JPS61223121A - Method for refining low nitrogen steel - Google Patents

Method for refining low nitrogen steel

Info

Publication number
JPS61223121A
JPS61223121A JP6431785A JP6431785A JPS61223121A JP S61223121 A JPS61223121 A JP S61223121A JP 6431785 A JP6431785 A JP 6431785A JP 6431785 A JP6431785 A JP 6431785A JP S61223121 A JPS61223121 A JP S61223121A
Authority
JP
Japan
Prior art keywords
molten steel
hydrogen
gas
steel
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6431785A
Other languages
Japanese (ja)
Inventor
Susumu Mukawa
進 務川
Yoshimasa Mizukami
水上 義正
Noriyuki Shitawara
志俵 教之
Hironobu Murata
村田 裕信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6431785A priority Critical patent/JPS61223121A/en
Publication of JPS61223121A publication Critical patent/JPS61223121A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently denitrify molten steel at a low cost by blowing hydrogen-base gas into the molten steel to regulate the amount of hydrogen in the molten steel to a specified value and by vacuum-degassing the molten steel. CONSTITUTION:Molten steel 1 is poured into a molten metal vessel 2 such as a ladle, the immersion pipes 3 of a reflux system vacuum degassing apparatus 6 are put in the molten steel 1, and hydrogen-base gas 5 is blown into the molten steel 1 through porous plugs 4 to regulate the amount of hydrogen in the molten steel 1 to 5-25ppm. When the molten steel 1 having the increased hydrogen content is introduced into the apparatus 6 through one of the pipes 3, the hydrogen in the introduced molten steel 1 generates fine bubbles 7. These bubbles capture nitrogen in the molten steel 1 and are exhausted to a vacuum exhaust system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低窒素鋼の溶製方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing low nitrogen steel.

(従来の技術) 従来、低窒素鋼を溶製するためkは、転炉等で低窒素鋼
吹錬した溶鋼を、鋳造するまで、大気から遮断しつつ成
分調整及び温度調整する方法がとられていた。(例えば
、特開昭58−197209号公報)、この場合、合金
鉄からの吸窒による窒素量の増加をも防止する九めには
、高価な極低窒素合金鉄を使用する必要があシ、溶鋼の
製造費用を高める原因となっていた。このため、合金添
加し、た後の溶鋼を脱窒する方法として環流式真空ガス
法において大量アルゴンガス吹き込み法等が開発されて
いる。(特開昭58−213819号公報)。
(Prior art) Conventionally, in order to produce low-nitrogen steel, a method was used in which molten steel was blown into low-nitrogen steel in a converter, etc., and the composition and temperature were adjusted while shielding it from the atmosphere until it was cast. was. (For example, Japanese Patent Application Laid-Open No. 58-197209). In this case, in order to prevent an increase in the amount of nitrogen due to nitrification from the ferroalloy, it is necessary to use an expensive ultra-low nitrogen ferroalloy. , which caused an increase in the manufacturing cost of molten steel. For this reason, as a method for denitrifying molten steel after adding alloys, a large amount of argon gas blowing method has been developed in the reflux vacuum gas method. (Japanese Unexamined Patent Publication No. 58-213819).

しかし、この方法は、大量のガスを使用するために溶鋼
の温度低下が大弾く、又、真空1曹内で溶鋼の飛散が多
く、地金付きによる操業上の支障があるため好ましくな
い。
However, this method is not preferable because a large amount of gas is used, which causes a large drop in the temperature of the molten steel, and there is a lot of molten steel scattering in the vacuum chamber, causing operational problems due to metal adhesion.

(発明が解決しようとする問題点) 本発明は上記問題点を解決し、安価に且つ効率的に溶鋼
脱窒処理をおこなうことのできる低窒素鋼の溶製方法を
提供することを目的とするものである。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems and provide a low nitrogen steel melting method that can perform molten steel denitrification treatment inexpensively and efficiently. It is something.

(問題点を解決するための手段) 本発明の要旨とするところは、溶鋼を真空脱ガス処理す
るに際し、水素系ガスを溶鋼内に吹き1込□ み、溶鋼中の水素量を5 ppm以上、25 ppm以
下にした後、その溶gi4に真空下に置き、脱水素する
とともに脱窒処理することを特徴とする溶鋼の溶製方法
である。
(Means for Solving the Problems) The gist of the present invention is that when molten steel is subjected to vacuum degassing treatment, a hydrogen-based gas is blown into the molten steel to reduce the amount of hydrogen in the molten steel to 5 ppm or more. , 25 ppm or less, the molten steel is placed under vacuum to dehydrogenate and denitrify.

一般に、溶鋼を真空下で脱窒処理する場合、アルゴンガ
ス等の不活性ガスを溶鋼内に吹き込み、その不活性ガス
内に溶鋼中窒素を移動させ、窒素ガスとして溶鋼外に排
出している。この場合、脱窒速度を速めるためには、吹
き込みガス気泡の表面積を大きくし、且つ、溶鋼側を攪
拌し窒素の拡散速−を速めるのが良い。本発明の如く、
溶鋼中に水素系ガスを吹き込むと、溶鋼中水素含有量は
増加する。この場合、溶鋼中水素含有量が5 ppm未
満の場合は脱窒効率は向上せず、また、25、    
ppmを越えると水素ガスは溶鋼中に溶解しきれず、直
接大気中に放散され、吹き込みガスの効率が悪くなり、
好ましくない。従って、溶鋼中水素含有量が5 ppm
以上、 25 ppm以下になるようにするため、溶鋼
中水素量を分析しつつ、吹き込みガス量を調整するのが
望ましい。このように水素含有量を高めた溶鋼を環流式
真空脱ガス装置の浸漬管から真空槽内に導くと、溶鋼中
に溶解している水素は、減圧下の真空槽内では過飽和と
なり、水素ガス気泡を生成し、この水素ガス気泡の中に
溶鋼中の窒素を捕捉しつつ、真空排気系へ導く。特忙、
水素は溶鋼中の拡散係数が大きく、ガス気泡生成には適
した元素である。このようにして、溶鋼中から直接生成
する気泡は、通常環流ガスとして使用されているアルが
ンガス等と比較すると、微細気泡であシ、ガス気泡の比
表面積が大きいため、単位ガス量当たシの反応界面積を
大きくすることができるという利点がある。更に、溶鋼
から直接気泡が生成する場合はガスの生成によって、気
体−溶鋼の界面が大きく移動する。このように気体−溶
鋼の界面が移動すると、相対的には溶鋼中の窒素は気体
−溶鋼の界面の方に移動したことになシ、溶鋼中の窒素
原子の拡散速度を速める結果となる。このように水素含
有量を高めた溶鋼を脱窒処理すると、気泡界面の増大と
溶鋼内窒素の拡散速度の増加の二つの観点から、脱窒速
度の向上が図られる。
Generally, when denitrifying molten steel under vacuum, an inert gas such as argon gas is blown into the molten steel, nitrogen in the molten steel is moved into the inert gas, and the nitrogen gas is discharged out of the molten steel. In this case, in order to increase the denitrification rate, it is preferable to increase the surface area of the blown gas bubbles and to stir the molten steel side to increase the nitrogen diffusion rate. As in the present invention,
When hydrogen-based gas is blown into molten steel, the hydrogen content in the molten steel increases. In this case, if the hydrogen content in the molten steel is less than 5 ppm, the denitrification efficiency will not improve;
If it exceeds ppm, hydrogen gas will not be completely dissolved in the molten steel and will be directly emitted into the atmosphere, reducing the efficiency of the blown gas.
Undesirable. Therefore, the hydrogen content in molten steel is 5 ppm.
As mentioned above, in order to keep the amount of hydrogen at 25 ppm or less, it is desirable to adjust the amount of blown gas while analyzing the amount of hydrogen in the molten steel. When molten steel with increased hydrogen content is led into the vacuum chamber through the immersion tube of a recirculation vacuum degassing device, the hydrogen dissolved in the molten steel becomes supersaturated in the vacuum chamber under reduced pressure, and hydrogen gas Bubbles are generated, and nitrogen in the molten steel is captured in the hydrogen gas bubbles while being guided to the vacuum evacuation system. Very busy,
Hydrogen has a large diffusion coefficient in molten steel and is an element suitable for generating gas bubbles. In this way, the bubbles generated directly from molten steel are fine bubbles compared to argon gas, which is normally used as a reflux gas, and the specific surface area of the gas bubbles is large, so the amount of gas bubbles per unit gas amount is small. This has the advantage of increasing the reaction interfacial area of 2. Furthermore, when bubbles are generated directly from molten steel, the gas-molten steel interface moves significantly due to the generation of gas. When the gas-molten steel interface moves in this way, relatively speaking, nitrogen in the molten steel moves toward the gas-molten steel interface, resulting in an increase in the diffusion rate of nitrogen atoms in the molten steel. When molten steel with increased hydrogen content is denitrified in this manner, the denitrification rate is improved from the two viewpoints of increasing the bubble interface and increasing the diffusion rate of nitrogen in the molten steel.

つぎに、本発明方法の一例について述べる。第1図に示
した如く、転炉あるいは電気炉等の溶解炉で溶製された
溶鋼lを取鍋等の溶融金属容器2に移し、環流式真空脱
ガス装置6の浸漬管3を溶鋼内に浸漬する。続いて、溶
融金属容器内の溶鋼内t   へ溶融金属容器低部に配
置したポーラスプラグ4を介して水素系ガス5を吹き込
み、溶鋼中水素量を増加させる。このような方法で水素
含有量を高めた溶鋼を環流式真空脱ガス@#の浸−iか
ら真空槽内に導くと、溶鋼中の水素は、真空槽内で微細
気泡7を生成し、この微細気泡が溶鋼中の窒素を捕捉し
つつ真空排気系へ導かれる。このようにして、溶鋼中の
窒素は効率的に脱ガスされる。尚、水素系ガスの吹き込
み方法としては、第2図に示した如く、ランスを介して
溶鋼内に吹き込んでもよい。
Next, an example of the method of the present invention will be described. As shown in Fig. 1, molten steel melted in a melting furnace such as a converter or an electric furnace is transferred to a molten metal container 2 such as a ladle, and the immersion tube 3 of a circulation type vacuum degassing device 6 is inserted into the molten steel. Soak in. Subsequently, hydrogen-based gas 5 is blown into the molten steel t in the molten metal container through the porous plug 4 disposed at the bottom of the molten metal container to increase the amount of hydrogen in the molten steel. When molten steel with increased hydrogen content in this way is introduced into the vacuum chamber through the immersion in the reflux type vacuum degassing @#, the hydrogen in the molten steel generates fine bubbles 7 in the vacuum chamber, and these The microbubbles capture nitrogen in the molten steel and are guided to the vacuum exhaust system. In this way, nitrogen in the molten steel is efficiently degassed. In addition, as a method of blowing the hydrogen-based gas, as shown in FIG. 2, it may be blown into the molten steel through a lance.

また、脱ガス装置としては、第2図に示した如く吸い上
げ式真空脱ガス装at用いることもできる。転炉あるい
は電気炉等の溶解炉で溶製された溶鋼1を摩鍋等の溶融
金属容器2に移し、吸い上げ式真空脱ガス装置9の吸い
上げ管10を溶鋼内に浸漬する。続いて、溶融金属容器
内の溶鋼内ヘランス8全介して水素系ガス5f:吹き込
み、溶鋼中水Stを増加させる。このような方法で水素
含有量を高めた溶鋼を吸い上げ式真空脱ガス装置の吸い
上げ管から真空槽内に導くと、溶鋼中の水素は、真空槽
内で微細気泡7を生成し、この微細気泡が溶鋼中の窒素
を捕捉しつつ真空排気系へ導かれる噌 □このように、脱ガス装置としては、環流式真空脱ガス
装置でも吸い上げ式真9脱ガス装置のどちらでも使用可
能である。
Further, as a degassing device, a suction type vacuum degassing device at as shown in FIG. 2 can also be used. Molten steel 1 melted in a melting furnace such as a converter or an electric furnace is transferred to a molten metal container 2 such as a ladle, and a suction pipe 10 of a suction type vacuum degassing device 9 is immersed in the molten steel. Subsequently, a hydrogen-based gas 5f is blown through the entire molten steel injection valve 8 in the molten metal container to increase the water St in the molten steel. When molten steel with increased hydrogen content is introduced into the vacuum chamber through the suction pipe of the suction type vacuum degassing device, the hydrogen in the molten steel generates fine bubbles 7 in the vacuum chamber, and these fine bubbles The nitrogen in the molten steel is captured and guided to the vacuum evacuation system.□In this way, as a degassing device, either a circulation type vacuum degassing device or a suction type vacuum degassing device can be used.

尚、脱窒処厘後、水素系ガスの添加を止め、通常の脱ガ
ス操業をすれば、前に吹き込んだ水素系ガスは脱ガス操
業中に前述のようなメカニズムで真空排気系に排出され
、真空処理後の溶鋼に残留するのは約1.5 ppm以
下程度で品質上特に間粗にならないようにすることが可
能である。
After denitrification, if the addition of hydrogen-based gas is stopped and normal degassing operation is performed, the previously blown hydrogen-based gas will be discharged to the vacuum exhaust system by the mechanism described above during degassing operation. The amount remaining in the molten steel after vacuum treatment is about 1.5 ppm or less, and it is possible to prevent the quality from becoming particularly rough.

(5J!施例) 表IK冥施例を示す。実施例1は水素ガスをポーラスプ
ラグから4 Nm”/min吹き込んだ場合で、冥施例
2はデロパンガスをポーラスプラグからI Nm”/m
in吹き込んだ場合で、実施例3はメタンガスをポーラ
スプラグから2 NmS /min吹き込んだ場合で、
実施例4はアセチレンガスをランスから4 Nm”/m
in吹き込んだ場合で、処理中の溶鋼中水素含有量は5
 ppm以上、25 ppm以下に調整しつつ、吹き込
んだ。また、比較例1は水素系ガスの代シにアルゴンガ
スを吹き込んだ場合である。適用した滓鍋はすべて、転
炉で溶製し、取鍋で成分調整したアルミニウムシリコン
キルド鋼である。
(5J!Example) Table IK shows an example. Example 1 is a case in which hydrogen gas is injected from a porous plug at a rate of 4 Nm"/min, and Example 2 is a case where hydrogen gas is blown in at a rate of 4 Nm"/min from a porous plug.
In Example 3, methane gas was blown into the porous plug at a rate of 2 NmS/min.
Example 4 uses acetylene gas at 4 Nm”/m from a lance.
When injected, the hydrogen content in the molten steel during treatment is 5
The amount was blown while adjusting the amount to be between ppm and 25 ppm. Moreover, Comparative Example 1 is a case where argon gas was blown in instead of hydrogen-based gas. All of the slag pots used are aluminum-silicon killed steel melted in a converter and whose composition is adjusted in a ladle.

実施例1〜4の場合はすべて溶鋼窒素量を10PPm以
下にまで脱窒することができた。一方、比較例1の場合
は25 ppmまでしか脱窒せず、実施例と比較して、
十分な脱窒効果が得られなかった。
In all of Examples 1 to 4, the amount of nitrogen in the molten steel could be denitrified to 10 PPm or less. On the other hand, in the case of Comparative Example 1, the denitrification was only up to 25 ppm, and compared to the Example,
A sufficient denitrification effect could not be obtained.

以上の如く、本発明方法を溶鋼脱窒処理に適用すること
により、容易に低窒素鋼の溶製が可能となった。
As described above, by applying the method of the present invention to the denitrification treatment of molten steel, it has become possible to easily produce low nitrogen steel.

(発明の効果) 本発明によれば、従来の低窒素鋼の溶製法と比較して、
溶解炉設備、溶解炉から溶融金属容器への移し替え設備
、脱ガス設備等の改造及び新設はほとんどなく、単に水
素系ガス吹き込み設備を設置すれば、低窒素鋼の溶製が
可能となる。また、従来の低窒素鋼の溶製法である大量
アルゴン吹き込みなどKおける地金性による操業上の支
障も防止することが可能となる。また、20分間という
通常の脱ガス処理時間内で溶鋼中窒素含有量10ppm
以下という従来にない低窒素鋼の溶製が可能になった。
(Effects of the Invention) According to the present invention, compared to the conventional melting method for low nitrogen steel,
There is almost no modification or new installation of melting furnace equipment, equipment for transferring from the melting furnace to the molten metal container, degassing equipment, etc., and low-nitrogen steel can be melted simply by installing hydrogen-based gas blowing equipment. Furthermore, it is also possible to prevent operational problems caused by metallurgy in K, such as large amounts of argon injection, which is a conventional method for producing low nitrogen steel. In addition, the nitrogen content in molten steel was reduced to 10 ppm within the normal degassing treatment time of 20 minutes.
It has become possible to produce the following unprecedented low-nitrogen steel.

このように本発明によれば、従来法と比較して容易かつ
、n爽に溶鋼の脱窒ができる。
As described above, according to the present invention, molten steel can be denitrified easily and quickly compared to conventional methods.

また、工業的規模で正確な脱窒ができる等の優れた効果
が得られる。
Further, excellent effects such as accurate denitrification on an industrial scale can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は取鍋低部のポーラスプラグから水素系ガスを吹
き込みつつ拓流式真空脱ガス装置で脱窒処理する方法の
概略図であシ、第2図はランスから水素系ガスを吹き込
みクク吸い上は式真空脱ガス装置で脱窒処理する方法の
概略図である。 第1図
Figure 1 is a schematic diagram of a method for denitrification using a reflow type vacuum degassing device while blowing hydrogen-based gas through a porous plug at the bottom of the ladle, and Figure 2 shows a method for denitrification by blowing hydrogen-based gas through a lance. This is a schematic diagram of a method for denitrification using a vacuum degassing device. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 水素系ガスを溶鋼内に吹き込み、溶鋼中の水素量を5p
pm以上、25ppm以下に調整した後、真空脱ガス処
理することを特徴とする低窒素鋼の溶製方法。
Blow hydrogen gas into the molten steel to reduce the amount of hydrogen in the molten steel to 5p
A method for producing low nitrogen steel, which comprises adjusting the nitrogen content to pm or more and 25 ppm or less, and then subjecting it to vacuum degassing treatment.
JP6431785A 1985-03-28 1985-03-28 Method for refining low nitrogen steel Pending JPS61223121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6431785A JPS61223121A (en) 1985-03-28 1985-03-28 Method for refining low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6431785A JPS61223121A (en) 1985-03-28 1985-03-28 Method for refining low nitrogen steel

Publications (1)

Publication Number Publication Date
JPS61223121A true JPS61223121A (en) 1986-10-03

Family

ID=13254734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6431785A Pending JPS61223121A (en) 1985-03-28 1985-03-28 Method for refining low nitrogen steel

Country Status (1)

Country Link
JP (1) JPS61223121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279707A (en) * 1988-05-02 1989-11-10 William M Tekatch Removal of nitrogen from iron
WO2000034533A3 (en) * 1998-12-04 2002-10-03 Vai Technometal Gmbh Method for removing nitrogen from steel melts
GB2553342A (en) * 2016-09-02 2018-03-07 Materials Proc Institute Producing steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279707A (en) * 1988-05-02 1989-11-10 William M Tekatch Removal of nitrogen from iron
WO2000034533A3 (en) * 1998-12-04 2002-10-03 Vai Technometal Gmbh Method for removing nitrogen from steel melts
GB2553342A (en) * 2016-09-02 2018-03-07 Materials Proc Institute Producing steel

Similar Documents

Publication Publication Date Title
JPS61223121A (en) Method for refining low nitrogen steel
KR101796088B1 (en) Refining method of alloy steel
KR100270109B1 (en) The denitriding method of molten metal
JPH05195043A (en) Method for injecting flux for refining molten metal and device therefor
JP3646592B2 (en) Adjusting the carbon concentration of molten iron
JP5010086B2 (en) Vacuum processing of molten metal with simultaneous stripping by helium injection.
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JPS61235506A (en) Heating up method for molten steel in ladle
CA2091857A1 (en) Process and apparatus for manufacturing low-gas and pore-free aluminum casting alloys
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP3842857B2 (en) RH degassing method for molten steel
JPH0254714A (en) Method for adding oxygen in rh vacuum refining
JPH10298634A (en) Method for reduction-refining stainless steel
JP3225747B2 (en) Vacuum degassing of molten steel
JPH10245621A (en) Method for adding ca in molten steel during vacuum degassing treatment
JPS58104111A (en) Denitrifying method for disoxidized molten steel
JPH08302419A (en) Refining method of molten steel
JPS5658919A (en) Production of killed steel
JPH0254715A (en) Method for treating degassing in molten steel
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP3282487B2 (en) Manufacturing method of enamel steel
JP2001107132A (en) Denitrifying method of stainless steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
JPH0192313A (en) Method for refining molten steel