film ll
The number of free carriers in the active layer is controlled by irradiating the control light onto the side surface of the active layer io through the active layer io. In this configuration example, a lens/2. /3 was used. It is also possible to use a 7-way IP as in the first embodiment. Light of t μm was input as the signal light, and light of 43 μm was used as the control light. When the control light is not incident, the signal light passes through, but by injecting the control light of about /mW, the signal light can be attenuated by about /OdB, and the effect of the control light that confirmed the switching operation is as follows. This can be achieved by improving the coupling efficiency to the optical waveguide layer 11 by the optical lens lμ and optimizing the thickness of the optical waveguide layer with respect to the thickness of the active layer 10. Furthermore, if the signal light includes light of wavelengths tjjlm and 43 μm, it becomes possible to selectively transmit light of each wavelength as in the first embodiment.

以上の実施例においては、自由キャリアの制御手段とし
て注入電、流および光を用いる構成につい゛て述ぺたが
、その他には電子ビーム、熱など゛を制御手段として用
いることも可能である。電子ビーム照射の効果は光照射
の場合と同じである。熱に゛よる制御においては、半導
体PN接合素子の温度を変光られる範囲が制限されるた
めに、大幅な自著 ・−由キャリア数の変化は望めない。しかし、出力光の
レベル又は波長を測定する構成を付加すれば、一定の信
号光を入射しておいて、出力光の変化から熱の検出を行
うことが可能である。これも本発明の基礎となる現象の
有効な利用方法の一つである。
In the above embodiments, the structure using injected current, current, and light as free carrier control means has been described, but it is also possible to use an electron beam, heat, etc. as a control means. The effect of electron beam irradiation is the same as that of light irradiation. In thermal control, since the range in which the temperature of the semiconductor PN junction element can be varied is limited, it is not possible to expect a significant change in the number of free carriers. However, if a configuration for measuring the level or wavelength of the output light is added, it is possible to input a constant signal light and detect heat from changes in the output light. This is also one of the effective ways to utilize the phenomenon that is the basis of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の波長選択光スイッチは波
長選択機能を半導体材料の吸収特性のキャリア数依存性
によっているため以下のような利点がある。
As explained above, the wavelength selective optical switch of the present invention has the following advantages because the wavelength selective function is based on the carrier number dependence of the absorption characteristics of the semiconductor material.

(1)半導体PN接合素子の構造がレーザダイオードの
構造と同様であるなめ、小型化、集積化・が容易であシ
大量生産による経済化が可能である。
(1) Since the structure of the semiconductor PN junction element is similar to that of a laser diode, it can be easily miniaturized and integrated, and can be economically realized through mass production.

(2)波長選択制御を自由キャリアで行うため/ ns
程度の高速動作が可能である。
(2) To perform wavelength selection control using free carriers/ns
It is possible to operate at relatively high speeds.

(3)  挿入損は低く、利得を得ることも可能である
(3) Insertion loss is low and gain can be obtained.

(4)  波長選択制御を光信号で直接行う事ができる
ため、電磁誘導雑音に強い。
(4) Since wavelength selection control can be performed directly using optical signals, it is resistant to electromagnetic induction noise.

(5)可動部がないため寿命が長い。(5) Long lifespan as there are no moving parts.

(6)  スイッチする中心波長を2!00に以上と非
常に大きくとることができる。
(6) The center wavelength to be switched can be set to a very large value of 2!00 or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の波長選択光スイッチの第一の実施例
を示す図、第2図は、本発明の波長選択光スイッチの動
作を確認するための実験系の構成図、第3図く本発明の
波長選択光スイッチの動作を示す図、wJ弘図は、本発
明の波長選択光スイッチの第二の実施例を示す図、第3
図は、従来の波長選択光スイッチの一構成例、第を図は
、従来の光合分波器の構成例である。 l、り、36・・・半導体PN接合素子、2.10・・
・活性層、3,3j・・・注入電流源、≠・・・入力用
ファイバ、!・・・出力用7了イパ、t・・・光源、7
・・・受光a、r・・・選択レベルメータ、l/・・・
光導波膜、Ll・・入射レンズ、13・・・出射レンズ
、l≠・・・シリンドリカルレンズ、l!・・・制御光
、16・・・信号光、21・・・Ti拡散光導波路、2
2・・・接地電極、23・・・制御電極、2≠・・・モ
ード変換電極、31/L・・・分岐路、37・・・出力
導波路。 第1図 1ft2rgi ¥3図 0         5θ         /θθ雷
う糺(箔A) 葛4帖 第5区 2/、 z 4聞改尤犀埴絡 菓6匡
FIG. 1 is a diagram showing a first embodiment of the wavelength selective optical switch of the present invention, FIG. 2 is a configuration diagram of an experimental system for confirming the operation of the wavelength selective optical switch of the present invention, and FIG. 3 is a diagram showing a first embodiment of the wavelength selective optical switch of the present invention. Figures illustrating the operation of the wavelength-selective optical switch of the present invention are diagrams illustrating the second embodiment of the wavelength-selective optical switch of the present invention.
The figure shows an example of the configuration of a conventional wavelength selective optical switch, and the second figure shows an example of the configuration of a conventional optical multiplexer/demultiplexer. l, ri, 36... semiconductor PN junction element, 2.10...
・Active layer, 3, 3j... Injection current source, ≠... Input fiber,! ...7 for output, t... light source, 7
...Light reception a, r...Selection level meter, l/...
Optical waveguide film, Ll...Incidence lens, 13...Output lens, l≠...Cylindrical lens, l! ... Control light, 16 ... Signal light, 21 ... Ti diffused optical waveguide, 2
2... Ground electrode, 23... Control electrode, 2≠... Mode conversion electrode, 31/L... Branch path, 37... Output waveguide. Fig. 1 1 ft 2 rgi ¥ 3 fig. 0 5θ / θθ Lightning paste (Hoil A) Kuzu 4 tatami 5th section 2/, z 4 mon modified rhinoceros clay confectionery 6 ta

Claims (1)

【特許請求の範囲】[Claims]  半導体PN接合素子と、該半導体PN接合素子の活性
層に信号光を入射する手段と、活性層を通過した信号光
を取り出す手段と、該活性層の自由キャリア数を制御す
る手段からなり、該活性層中の不純物濃度が1×10^
1^7cm^−^3以下であることを特徴とする波長選
択光スイッチ。
It consists of a semiconductor PN junction element, a means for inputting signal light into the active layer of the semiconductor PN junction element, a means for extracting the signal light that has passed through the active layer, and a means for controlling the number of free carriers in the active layer. The impurity concentration in the active layer is 1×10^
A wavelength selective optical switch characterized in that the wavelength is 1^7cm^-^3 or less.
JP60063423A 1985-03-29 1985-03-29 Wavelength selecting optical switch Pending JPS61224384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063423A JPS61224384A (en) 1985-03-29 1985-03-29 Wavelength selecting optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063423A JPS61224384A (en) 1985-03-29 1985-03-29 Wavelength selecting optical switch

Publications (1)

Publication Number Publication Date
JPS61224384A true JPS61224384A (en) 1986-10-06

Family

ID=13228862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063423A Pending JPS61224384A (en) 1985-03-29 1985-03-29 Wavelength selecting optical switch

Country Status (1)

Country Link
JP (1) JPS61224384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222630A (en) * 1988-07-11 1990-01-25 Agency Of Ind Science & Technol Optical phase distribution control element
JPH06500408A (en) * 1990-08-31 1994-01-13 ベル コミュニケーションズ リサーチ インコーポレーテッド Tunable liquid crystal etalon filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426473A (en) * 1977-07-30 1979-02-28 Fujitsu Ltd Terminal unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426473A (en) * 1977-07-30 1979-02-28 Fujitsu Ltd Terminal unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222630A (en) * 1988-07-11 1990-01-25 Agency Of Ind Science & Technol Optical phase distribution control element
JPH06500408A (en) * 1990-08-31 1994-01-13 ベル コミュニケーションズ リサーチ インコーポレーテッド Tunable liquid crystal etalon filter

Similar Documents

Publication Publication Date Title
JP2637531B2 (en) Light switch
CA1293795C (en) Optical device
JPH06160655A (en) Tunable optical fiber
JP2004029811A (en) Waveguide type light cross point switch
EP0360833A1 (en) Symmetrical optical device.
US20160315451A1 (en) Tunable Optical Apparatus
US20210175689A1 (en) Multi-frequency hybrid tunable laser
JPS61224384A (en) Wavelength selecting optical switch
US7164822B2 (en) Variable optical gain control device
EP1314333B1 (en) Integrated optical router and wavelength convertor matrix
CA2267018C (en) Optical wavelength converter with active waveguide
JPS6191623A (en) Optical switch element
JP2809216B2 (en) Nonlinear optical waveguide
JP4653940B2 (en) Light controller for communication
Shiu et al. An InP-based monolithically integrated reconfigurable optical add–drop multiplexer
Buller et al. All‐optical routing networks based on bistable interferometers
JP2630052B2 (en) Matrix optical switch
JPS6044647B2 (en) Light-controlled electro-optical device
KR100491750B1 (en) Apparatus of All-Optical Memory based on EMILD structure
JPH06118467A (en) Optical device
JP2971419B2 (en) Light switch
Magari Semiconductor optical amplifier gate array integrated with spot-size converters
JP2730466B2 (en) Light switch
JP2677222B2 (en) Light switch
JPH0635012A (en) Wavelength division type spatial optical switch