JPS61224324A - Dry type thin film processor - Google Patents

Dry type thin film processor

Info

Publication number
JPS61224324A
JPS61224324A JP6456385A JP6456385A JPS61224324A JP S61224324 A JPS61224324 A JP S61224324A JP 6456385 A JP6456385 A JP 6456385A JP 6456385 A JP6456385 A JP 6456385A JP S61224324 A JPS61224324 A JP S61224324A
Authority
JP
Japan
Prior art keywords
metal container
microwaves
thin film
plasma
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6456385A
Other languages
Japanese (ja)
Inventor
Yasuaki Nagao
長尾 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6456385A priority Critical patent/JPS61224324A/en
Publication of JPS61224324A publication Critical patent/JPS61224324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To diffuse microwaves on the surface of specimen while making processing effective by a method wherein a metallic vessel encircled with magnetic force line generating means is connected to a reaction tube containing a specimen to vessel or the vessel is provided with electromagnetic shielding sheets with numerous pores in the metallic vessel. CONSTITUTION:Coolers 65 and metallic vessel 63 encircled with solenoids 66 as magnetic force line generating means are connected to the upper part of a reaction tube 69 containing a specimen base 71 whereon a specimen 72 is mounted. Besides, a waveguide 61 is connected to the ceiling of metallic vessel 63 which is fed with N2 gas through the intermediary of a piping 64 while the reaction tube 69 is fed with SiH2 gas through the intermediary of another piping 70 to irradiate the specimen 72 with microwaves through the waveguide 61 for specified processing. In such a constitution, electromagnetic shielding sheets 68 with numerous pores are provided in the metallic vessel 63 to be resonated with the other solenoids 67 encircling the vessel 63 to be resonated with the other solenoids 67 encircling the vessel 63 so that a part of microwaves may be diffused through the pores to disperse the plasma beams reaching the specimen 72.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明はプラズマを用いて半導体基板に薄膜を成長さ
せ、または基板上の薄膜をエツチングする薄膜加工装置
に関するものである。
The present invention relates to a thin film processing apparatus for growing a thin film on a semiconductor substrate or etching a thin film on a semiconductor substrate using plasma.

【従来技術とその問題点】[Prior art and its problems]

この発明の属する技術分野において最近ECRプラズマ
を用いたプロセス技術が注目されている。 ECRとはElectron  Cyclotron 
Re5onance(電子サイクロトロン共鳴)の略号
であり、磁場とマイクロ波の共鳴効果を用いて電子を加
速し、この電子の運動エネルギを用いてガスを電離せし
めプラズマを得るものであり、電子の磁力線まわりの円
運動の際に、遠心力とローレンツ力とがバランスする条
件がECR条件と呼ばれる0円心力を紅ω1、ローレン
ツ力を−erωBで表わすと、両者がバランスする条件
はω/ B m e / mである。ここで、ωはマイ
クロ波の角速度、Bは磁束密度、e/mは電子の比電荷
である。マイクロ波の周波数は工業用に認められている
2)45GHzが一般に用いられ、その場合0.087
5T(テスラ)が共鳴磁束密度である。 ECRプラズマを薄膜形成に応用した例を第2図に示す
、この装置では金属容器31反応槽9を真空排気してお
き、ガス人口4からN8ガスを金属容器3へ流したとこ
ろへ、図示されないマイクロ波発生手段により発生した
マイクロ波を導波管1゜真空窓2を介して金属容器3へ
送り込む、金属容器3の下部には中心に大口径の孔を持
った金属板7が取り付けられており、この金属板と金属
容器3とで半開放のマイクロ波共振器を構成している。 この共振器の外部にはソレノイド6が配置され、共振器
内にECR条件を満たす磁場が発生しているため、共振
器内にECRプラズマが発生する。 このプラズマが反応槽9に押し出され試料台10へ向か
う空間内にガス人口12からシランガス(SiHe)を
送り込んでこのガスを上記プラズマにより活性化すると
、発生した活性種が試料11と反応して試料11の表面
に薄膜が形成される。 この従来装置で金属板7の大口径孔からプラズマが送り
出されるメカニズムは次の通りである。 円運動する電子は磁気モーメントμで表わすことが出来
、磁場Hにおいて位置エネルギμHを持つ、電子の磁場
方向の並進運動エネルギをWとするとW+μHは電子の
トータルエネルギであり、断熱不変量である。したがっ
て電子はHの弱い場所で大きいWを有するため、自然に
磁力線にそって磁場の弱い方向に加速される。電子が加
速されシフトするとプラズマの性質によりイオンもこれ
にひかれて同じ方向にシフトし、ここにプラズマ流が発
生する。 本方式においてはその原理からプラズマ流の流線と磁力
線とが完全に一致して末広がりとなり・したがって試料
台上のプラズマの分布は不均一とならざるをえないため
、装置の大きさに比して有効面積が著しく小さいという
欠点を有していた。 この欠点を克服するため、プラズマを発生する共振器の
開口部から試料11ないし試料台10まで磁力線をまっ
すぐに導く方法として、反応槽外部にすきまなくソレノ
イドを配してプラズマを輸送する方法が実験機用に用い
られているが、装置が大型となり、試料表面の反応を目
視すること“もむづかしく、基板のハンドリング機構を
設けにくい等欠点が多く、実用機としての適用は望めな
い。 次にECR効果を応用したエツチング装置として例えば
第3図に示す反応性イオンビームエッチン、グ法が知ら
れている。この方法は反応性イオン^Wれ−J/q尤D
I”Dカも田lマレープイニイ岬ル會発生したイオンを
イオン引出し電極27を用いて反応槽29内に引き出し
、平行なイオンビームを得て試料31に照射し、イオン
ビームを構成する荷電粒子の運動方向の方向性すなわち
異方性の高いエツチングを得ようとするものである。こ
のときに得られるビームは単極性(通常正極性)のみの
ビームであり、有効な活性種のうち逆極性のもの(通常
負イオン)を完全にリジェクトする。またイオン同志の
反発力材よるビームの広がりをさけるため、イオン引出
し電極と試料との間に、イオンを中性化するための電子
を放出する中性化フィラメントを配置するのが普通であ
るため、粒子が試料表面に到着したときには中性であり
、イオン独特の活性を生かせず、エツチング速度が低く
なる欠点を有していた。さらに、プラズマからイオンを
引き出すのに大きい電界を要し、粒、子の速度調整がと
くに低速域で困難であり、そのため試料に与える損傷も
無視出来ない。 ECRプラズマを用いたエツチング装置として他に第4
図に示す方法が知られている。この方法ではマグネトロ
ン41により発生したマイクロ波を導波管42.43を
介して石英管44の内部空間へ注入する0石英管441
反応槽47の内部空間はあらかじめ真空排気しておき、
ここへガス人口46を介し原料ガスを流しておく、ソレ
ノイド45により石英管44の内部空間にECR条件が
成立したときガスがプラズマ化する。このプラズマは先
に薄膜形成装置で説明したのと同じ原理で石英管44の
内部空間から反応槽47の内部空間へ送り出され試料台
48に置かれた試料49に到着し、ここでプラズマ中の
活性種が基板49の表面と反応し、エツチングが進行す
る。必要に応じて試料台48の下に永久磁石が置かれプ
ラズマの試料への輸送を容品にさせる。 この方法では磁力線がカーブをえかいて試料に到着する
ため、輸送されるプラズマの密度が均一となりにりく、
エツチングの速度が同一試料表面でばらつく欠点がある
。さらにこの方法ではマイクロ波が直接試料に当たるた
めレジストが誘電体損により加熱され損傷を受ける。プ
ラズマが直接試料に接するための試料表面に形成された
回路の損傷も無視出来ない。
Process technology using ECR plasma has recently been attracting attention in the technical field to which this invention pertains. What is ECR?Electron Cyclotron
It is an abbreviation for Re5onance (electron cyclotron resonance), which accelerates electrons using the resonance effect of a magnetic field and microwaves, and uses the kinetic energy of these electrons to ionize gas to obtain plasma. During circular motion, the condition in which centrifugal force and Lorentz force are balanced is called the ECR condition.If zero centripetal force is represented by ω1, and Lorentz force is represented by -erωB, the condition in which both are balanced is ω/B m e / m. It is. Here, ω is the angular velocity of the microwave, B is the magnetic flux density, and e/m is the specific charge of the electron. The frequency of microwaves is generally 45 GHz, which is approved for industrial use, and in that case 0.087
5T (Tesla) is the resonant magnetic flux density. An example of applying ECR plasma to thin film formation is shown in Fig. 2. In this device, the metal container 31 reaction tank 9 is evacuated, and N8 gas is flowed from the gas port 4 into the metal container 3 (not shown). A metal plate 7 having a large diameter hole in the center is attached to the lower part of the metal container 3, which sends microwaves generated by the microwave generating means to the metal container 3 through the waveguide 1 and the vacuum window 2. This metal plate and the metal container 3 constitute a semi-open microwave resonator. A solenoid 6 is disposed outside the resonator, and a magnetic field that satisfies the ECR conditions is generated within the resonator, so that ECR plasma is generated within the resonator. When this plasma is pushed out to the reaction tank 9 and goes to the sample stage 10, silane gas (SiHe) is sent from the gas population 12 into the space and activated by the plasma, the generated active species react with the sample 11 and the sample A thin film is formed on the surface of 11. The mechanism by which plasma is sent out from the large-diameter hole of the metal plate 7 in this conventional device is as follows. An electron moving in a circular motion can be expressed by a magnetic moment μ, and if W is the translational kinetic energy of the electron in the direction of the magnetic field, which has potential energy μH in the magnetic field H, W+μH is the total energy of the electron, which is an adiabatic invariant. Therefore, since electrons have a large W in a place where H is weak, they are naturally accelerated along the lines of magnetic force in the direction of a weak magnetic field. When the electrons are accelerated and shifted, due to the nature of plasma, the ions are also attracted by them and shift in the same direction, creating a plasma flow. In this method, due to its principle, the streamlines of the plasma flow and the lines of magnetic force completely coincide and spread out. Therefore, the distribution of plasma on the sample stage must be uneven, which is compared to the size of the device. However, the disadvantage was that the effective area was extremely small. In order to overcome this drawback, experiments have been carried out to transport the plasma by placing a solenoid outside the reaction chamber without any gaps, as a method to guide the lines of magnetic force straight from the opening of the resonator that generates plasma to the sample 11 or sample stage 10. However, it has many drawbacks, such as the large size of the device, the difficulty in visually observing reactions on the sample surface, and the difficulty in providing a mechanism for handling the substrate, so it cannot be used as a practical device.Next For example, the reactive ion beam etching method shown in Fig. 3 is known as an etching device that applies the ECR effect.
The ion extraction electrode 27 extracts the generated ions into the reaction chamber 29, obtains a parallel ion beam, and irradiates the sample 31 with the ion beam. The aim is to obtain etching with high directionality in the direction of movement, that is, high anisotropy.The beam obtained at this time is a beam of only unipolarity (usually positive polarity), and among the effective active species, only those with opposite polarity are used. (usually negative ions).Also, in order to avoid spreading the beam due to the repulsive force between ions, a medium is placed between the ion extraction electrode and the sample to emit electrons to neutralize the ions. Usually, particles are neutral when they reach the sample surface, which means that the unique activity of ions cannot be utilized and the etching rate is low. A large electric field is required to extract the ions, and it is difficult to adjust the speed of particles and particles, especially in the low speed range, so the damage to the sample cannot be ignored.
The method shown in the figure is known. In this method, microwaves generated by a magnetron 41 are injected into the internal space of a quartz tube 44 through waveguides 42 and 43.
The internal space of the reaction tank 47 is evacuated in advance,
A source gas is caused to flow here through a gas port 46, and when an ECR condition is established in the internal space of the quartz tube 44, the gas is turned into plasma by a solenoid 45. This plasma is sent out from the interior space of the quartz tube 44 to the interior space of the reaction tank 47 using the same principle as previously explained for the thin film forming apparatus, and reaches the sample 49 placed on the sample stage 48. The active species react with the surface of the substrate 49, and etching progresses. If necessary, a permanent magnet is placed under the sample stage 48 to allow the plasma to be transported to the sample. In this method, the lines of magnetic force trace a curve before arriving at the sample, making it difficult for the density of the transported plasma to be uniform.
The disadvantage is that the etching speed varies on the same sample surface. Furthermore, in this method, the microwave directly hits the sample, so the resist is heated and damaged due to dielectric loss. Damage to the circuit formed on the sample surface cannot be ignored because the plasma comes into direct contact with the sample.

【発明の目的】[Purpose of the invention]

この発明は上述のマイクロ波ECRプラズマを用いた従
来の装置の欠点を除去し、大口径で均一かつ平行なプラ
ズマ流を簡便な方法で実現し、良質で均一な薄膜製造、
ないし均一で損傷がなく活性種を無駄なく利用しうるエ
ツチングを実現するための半導体製造装置を提供するこ
とを目的とする。
This invention eliminates the drawbacks of the conventional apparatus using microwave ECR plasma as described above, realizes a large diameter, uniform and parallel plasma flow in a simple manner, and produces high quality and uniform thin films.
It is an object of the present invention to provide a semiconductor manufacturing apparatus for realizing etching that is uniform, without damage, and in which active species can be used without waste.

【発明の要点】[Key points of the invention]

この発明はECRプラズマ発生容器の一部を、多数の小
孔を有しマイクロ波シールド能力を持つ電磁遮蔽板で構
成すると、プラズマが電磁遮蔽板の遮蔽面の位置におけ
る磁力線の勾配方向へ引き出されるという発明者の実験
による発見にもとづいている。この現象について報告し
た例は他にないが、発明者の理論的考察によると、この
現象の生じる原因は以下の通りである。 説明に入る前に、円運動する電子の磁気モーメントの大
きさを求めてお(、電子の円運動の半径を決めるのはマ
イクロ波のもたらす電界の最大値であり、これをE、と
すると e   E。 m  ω2 と計算される。 電磁波のパワ密度をp [W/m”]とす、ると、電界
の実効値Eは、 で与えられる。ここにZ、は空間の固有インピーダンス
120πオームである。従ってマイクロ波のパワ密度が
決定されれば電界が求められる。いま、直径0.125
 mの共振器に200Wのマイクロ波が注入されたとす
ると、 E =2478.8  [V/m  ]  、 Ep 
 −L[E −3505,5[V/m  ]従って e   E。 m  ω2 −1.758796xlO”  [C4g−息]350
5.5 [V/m ] × −2,66[μm] 従って磁気モーメントは、 I”6μorω/2 −1.6 XIG−”  [クーロン] ×4πXIQ
−’、 [H/II ]X2.66 [μm]×2πX
2.45XIO”  [3−’] XW−4,077X
l0−雪’[Wb−m]となる。 さて現象の説明に入ると、さきに述べた従来装置でμ、
H・+Wが一定でμHとWとの間でエネルギのやりとり
が行なわれているとしたが、直観的には、磁気モーメン
トと磁場の方向が逆向きをなして磁気グイポールが磁場
にそって押し出されている。マイクロ波のエネルギが供
給されている空間ではこの状態が持続するが、磁気グイ
ポールがマイクロ波の領域から外へ出ると、磁気モーメ
ントを磁場の向きにそろえようとする力が働くため、グ
イポールが回転する0丁度グイポールと磁力線が直交し
たときローレンツ力は電子に全く働かず、遠心力のみが
働く条件が成立し、電子は磁力線をはなれて飛び出し、
もはや円運動を生じなくなる。 このときの遠心力による電子のエネルギ番よ、%m(r
ω)意−7,54X10−1tジュール−4,713ミ
リエレクトロンボルト と小さいため、電子の運動は並進運動の方向すなわち磁
力線の接線方向に進行する。この進行のエネルギはμ(
Htc* −Hoot )であり、I(actはECR
条褌の磁場の強さ、)lootは電磁遮蔽板の遮蔽面の
位置での磁場の強さである。ゆえにHootの大きさに
応じて、電子は最大μHzcmまで無段階に速度調整さ
れる。いま、さきほど用いたマイクロ波のパワ密度と共
振器の直径との条件でμI(Inを求めてみると、 #H−4,077Xl0−”  [Wb−ml  ′0
.0875 [T] 4πxlO−’ [H/s ] −41770エレクトロンボルト となり、電子の初速度がHootの調整によりきわめて
大きい範囲で調整されうろことが分かる。またこれは電
界による電子引き出しでないため、イオンを道づれにし
て飛び出すことができ、プラズ方向に放出されるのであ
ると解釈される。 この現象を利用して新しいプラズマ引出しメカニズムを
つくり上げ、応用しようとするのが本発明の主旨であり
、マイクロ波を発生する手段と、このマイクロ波を伝達
する手段と、このマイクロ波伝達手段と結合されて前記
マイクロ波が導入されるとともに多数の小孔を有し前記
導入されたマイクロ波を他方の面へ通過させない電磁遮
蔽板から一部が構成された金属容器と、この金属容器内
に磁力線を生じ前記マイクロ波との共鳴効果により該金
属容器内に導入されたガスをプラズマ化して活性な原子
1分子またはイオンを生ずる第1の磁力線発生手段と前
記電磁遮蔽板の遮蔽面とほぼ垂直に交わる磁力線を生じ
該電磁遮蔽板の小孔を通って前記金属容器外へ侵出する
電子の速度と方向との少なくともいずれか一方を制御す
る第2の磁力線発生手段とを備え、前記速度ないし方向
が制御された電子の吸引力により前記プラズマを構成す
るイオンを前記金属容器外へ引き出して速度ないし広が
りが制御されたプラズマ流をこの金属容器外に生ぜしめ
るようにして、前記の目的を達成しようとするものであ
る。
In this invention, when a part of the ECR plasma generation container is constituted by an electromagnetic shielding plate having a large number of small holes and having microwave shielding ability, plasma is drawn out in the direction of the gradient of the lines of magnetic force at the position of the shielding surface of the electromagnetic shielding plate. This is based on the inventor's experimental findings. Although there is no other report on this phenomenon, according to the inventor's theoretical considerations, the causes of this phenomenon are as follows. Before we get into the explanation, let us find the magnitude of the magnetic moment of an electron moving in a circular motion (the radius of the circular motion of an electron is determined by the maximum value of the electric field produced by the microwave, and if this is E, then e E. It is calculated as m ω2. If the power density of the electromagnetic wave is p [W/m”], then the effective value E of the electric field is given by where Z is the characteristic impedance of the space of 120π ohm. Therefore, if the power density of the microwave is determined, the electric field can be found.Now, the diameter is 0.125.
If a microwave of 200 W is injected into a resonator of m, E = 2478.8 [V/m], Ep
-L[E -3505,5[V/m] Therefore e E. m ω2 −1.758796xlO” [C4g-breath] 350
5.5 [V/m] × -2,66 [μm] Therefore, the magnetic moment is I"6μorω/2 -1.6 XIG-" [Coulomb] ×4πXIQ
-', [H/II]X2.66 [μm]×2πX
2.45XIO"[3-'] XW-4,077X
10-Snow' [Wb-m]. Now, to explain the phenomenon, with the conventional device mentioned earlier, μ,
It is assumed that H + W is constant and energy is exchanged between μH and W, but intuitively, the direction of the magnetic moment and the magnetic field are opposite and the magnetic guipole is pushed along the magnetic field. It is. This state persists in a space where microwave energy is supplied, but when the magnetic Guipole moves out of the microwave area, a force acts to align the magnetic moment with the direction of the magnetic field, causing the Guipole to rotate. When the lines of magnetic force are perpendicular to the guipoles, the Lorentz force does not act on the electron at all, and only the centrifugal force acts, and the electron leaves the magnetic line of force and flies out.
It no longer produces circular motion. The energy number of electrons due to centrifugal force at this time is %m(r
ω) Since it is small at 7,54 x 10 -1t joules - 4,713 millielectron volts, the movement of electrons proceeds in the direction of translational movement, that is, in the tangential direction of the lines of magnetic force. The energy of this progression is μ(
Htc*-Hoot) and I(act is ECR
The strength of the magnetic field of the loincloth (root) is the strength of the magnetic field at the position of the shielding surface of the electromagnetic shielding plate. Therefore, depending on the magnitude of Hoot, the speed of the electrons is adjusted steplessly up to a maximum of μHzcm. Now, when we calculate μI(In under the conditions of the microwave power density and the resonator diameter used earlier, #H-4,077Xl0-" [Wb-ml '0
.. 0875 [T] 4πxlO-' [H/s] -41770 electron volts, and it can be seen that the initial velocity of the electrons can be adjusted over a very large range by adjusting Hoot. Furthermore, since this is not an electron extraction due to an electric field, it is interpreted that the ions can be thrown out along the way and emitted in the direction of plasma. The gist of the present invention is to utilize this phenomenon to create and apply a new plasma extraction mechanism. The microwave is introduced into the metal container, and a part of the metal container is made up of an electromagnetic shielding plate that has a large number of small holes and does not allow the introduced microwave to pass through to the other surface, and a magnetic field line is formed in the metal container. a first magnetic field line generating means that generates a single active atom molecule or ion by turning the gas introduced into the metal container into plasma due to the resonance effect with the microwave, and substantially perpendicular to the shielding surface of the electromagnetic shielding plate. a second magnetic line of force generation means for generating intersecting lines of magnetic force and controlling at least one of the speed and direction of electrons that leak out of the metal container through the small hole of the electromagnetic shielding plate, The above object is achieved by drawing the ions constituting the plasma out of the metal container by the controlled attraction of electrons, and generating a plasma flow with controlled speed or spread outside the metal container. That is.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例を示すものであり、第2図に
示した従来方法に加えてソレノイド67および多数の小
孔を有する電磁遮蔽板68を追加する。 ソレノイド66はECR磁場を発生させるためのもので
ある。ソレノイド67の高さもしくは軸線方−の位置お
よび電流を調整して磁力線と電磁遮蔽板の遮蔽面とのな
す角度と磁場の強さとを変化させる。平行プラズマ流が
必要なときは角度を直角に、拡大ビームが必要なときは
磁力線を末広がりに、縮小ビームが必要なときは磁力線
が縮小勾配をなして交わるようにすればよい、さきにも
述べたごとく、磁場の強さを調整してプラズマ流の初速
度を変化させ最適値に合わせる。なお、図において65
は金属容器63の外壁に設けられ金属容器壁を冷却する
冷媒が通る冷却管である。
FIG. 1 shows an embodiment of the present invention, in which a solenoid 67 and an electromagnetic shielding plate 68 having a large number of small holes are added in addition to the conventional method shown in FIG. The solenoid 66 is for generating an ECR magnetic field. By adjusting the height or axial position of the solenoid 67 and the current, the angle between the lines of magnetic force and the shielding surface of the electromagnetic shielding plate and the strength of the magnetic field are changed. When a parallel plasma flow is required, the angles should be set at right angles, when an expanded beam is required, the magnetic field lines should be spread out, and when a contracted beam is required, the magnetic field lines should be set so that they intersect at a contracting gradient. Similarly, by adjusting the strength of the magnetic field, the initial velocity of the plasma flow is adjusted to the optimal value. In addition, 65 in the figure
is a cooling pipe provided on the outer wall of the metal container 63 through which a refrigerant for cooling the metal container wall passes.

【発明の効果】【Effect of the invention】

以上に述べたように、本発明によれば、マイクロ波を用
いてECRプラズマを発生させる容器を金属とし、この
金属容器の一部を、マイクロ波シールド効果のある、多
数の小孔を備えた電磁遮蔽板により構成し、この電磁遮
蔽板の遮蔽面と交差する磁力線の向きと大きさとの少な
くともいずれか一方を可変とし、この電磁遮蔽板の小孔
を通うて前記金属容器外へ侵出する電子の方向ないし速
度を制御するとともに、この制御された電子、の吸引力
により金属容器内のプラズマを構成するイオンを容器外
へ引き出すよう′にしたので、金属容器外に大口径で均
一な平行プラズマ流が容易に得られ、しかも、このプラ
ズマ流の流速の制御も可能である。これにより良質で均
一な薄膜の製造、ないし均一で損傷がなくかつ活性な原
子9分子またはイオンを無駄なく利用しうるエツチング
加工を実現できる薄膜加工装置が可能となった。
As described above, according to the present invention, the container for generating ECR plasma using microwaves is made of metal, and a part of the metal container is provided with a large number of small holes that have a microwave shielding effect. Consisting of an electromagnetic shielding plate, at least one of the direction and magnitude of magnetic lines of force that intersect with the shielding surface of the electromagnetic shielding plate are variable, and the magnetic lines of force leak out of the metal container through small holes in the electromagnetic shielding plate. In addition to controlling the direction or speed of the electrons, the ions that make up the plasma inside the metal container are drawn out of the container by the attraction force of the controlled electrons, so that a large-diameter, uniform, parallel beam is placed outside the metal container. A plasma flow can be easily obtained, and the flow rate of this plasma flow can also be controlled. As a result, it has become possible to create a thin film processing apparatus that can manufacture high-quality, uniform thin films, or perform etching processing that is uniform, undamaged, and can utilize nine active atoms or ions without wasting them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づいて構成された乾式薄膜加工装置
の実施例を示す縦断面図、第2図は従来のマイクロ波E
CRプラズマを用いた薄膜生成装置例の縦断面図、第3
図は従来のマイクロ波ECRプラズマを用いたイオンビ
ームエツチング装置例の縦断面図、第4図は従来のマイ
クロ波ECRプラズマを用いたエツチング装置の別の例
を示す縦断面図である。 1.21.41.61  :導波管、3.23.63 
:金属容器、11.31.49.72 :試料、66:
第1の磁力線発生手段、67:第2の磁力線発生手段。 マイクロ流 IF5図 ↓ 典空ボ 第21!f マイフロラ友 ■ !、墾ト 第3図
FIG. 1 is a longitudinal sectional view showing an embodiment of a dry thin film processing apparatus constructed based on the present invention, and FIG.
Vertical cross-sectional view of an example of a thin film production device using CR plasma, No. 3
The figure is a longitudinal sectional view of an example of an ion beam etching apparatus using conventional microwave ECR plasma, and FIG. 4 is a longitudinal sectional view showing another example of an etching apparatus using conventional microwave ECR plasma. 1.21.41.61 : Waveguide, 3.23.63
: Metal container, 11.31.49.72 : Sample, 66:
1st line of magnetic force generating means, 67: second line of magnetic force generating means. Micro flow IF5 diagram ↓ Tenkubo No. 21! f My Flora friend! , Kent Figure 3

Claims (1)

【特許請求の範囲】 1)マイクロ波を発生する手段と、このマイクロ波を伝
達する手段と、このマイクロ波伝達手段と結合されて前
記マイクロ波が導入されるとともに多数の小孔を有し前
記導入されたマイクロ波を他方の面へ通過させない電磁
遮蔽板から一部が構成された金属容器と、この金属容器
内に磁力線を生じ前記マイクロ波との共鳴効果により該
金属容器内に導入されたガスをプラズマ化して活性な原
子、分子またはイオンを生ずる第1の磁力線発生手段と
、前記電磁遮蔽板の遮蔽面とほぼ垂直に交わる磁力線を
生じ該電磁遮蔽板の小孔を通って前記金属容器外へ侵出
する電子の速度と方向との少なくともいずれか一方を制
御する第2の磁力線発生手段とを備え、前記速度ないし
方向が制御された電子の吸引力により前記プラズマを構
成するイオンを前記金属容器外へ引き出して速度ないし
広がりが制御されたプラズマ流をこの金属容器外に生ぜ
しめ、このプラズマ流中に含まれる活性な原子、分子ま
たはイオンを用いて試料表面に薄膜を形成しまたはエッ
チング加工を施すことを特徴とする乾式薄膜加工装置。 2)特許請求の範囲第1項記載の装置において、金属容
器外へ侵出する電子の速度と方向との少なくともいずれ
か一方を制御する第2の磁力線発生手段が前記金属容器
をとり囲んで配設されたソレノイドであることを特徴と
する乾式薄膜加工装置。 3)特許請求の範囲第2項記載の装置において、第2の
磁力線発生手段であるソレノイドがその軸線方向に移動
可能に配設されたことを特徴とする乾式薄膜加工装置。
[Claims] 1) means for generating microwaves; means for transmitting the microwaves; A metal container partially constituted by an electromagnetic shielding plate that does not allow the introduced microwaves to pass through to the other surface, and magnetic lines of force generated within the metal container that are introduced into the metal container due to the resonance effect with the microwaves. a first magnetic field line generating means that generates active atoms, molecules or ions by converting gas into plasma; and a first magnetic field line generating means that generates magnetic field lines that intersect substantially perpendicularly to the shielding surface of the electromagnetic shielding plate and passing through the small holes of the electromagnetic shielding plate to the metal container. a second magnetic field line generating means for controlling at least one of the speed and direction of the electrons penetrating outward; A plasma flow with controlled velocity or spread is generated outside the metal container by drawing it out of the metal container, and active atoms, molecules, or ions contained in this plasma flow are used to form a thin film on the surface of the sample or to etch it. Dry thin film processing equipment that performs processing. 2) In the device according to claim 1, second magnetic force line generating means for controlling at least one of the speed and direction of electrons leaking out of the metal container is arranged surrounding the metal container. A dry thin film processing device characterized by a solenoid installed. 3) A dry thin film processing apparatus according to claim 2, wherein the solenoid, which is the second magnetic force line generating means, is disposed so as to be movable in the axial direction thereof.
JP6456385A 1985-03-28 1985-03-28 Dry type thin film processor Pending JPS61224324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6456385A JPS61224324A (en) 1985-03-28 1985-03-28 Dry type thin film processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6456385A JPS61224324A (en) 1985-03-28 1985-03-28 Dry type thin film processor

Publications (1)

Publication Number Publication Date
JPS61224324A true JPS61224324A (en) 1986-10-06

Family

ID=13261822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6456385A Pending JPS61224324A (en) 1985-03-28 1985-03-28 Dry type thin film processor

Country Status (1)

Country Link
JP (1) JPS61224324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus

Similar Documents

Publication Publication Date Title
US4371412A (en) Dry etching apparatus
JP3599564B2 (en) Ion flow forming method and apparatus
US7491649B2 (en) Plasma processing apparatus
US5435886A (en) Method of plasma etching
US6396024B1 (en) Permanent magnet ECR plasma source with integrated multipolar magnetic confinement
JPS6130036A (en) Microwave plasma processing apparatus
JPH0343774B2 (en)
JPH02103932A (en) Particle source
JPH0216731A (en) Plasma reactor
JPH06342771A (en) Dry etching apparatus
JP4042817B2 (en) Neutral particle beam processing equipment
JP2002289582A (en) Neutral particle beam treatment device
JPS61224324A (en) Dry type thin film processor
JP3079069B2 (en) Plasma processing apparatus and method for modifying the surface of a substrate
JPS61177728A (en) Apparatus for irradiation with low-energy ionized particle
WO1991004827A1 (en) A magnetic plasma producing device with adjustable resonance plane
US11037765B2 (en) Resonant structure for electron cyclotron resonant (ECR) plasma ionization
JP4384295B2 (en) Plasma processing equipment
JPH0770510B2 (en) Plasma processing device
JP3624986B2 (en) Beam processing method and apparatus
JPH0530500B2 (en)
JPH01107539A (en) Microwave plasma processor
JPH0578849A (en) High magnetic field microwave plasma treating device
JPS62180747A (en) Electric discharge reaction device
JPH0572097B2 (en)