JPS61224312A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS61224312A
JPS61224312A JP6331285A JP6331285A JPS61224312A JP S61224312 A JPS61224312 A JP S61224312A JP 6331285 A JP6331285 A JP 6331285A JP 6331285 A JP6331285 A JP 6331285A JP S61224312 A JPS61224312 A JP S61224312A
Authority
JP
Japan
Prior art keywords
gas
substrate
vapor phase
besides
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6331285A
Other languages
Japanese (ja)
Inventor
Noboru Akiyama
登 秋山
Hironori Inoue
洋典 井上
Saburo Ogawa
三郎 小川
Michio Ogami
大上 三千男
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6331285A priority Critical patent/JPS61224312A/en
Publication of JPS61224312A publication Critical patent/JPS61224312A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To obtain an epitaxially grown layer having excellent crystallizability at a low growing temperature by a method wherein a silicon halide is used as raw gas, and the mixed gas of hydrogen and inert gas is used as carrier gas. CONSTITUTION:The flow rate of He and H2+He, with which the defect density of lamination can be brought to the minimum, is obtained when the flow rate of carrier gas (H2+He) is maintained constant and the mixing ratio of H2 and H2+Hd is changed. Besides SiH2Cl, SiHCl3 and the like can be used as raw gas, Ar and the like can be used as inert gas besides He, and a sapphire and spinel substrate can be used as the substrate besides an Si substrate. Pertaining to the condition of reaction, a low temperature epitaxial growing condition is considered suitable. As the Si epitaxially grown layer having few crystal defects and excellent crystallizability can be formed by performing above-mentioned procedures, the outdiffusion and the autodoping of impurities of the substrate and the impurity contamination caused by a carbon susceptor can be suppressed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体の処理に使用される単結晶シリコン膜の
気相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for vapor phase growth of single crystal silicon films used in semiconductor processing.

〔発明の背景〕[Background of the invention]

81  エピタキシャル成長は、バイポーラL8工會始
めとしてトランジスタやダイオードなどの半導体素子の
製造忙広く用いられている。最近扛MOaLSr Kも
エピタキシャル層が使われ始めている。しかし従来の気
相成長法では、成長温度が約1000℃以上と高温のた
め、基板の不純物のアウトディフュージョンやオートド
ーピングが起こシ、急峻な接合をもつ半導体層を得るこ
とが困難である。この高温成長による不純物分布の移動
を防ぐには成長温度を低くすることが必要である。低温
成長に関する従来例としては、ジャーナル オブ ジ 
エレクトロケミカル ソサイエティ(J、 Elect
rochem、 Boa、 )第116巻、第6号、第
872へ873頁(1969)に記載されているように
不活性ガス中の成長、例えば原料ガスとしてモノシラン
(5IH4)、キャリアガスとしてヘリウム(He)を
用いて、800〜900℃の温度で常圧で成長する方法
が報告されているが、結晶性の点で不十分でメク、いま
だ実用化には至っていない。
81 Epitaxial growth is widely used in the manufacture of semiconductor devices such as transistors and diodes, including bipolar L8 technology. Recently, epitaxial layers have also started to be used for MOaLSrK. However, in the conventional vapor phase growth method, the growth temperature is as high as about 1000° C. or higher, which causes out-diffusion and auto-doping of impurities in the substrate, making it difficult to obtain a semiconductor layer with steep junctions. In order to prevent the impurity distribution from shifting due to high-temperature growth, it is necessary to lower the growth temperature. A conventional example of low-temperature growth is the Journal of the
Electrochemical Society (J, Elect
rochem, Boa, ) Vol. 116, No. 6, pp. 872-873 (1969). ) has been reported to grow at a temperature of 800 to 900° C. under normal pressure, but the crystallinity is insufficient and it has not yet been put to practical use.

更に別の従来例として、特公昭50−18472号公報
に記載されている工うに、シランの熱分解によってシリ
コン結晶層を気相成長させる際に、シランのキャリアガ
スとして水素と不活性ガスの混合ガスを用いることが知
られている。
As another conventional example, a method described in Japanese Patent Publication No. 18472/1983 uses a mixture of hydrogen and an inert gas as a carrier gas for silane when a silicon crystal layer is grown in a vapor phase by thermal decomposition of silane. It is known to use gas.

ところが、転位や積層欠陥が約10 ” am−”と多
く、まだ結晶性が十分でなかった。また、シランの熱分
解が激しいために、基板以外の石英治具やベルジャ等に
もSlの析着が生じるという問題があった。更にまた、
別の従来例としては、ジャーナル オブ ジ エレクト
ロケミカル ソサイエテイ、第125巻、!!4号、第
637〜644頁(1978)に記載されているように
、原料ガスに81H,やジクロロシラン(B111z0
4 )を用い、キャリアガスKH*に用い、かつ反応ガ
ス圧力を数10トルにして成長する方法が報告されてい
る。この方法に工れば800〜900℃でエピタキシャ
ル成長が可能であるが、結晶欠陥の一種である積層欠陥
が多数発生する。このためエピタキシャル成長層に素子
を形成した際に、欠陥が素子の電気的特性を劣化させ十
分な素子特性が得られず、歩留りが低下するという問題
があった。
However, there were as many dislocations and stacking faults as about 10"am-", and the crystallinity was still insufficient. Furthermore, since the thermal decomposition of silane is severe, there is a problem in that Sl is deposited on quartz jigs, bell jars, etc. other than the substrate. Furthermore,
Another conventional example is Journal of the Electrochemical Society, Volume 125,! ! No. 4, pp. 637-644 (1978), 81H and dichlorosilane (B111z0) are added to the raw material gas.
4) as a carrier gas KH* and a reaction gas pressure of several tens of torr has been reported. This method allows epitaxial growth at 800 to 900°C, but many stacking faults, which are a type of crystal defect, occur. For this reason, when an element is formed in the epitaxially grown layer, there is a problem in that the defects deteriorate the electrical characteristics of the element, making it impossible to obtain sufficient element characteristics, resulting in a decrease in yield.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低温(700〜900℃)で81の結
晶成長を行う際に発生する結晶欠陥(積層欠陥)1r低
減し、結晶性の優れたエピタキシャル成長@を低成長温
度で得ることを可能とする気相成長方法を提供すること
にある。
The purpose of the present invention is to reduce 1r of crystal defects (stacking defects) that occur when 81 crystal growth is performed at low temperatures (700 to 900°C), and to make it possible to obtain epitaxial growth with excellent crystallinity at low growth temperatures. An object of the present invention is to provide a vapor phase growth method that achieves this.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明は気相成長方法に関する発
明であって、基板上に単結晶シリコン膜を気相エピタキ
シャル成長させる方法において、原料ガスとしてシリコ
ンハロゲン化合物を用い、かつキャリアガスとして水素
と不活性ガスとの混合ガスを用いることkW徴とする。
To summarize the present invention, the present invention relates to a vapor phase growth method, in which a silicon halogen compound is used as a source gas, and hydrogen is used as a carrier gas. It is assumed that a mixed gas with an inert gas is used.

本発明は、キャリアガス(H2+ He )の流量金一
定に保ち、HzとHz + Heの流を比又は混合比(
He/H1+He )を変えてエピタキシャル成長層の
積層欠陥の発生状況?I−IEIIべたところ、積層欠
陥密度k 10 cm−”以下とするHeとHz+11
eの流量比が存在することを実験により見出した事実に
基づいている。
In the present invention, the flow rate of carrier gas (H2 + He) is kept constant, and the flow rate of Hz and Hz + He is adjusted by changing the ratio or mixing ratio (
How do stacking faults occur in the epitaxially grown layer by changing He/H1+He? I-IEII, stacking fault density k 10 cm-" or less He and Hz + 11
This is based on the fact that it was found through experiments that there is a flow rate ratio of e.

次に、上記の事実を、原料ガスが81H,Ot3と81
H4の場合を例にとり説明する。
Next, based on the above facts, the raw material gases are 81H, Ot3 and 81H.
This will be explained using the case of H4 as an example.

I BlkbCls ;  BICt冨+H鵞      
(1)k鵞 に4 に3 SiH,、!  81 + H,(41に− に1〜に4 m ”1〜に′4は反応速度定数。
I BlkbCls; BICt wealth + H goose
(1) 4 to 3 SiH,,! 81 + H, (41 to - to 1 to 4 m "1 to '4 is the reaction rate constant.

SIH,O7,や5IH4カスでは分解に必要なエネル
ギーを熱るるいは光エネルギー等の形で与えると、(1
)、 (2)式に示す反応が起こC6る平衡状態に落ち
着く。この反応で生じた81Cjt2 、81H1はS
l  結晶成長のスピーシイズと考えられておシ、□こ
れらは基板表面に吸着する。そこで(3)、 (41式
    まで示した反応が起こシ81原子が生まれる。
For SIH, O7, and 5IH4 scum, if the energy necessary for decomposition is given in the form of heat or light energy, (1
), C6 settles into an equilibrium state where the reaction shown in equation (2) occurs. 81Cjt2 and 81H1 produced in this reaction are S
l These are considered to be species of crystal growth, and □ these are adsorbed to the substrate surface. Then, (3), the reaction shown up to formula 41 occurs and 81 atoms are produced.

この81 が適切なサイト(組込まれると結晶性の良い
エピタキシャル層が得られる。結晶成長及び成長層の結
晶性には、 (1)、 121式のガス分解反応、81
0j、 、81111.の基板PIへの吸着、(3)、
(4)式のalct、、81H,ノ解離反応、61Ct
!や81H,、Siミノ板表面でのマイグレーションが
大きく影響する。
When this 81 is incorporated at an appropriate site, an epitaxial layer with good crystallinity can be obtained.Crystal growth and crystallinity of the grown layer include (1), gas decomposition reaction of equation 121, 81
0j, , 81111. Adsorption to the substrate PI, (3),
alct of formula (4), 81H, no dissociation reaction, 61Ct
! , 81H, migration on the surface of the Si mino plate has a large influence.

低温エピタキシャル成長では、キャリアガスに100%
”ht−用いた場合、Hzが多量に存在するために基板
衆面に吸着されるI(、あるいはHが多い。このため、
基板表面での5lcz、やSlのマイグレーションが不
完全とな9、積層欠陥等の結晶欠陥が多数発生すると推
定される。そこで、キャリアガスt Hz ” Heに
してHeの割合を増してい〈。そうすると表面に吸着さ
れるH2又はHが減少するので、マイグレーションが十
分に行われるように7!夛結晶欠陥数が減少する。とこ
ろがHe添加をある割合以上(H6/ H2+ H6)
α25)にすると積層欠陥数が急激に増加する。これは
、He の増加(Hzの減少)によシ、(11弐f) 
kt/ kmが大きくなって表面に吸着される51cz
、が増えたのに対し、(3)式のに37 k4が減少し
て51cz、の解離反応が不十分になったためと推定さ
れる。
In low-temperature epitaxial growth, 100% of the carrier gas
When using "ht-," there is a large amount of Hz, so a large amount of I (or H) is adsorbed to the surface of the substrate.
It is estimated that the migration of 5lcz and Sl on the substrate surface is incomplete9 and that many crystal defects such as stacking faults occur. Therefore, the proportion of He is increased by changing the carrier gas to t Hz "He. Then, the amount of H2 or H adsorbed on the surface is reduced, so that the number of crystal defects is reduced so that the migration is sufficiently performed. However, when He is added above a certain percentage (H6/H2+ H6)
When α25) is set, the number of stacking faults increases rapidly. This is due to the increase in He (decrease in Hz), (112f)
kt/km increases and 51cz is adsorbed on the surface.
This is presumed to be due to the fact that 37 k4 in formula (3) decreased while , increased, and the dissociation reaction of 51 cz became insufficient.

他方、51a4の場合を考えると、キャリアガスが10
0%H1の時には、81H,01冨の時と同様に基板表
面に吸着されるIX原子の数が多いので積層欠陥等の結
晶欠陥の発生が多いと推定される。
On the other hand, considering the case of 51a4, the carrier gas is 10
At 0%H1, the number of IX atoms adsorbed to the substrate surface is large, similar to the case at 81H,01, so it is estimated that crystal defects such as stacking faults occur frequently.

そこでキャリアガスf H2+ HeとしてHeの割合
を増やしていくと結晶欠陥の数は減少するが、Heの割
合を増し過ぎると(2)、(4)式の”1 m ’3が
大きくなp過ぎ、SiH,や81の生成量が、slが十
分にマイグレートできる数エフも増えてしまい、結晶欠
陥が発生するものと推定される。
Therefore, if the proportion of He as carrier gas f H2+ He is increased, the number of crystal defects will decrease, but if the proportion of He is increased too much, "1 m '3 in equations (2) and (4) will become too large p. , SiH, and 81 increase by several F, which is sufficient for sl to migrate, and it is estimated that crystal defects occur.

シリコンハロゲン化合物を原料ガスに用いた場合、シラ
ンに比べて積層欠陥の発生が少ない理由は、ハロゲン化
物のエツチング効果にエフ、基板表面に残存する異物が
除去されたものと推定される。また、シランに比べて基
板以外の部分への81析着が少ない理由に、石英やステ
ンレス上での81の核形成がハロゲン化物の働きによシ
防止されたためと推定される。
When a silicon halide compound is used as a raw material gas, the occurrence of stacking faults is lower than that of silane, and the reason for this is presumed to be due to the etching effect of the halide and the removal of foreign matter remaining on the substrate surface. It is also presumed that the reason why 81 is less deposited on parts other than the substrate than with silane is that the formation of nuclei of 81 on quartz or stainless steel is prevented by the action of the halide.

本発明で使用可能な原料ガスの例としては、′前記E1
1H,Ots以外に、81H04,810ta、8iB
r4.81工、が挙げられる。
Examples of raw material gases that can be used in the present invention include 'E1
In addition to 1H, Ots, 81H04, 810ta, 8iB
Examples include r4.81 engineering.

また、不活性ガスの例としては、前記He以外にAj及
びN3が挙げられる。
Further, examples of the inert gas include Aj and N3 in addition to the above-mentioned He.

更に、基板の例としては、sl基板以外に、サファイヤ
及びスピネル基板が挙げられる。
Furthermore, examples of the substrate include sapphire and spinel substrates in addition to the SL substrate.

反応条件としては、700〜900℃の反応温度、1〜
200トルの圧力という、低温エピタキシャル成長条件
が好適でおる。
The reaction conditions include a reaction temperature of 700 to 900°C;
Low temperature epitaxial growth conditions of 200 Torr pressure are preferred.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

なお、第1図は、本発明の1実施例と、比較例とにおけ
る結果上、混合比(Iie/H1+He )(横軸)と
積層欠陥密度(cllI″″冨、縦軸)との関係で示し
たグラフであシ、第2図は、本発明方法の実施に使用可
能な装置の1例の断面概略図である。第2図において、
符号10はガス供給ノズル、20は反応容器、30はカ
ーボンサセプタ、40 [Si基板、50は赤外加熱ラ
ンプ、60は真空ポンプ奮意味する。
In addition, FIG. 1 shows the relationship between the mixing ratio (Iie/H1+He) (horizontal axis) and the stacking fault density (cllI''' value, vertical axis) based on the results of one example of the present invention and a comparative example. The graph shown in FIG. 2 is a schematic cross-sectional view of an example of an apparatus that can be used to carry out the method of the invention. In Figure 2,
10 is a gas supply nozzle, 20 is a reaction vessel, 30 is a carbon susceptor, 40 is a Si substrate, 50 is an infrared heating lamp, and 60 is a vacuum pump.

実施例1、比較例1 原料ガスとして、100%の81H,(zl又は5lc
4 kmい、キャリアガスとして% ”! ” H”k
mいて、50トルの反応ガス圧力下、800℃の温度で
、成長速度は約12μm/分にして気相エピタキシャル
成長を行った。比較例として、原料ガスに81H4を用
いて同様な成長を行った。
Example 1, Comparative Example 1 As raw material gas, 100% 81H, (zl or 5lc
4 km, %”!”H”k as carrier gas
Vapor phase epitaxial growth was carried out at a reaction gas pressure of 50 torr, at a temperature of 800° C., and at a growth rate of about 12 μm/min. As a comparative example, similar growth was performed using 81H4 as the source gas.

それらの結果を第1図に示す。第1図から明らかなよう
に、原料ガスが5IH4の場合には、最適な混合比であ
っても、積層欠陥密度は、約10251″″1であった
。それに対して、本発明によるシリコンハロゲン化合物
の場合には、混合比を105〜α25とすれば、積層欠
陥密度を、10個−1以下とすることができた。
The results are shown in FIG. As is clear from FIG. 1, when the raw material gas was 5IH4, the stacking fault density was approximately 10251''1 even at the optimum mixing ratio. On the other hand, in the case of the silicon halogen compound according to the present invention, by setting the mixing ratio to 105 to α25, the stacking fault density could be reduced to 10 -1 or less.

実施例2 第2図に示す装置を用いて気相成長を行った。Example 2 Vapor phase growth was performed using the apparatus shown in FIG.

8iH鵞Ot、 (又は510t4 )にガス供給ノズ
ル10から導入され、キャリアガスのH,ガスとHeガ
スも同じくガス供給ノズル10から導入される。
8iH (or 510t4) is introduced from the gas supply nozzle 10, and carrier gas H, gas and He gas are also introduced from the gas supply nozzle 10.

石英裏反応容器20の内部にカーボンサセプタ30を置
負、これに載せ−fi−81基板40t−赤外加熱ラン
プ50で上側から加熱し、81基板40t−1000℃
まで加熱する。反応容器20内は常。
Place the carbon susceptor 30 inside the quartz-backed reaction vessel 20, place it on it, heat the fi-81 substrate 40t from above with an infrared heating lamp 50, and heat the 81 substrate 40t to 1000°C.
Heat until. The inside of the reaction vessel 20 is always maintained.

圧のまま、最初に2〜3モル−〇HOIガス(キャリア
ガス: Ih ) t−送り、成長前に81基板40の
表面の汚れをエツチングにより除去する。次に温度を下
げて81基板40?I−成長温度700〜900℃に保
ちキャリアガスであるH、とH8の混合ガスを流しなが
ら反応容器20内を真全ポンプ60で排気して約50ト
ルにする。そして、約I13モルチの51a=cz= 
を反応室に送5.81基板40上に81のエピタキシャ
ル成長を行い、実施例1と同様な結果を得た。
While maintaining the pressure, 2 to 3 mol of HOI gas (carrier gas: Ih) is first fed to remove dirt on the surface of the 81 substrate 40 by etching before growth. Next, lower the temperature and 81 board 40? I- While maintaining the growth temperature at 700 to 900° C. and flowing a carrier gas mixture of H and H8, the inside of the reaction vessel 20 is evacuated to about 50 Torr using a vacuum pump 60. And 51a=cz= of about I13 morti
was sent to a reaction chamber, and 81 was epitaxially grown on the 5.81 substrate 40, and the same results as in Example 1 were obtained.

前記6例において、上例とは異なる既述の原料ガス、不
活性ガス及び基板を用いて、同様な結果を得た。
In the above six examples, similar results were obtained using the previously described raw material gas, inert gas, and substrate different from those in the above example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、結晶欠陥の少ない結晶性の優れ九S1
エピタキシャル層t−700〜900℃の低温で形成で
きるので、基板の不純物のアウトディフュージョンやオ
ートドーピングあるいはカーボンサセプタからの不純物
汚染を抑えることができる。また、基板以外の部分への
81の析着を低減でき、成長層く形成した素子の歩留シ
も向上するたとができる。更に、急峻な不純物の接合が
得られることから、成長層の厚さ金薄くしても所望の素
子特性が得られる。
According to the present invention, nine S1 has excellent crystallinity with few crystal defects.
Since the epitaxial layer can be formed at a low temperature of t-700 to 900° C., it is possible to suppress out-diffusion of impurities in the substrate, auto-doping, or impurity contamination from the carbon susceptor. Further, it can be said that the deposition of 81 on parts other than the substrate can be reduced, and the yield of devices formed with a large growth layer can also be improved. Furthermore, since a steep junction of impurities can be obtained, desired device characteristics can be obtained even if the thickness of the grown layer is made thinner.

【図面の簡単な説明】 第1図は本発明方法の1例及び比較例の結果を示すグラ
フ、第2図は本発明方法の実施に使用可能な装置の1例
の断面概略図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the results of an example of the method of the present invention and a comparative example, and FIG. 2 is a schematic cross-sectional view of an example of an apparatus that can be used to carry out the method of the present invention.

Claims (1)

【特許請求の範囲】 1、基板上に単結晶シリコン膜を気相エピタキシャル成
長させる方法において、原料ガスとしてシリコンハロゲ
ン化合物を用い、かつキャリアガスとして水素と不活性
ガスとの混合ガスを用いることを特徴とする気相成長方
法。 2、該不活性ガスがヘリウムガスである特許請求の範囲
第1項記載の気相成長方法。 3、該原料ガスがジクロロシランである特許請求の範囲
第1項記載の気相成長方法。 4、該原料ガスがジクロロシランであり、該不活性ガス
がヘリウムガスである特許請求の範囲第1項記載の気相
成長方法。 5、H_2とH_2+Heの流量比、あるいは混合比(
He/H_2+He)が、0.05〜0.25である特
許請求の範囲第4項記載の気相成長方法。
[Claims] 1. A method for vapor phase epitaxial growth of a single crystal silicon film on a substrate, characterized in that a silicon halogen compound is used as a source gas, and a mixed gas of hydrogen and an inert gas is used as a carrier gas. A vapor phase growth method. 2. The vapor phase growth method according to claim 1, wherein the inert gas is helium gas. 3. The vapor phase growth method according to claim 1, wherein the source gas is dichlorosilane. 4. The vapor phase growth method according to claim 1, wherein the source gas is dichlorosilane and the inert gas is helium gas. 5. Flow rate ratio or mixing ratio of H_2 and H_2+He (
5. The vapor phase growth method according to claim 4, wherein He/H_2+He) is 0.05 to 0.25.
JP6331285A 1985-03-29 1985-03-29 Vapor growth method Pending JPS61224312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6331285A JPS61224312A (en) 1985-03-29 1985-03-29 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6331285A JPS61224312A (en) 1985-03-29 1985-03-29 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS61224312A true JPS61224312A (en) 1986-10-06

Family

ID=13225636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6331285A Pending JPS61224312A (en) 1985-03-29 1985-03-29 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS61224312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001615A2 (en) * 2000-06-27 2002-01-03 Applied Materials, Inc. Crystal structure control of polycrystalline silicon in a single wafer chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001615A2 (en) * 2000-06-27 2002-01-03 Applied Materials, Inc. Crystal structure control of polycrystalline silicon in a single wafer chamber
WO2002001615A3 (en) * 2000-06-27 2002-04-04 Applied Materials Inc Crystal structure control of polycrystalline silicon in a single wafer chamber
US6726955B1 (en) 2000-06-27 2004-04-27 Applied Materials, Inc. Method of controlling the crystal structure of polycrystalline silicon

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPH0856015A (en) Formation of semiconductor thin film
US3496037A (en) Semiconductor growth on dielectric substrates
JPH0834189B2 (en) EPITAXIAL SEMICONDUCTOR WAFER HAVING LOW OXYGEN REGION WITH ADJUSTABLE EXPANSION AND METHOD OF MANUFACTURING THE SAME
JPS61224312A (en) Vapor growth method
JPS6021518A (en) Vapor growth method of iii-v group compound semiconductor
JPS62186528A (en) Deposited film forming method
JP2952831B2 (en) Method for manufacturing semiconductor device
JPS5987814A (en) Manufacture of group iii-v compound semiconductor
JPS62147722A (en) Epitaxial growth method
JPS62132312A (en) Manufacture of semiconductor thin film
JPH0572742B2 (en)
JPS6114651B2 (en)
JPH03110831A (en) Manufacture of substrate having silicon single crystal film
JPS63196082A (en) Manufacture of solar cell
JPS621224A (en) Semiconductor element structure
JP2668236B2 (en) Semiconductor element manufacturing method
Berkenblit et al. Epitaxial Growth of Mirror Smooth Ge on GaAs and Ge by the Low Temperature Gel,. Disproportionation Reaction
JP3112796B2 (en) Chemical vapor deposition method
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPS58223319A (en) Vapor growth method for semiconductor
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPS6325914A (en) Manufacture of semiconductor device
JPS63175417A (en) Manufacture of silicon crystalline thin film