JP3646592B2 - Adjusting the carbon concentration of molten iron - Google Patents

Adjusting the carbon concentration of molten iron Download PDF

Info

Publication number
JP3646592B2
JP3646592B2 JP33161599A JP33161599A JP3646592B2 JP 3646592 B2 JP3646592 B2 JP 3646592B2 JP 33161599 A JP33161599 A JP 33161599A JP 33161599 A JP33161599 A JP 33161599A JP 3646592 B2 JP3646592 B2 JP 3646592B2
Authority
JP
Japan
Prior art keywords
molten iron
carbon
hydrocarbon
concentration
carbon concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33161599A
Other languages
Japanese (ja)
Other versions
JP2001152235A (en
Inventor
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33161599A priority Critical patent/JP3646592B2/en
Publication of JP2001152235A publication Critical patent/JP2001152235A/en
Application granted granted Critical
Publication of JP3646592B2 publication Critical patent/JP3646592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鉄中に加炭剤を添加して行う溶鉄の炭素濃度調整方法に関する。
【0002】
【従来の技術】
目標濃度範囲が設けられた鋼種を精錬して炭素濃度を目標濃度範囲に調整する場合、精錬中の溶鉄中の炭素濃度を連続的に測定することは困難であり、例えば真空脱炭精錬処理では、真空脱炭前の炭素濃度と排ガス分析結果から処理中の炭素濃度を推定する方法が行われている。
【0003】
しかし、溶鉄中の[C]濃度が、例えば0.015〜0.024質量%(以下、単に%で質量%を示す)という狭幅の炭素濃度範囲が近年求められている。
【0004】
この狭幅な範囲の炭素鋼を得るには、排ガス分析結果からの情報だけでは十分でなく、例えば特開平4−143210号公報には、狭幅の範囲が要求される炭素鋼を得るための真空脱ガス精錬方法が提案されている。
【0005】
その発明の骨子は、真空脱ガス処理時の真空圧力を1.3×104 〜4×104 Pa(100〜300Torr)に管理し、従来に比較して低い真空度で真空脱炭処理を行うことにあり、その結果、脱炭速度を遅く設定することが可能となり、狭幅の範囲が要求される炭素鋼でも的中率を高めることができるとしている。
【0006】
【発明が解決しようとする課題】
しかし、このように脱炭速度を遅くした場合には、確かに炭素濃度の的中率を高めることは可能であるが、脱炭時間が長くなるという新たな問題が発生する。
【0007】
本発明の目的は、溶鉄を過剰に脱炭処理し、加炭剤を添加して炭素濃度を調整する方法において、加炭剤の歩留まりが高く、的中率の良好な溶鉄の炭素濃度調整を提供する。
【0008】
【課題を解決するための手段】
本発明者は、溶鉄中に炭化水素を添加する速度を変化させる加炭試験を重ねた結果、下記の知見を得た。
【0009】
溶鉄中への炭化水素の添加速度を徐々に上げて加炭試験を行うと、ある炭化水素の添加速度で急激に炭化水素の加炭剤としての歩留まりが低下することがわかった。
【0010】
図1は、炭素添加速度と炭化水素の加炭剤歩留まりとの関係を示すグラフである。
【0011】
なお、横軸の炭素添加速度とは、溶鉄質量1トン(以下、単にtともいう)当りの炭化水素の添加速度(m3 (標準状態)/min・t)から換算される炭素添加速度(kg/min・t)を意味する。
【0012】
換算方法は、例えば、炭化水素としてC38 を使用し、炭化水素の添加速度が1m3 (標準状態)/min・tの場合に、以下の通りである。
【0013】
38 が1kmolのガス量は、22.4m3 (標準状態)であるから、1m3 (標準状態)のガス量は、1/22.4=0.0446kmolの相当する。
【0014】
38 には、3個の炭素原子が入っており、炭素原子量は12kg/kmolであるので、炭化水素から換算される炭素分は、0.0446kmol×3×12kg/kmol=1.6kgとなる。
【0015】
従って、C38 の添加速度が1m3 (標準状態)/min・tであれば、炭素添加速度は1.6kg/min・tとなる。
【0016】
同図に示すように、炭素添加速度が0.2kg/min・tを越えると炭素の加炭剤としての歩留まりが急激に低下することがわかった。
【0017】
歩留まりが急激に低下する理由は、炭素添加速度が0.2kg/min・tを越えると炭化水素の分解で発生する水素気泡が溶鉄と炭化水素との接触を遮断するからであると推定できる。
【0018】
炭素添加速度が0.2kg/min・tを越えると、炭素の加炭剤としての歩留まりが急激に低下することから、所定の加炭量に対して大量の炭化水素を添加することが必要となりコストアップの問題を生じることが判明し、炭素添加速度を溶鉄質量t当り0.2kg/min以下で加炭する必要があることがわかった。
【0019】
本発明は、以上の知見に基づいてなされたもので、その要旨は、下記のとおりである。
(1)溶鉄を炭素の目標濃度範囲の下限を超えて脱炭し、溶鉄中に炭化水素を添加して加炭することにより溶鉄の炭素濃度を調整する方法であって、前記炭化水素の添加速度から換算される炭素添加速度が溶鉄質量トン当り0.2kg/min以下であることを特徴とする炭素濃度調整方法。
(2)溶鉄を炭素の目標濃度範囲の下限を超えて脱炭後に、脱酸処理し、溶鉄内に炭化水素を添加して加炭することにより溶鉄の炭素濃度を調整する方法であって、前記炭化水素の添加速度から換算される炭素添加速度が溶鉄質量トン当り0.2kg/min以下であることを特徴とする炭素濃度調整方法。
(3)炭化水素を多重管の最外管以外の多重管の流路から溶鉄中に添加することを特徴とする上記(1)または(2)に記載の炭素濃度調整方法。
【0020】
【発明の実施の形態】
250質量トン(以下、単にtともいう)規模のRH真空脱ガス装置(以下、単にRHともいう)にて、初期炭素濃度0.04%から真空脱炭を行い、炭素の目標濃度範囲を0.015〜0.024%に指定された溶鉄を溶製した例で従来技術と本発明とを比較する。
【0021】
前記特開平4−143210号公報に開示されている真空度を2.66×104 Pa(200Torr)一定として脱炭処理をした場合には、脱炭速度定数K(1/min)は0.05となる。
【0022】
脱炭速度定数Kは以下の式で求められる。
−d[C]/dt=K・[C]
このとき、0.04%から目標濃度範囲の上限である0.024%に到達する時間は10.2分、0.04%から目標濃度範囲の下限である0.015%に到達する時間は19.6分であり、脱炭処理中に目標濃度範囲に入っていた時間は、19.6−10.2=9.4分間と長く、ばらつき要因が他にあったとしても炭素濃度を目標濃度範囲に制御することは容易である。
【0023】
しかし、従来技術で述べたように脱炭速度が遅く脱炭時間が長いという問題がある。
【0024】
そこで、短時間に炭素濃度の成分調整が終了する方法として、通常操業通り真空排気系能力の許す限り真空度を上げて真空脱炭処理を行った結果、脱炭速度定数K(1/min)は0.3と高くなった。
【0025】
しかし、0.04%から目標濃度範囲の上限である0.024%に到達する時間は1.7分、0.04%から目標濃度範囲の下限である0.015%に到達する時間は3.3分であった。
【0026】
したがって、真空脱炭処理中に狙いの範囲に入っていたのは3.3−1.7=1.6分間に過ぎず、真空脱炭のみでこの成分範囲に制御することは困難であると言える。
【0027】
そこで、はじめから目標濃度範囲の下限よりも低い濃度まで脱炭し、その後コークスなどの固体炭素剤を用いて加炭処理を行う方法が考えられる。
【0028】
しかし、固体炭素剤は、RH真空脱ガス装置等の真空槽内の合金投入口から落下により添加するが、固体炭素剤は一般的に比重が軽く、排気系から排出されたり、真空槽内壁に付着堆積する割合が多く歩留まりが低く、しかも歩留まりの変動が大きいという問題がある。
すなわち、固体炭素剤では、精度よく加炭することが困難である。
【0029】
発明者らは、炭素を安定して歩留まりよく添加できる方法として、炭化水素中の炭素を利用することに着眼した。
【0030】
一方、従来から例えば酸素底吹き転炉の底吹き羽口から流す酸素の発熱対策として、底吹き羽口を二重管構造とし、内管に酸素、外管に炭化水素を流し、炭化水素の分解時の吸熱冷却作用を活用して炭化水素の流量を酸素の発熱量とバランスするように酸素流量の約5%程度を流すことが一般的に実施されている。
【0031】
しかし、炭化水素の分解で生じた炭素は、炭化水素流量の約20倍の流量の酸素に消費され、COガスに添加するため、溶鉄の加炭剤としての機能を利用できない。
【0032】
炭化水素は、通常の固体加炭剤のように排気系に排出されたり、内壁に付着したりすることがないため、炭化水素流量と時間を管理するだけで加炭量を設定できるという利点がある。
【0033】
しかし、前述のように炭化水素の添加速度から換算される炭素添加速度が溶鉄t当り0.2kg/min・tを越えると炭化水素の分解にともない水素気泡が大量に発生し、溶鉄と添加した炭化水素との接触を遮断する現象が生じるため、歩留まりが大きく低下する。
【0034】
本発明に使用する炭化水素は、例えばCH4 、C26 、C38 、C410などであり、これらの炭化水素を単独あるいは混合して用いることができる。
【0035】
また、溶鉄中に溶解酸素が多量に残留していると、分解で生じた炭素が溶解酸素と反応してCOガスを形成し、同様に炭素の歩留まりが低下するおそれがあるため、溶鉄を炭素の目標濃度範囲の下限を超えて脱炭後に、脱酸処理を行うことが好ましい。
【0036】
脱酸処理は、AlまたはAl合金等を溶鉄中に添加し、通常の環流処理を行うことで実施できる。
【0037】
本発明は、RH、DHあるいはVOD、タンク脱ガスなどの真空脱ガス装置を用いることができる。また、転炉やAOD等の精錬炉にも用いることもできる。
【0038】
以下では、本発明をRHで行う場合について説明する。
(1)溶鉄を転炉にて吹錬した後に取鍋へ未脱酸あるいは弱脱酸で出鋼し、溶鉄中の酸素濃度を100ppm 以上の状態でRH真空脱ガス装置へ搬送し、真空脱炭を行う。
【0039】
(2)真空脱炭処理中には脱炭のために必要な酸素を酸化鉄あるいは酸素ガスの形態で溶鉄に添加する。
【0040】
(3)溶鉄を炭素の目標濃度範囲の下限を超えて脱炭し、溶鉄中に炭化水素を添加して加炭することにより溶鉄の炭素濃度を調整する。
【0041】
(4)溶鉄を炭素の目標濃度範囲の下限を超えて脱炭し、溶鉄の酸素濃度が0.08%を超えるときには、脱酸処理し、溶鉄の酸素濃度を0.08%以下とした後に溶鉄内に炭化水素の添加口から添加して加炭することが望ましい。
【0042】
(5)炭化水素の添加手段は、環流ガス供給用羽口、取鍋内に浸漬したランスのノズル、真空槽内耐火物側壁の羽口等が使用できる。
【0043】
(6) 炭化水素の添加口は、単管でもよいが、炭化水素の分解は吸熱反応であり、添加口が冷却され、溶鉄が添加口に固着し易くなり、炭化水素の流量制御等が困難になるおそれがある。従って、添加口の炭化水素分解時の冷却を防止するために、二重管または三重管等の多重管を用いることが望ましい。
【0044】
すなわち、添加口に二重管を使用する場合、内管に炭化水素を供給し、外管に不活性ガスを供給することにより、外側の不活性ガスが断熱材の役目を果たし添加口の冷却を防止することができる。
【0045】
また、添加口の大きさに余裕があれば、三重管も有効であり、最も内側の内管または内管の外側の中管に炭化水素を供給し、最も外側の外管に不活性ガスを供給することにより、最も外側の外管を通る不活性ガスが断熱材の役目を果たし添加口の冷却を防止することができる。
【0046】
多重管に供給される断熱用の不活性ガスとしてはAr、N2 、CO、CO2 などが単独あるいは混合したもので使用できる。
【0047】
【実施例】
250t転炉で粗脱炭した溶鉄を取鍋に出鋼し、RH真空脱ガス装置で真空脱炭を行ない、溶鉄中の[C]の目標濃度範囲を0.015〜0.024%として溶製した。
【0048】
RH真空脱ガス装置で目標濃度範囲の下限を超えて0.01%まで過剰脱炭し、RH真空脱炭後、加炭目標炭素濃度を0.016%に設定して必要な添加炭素量(kg/t)を定めた。
【0049】
必要添加炭素量(kg/t)から決められる炭化水素(C38 ) のガス量(m3 (標準状態)/ ・t)を換算し、環流ガス用羽口の添加口は二重管構造で内管から所定流量(m3 (標準状態)/min・t)を設定し、外管からのAr流量を一定流量の0.001m3 (標準状態)/min・tとした。
表1に試験結果を示す。
【0050】
【表1】

Figure 0003646592
【0051】
表1に示すように、試験番号1のコークスを加炭剤として使用し、必要量を溶鉄中に一括添加した従来例では、加炭剤の歩留まりが50%と低く、さらに、10ヒート実施時の歩留まりの最高値と最小値の差である歩留まりのばらつきが40%と大きかったため、1回の加炭処理での的中率が50%と低かった。
【0052】
試験番号2〜6の炭化水素を加炭剤として使用した場合、炭素添加速度が0.2kg/min・t以下では加炭剤の歩留まりが92〜98%と高く、かつ、歩留まりのばらつきが2〜3と小さいために的中率は100%となり良好であった。
【0053】
試験番号7〜8の炭化水素を加炭剤として使用した場合でも、炭素添加速度が0.2kg/min・t超では加炭剤の歩留まりが40〜70%と低く、かつ、歩留まりのばらつきが15〜30%と大きいため、的中率が低下した。
【0054】
【発明の効果】
本発明により、加炭剤の歩留まりが高く、的中率の良好な溶鉄の炭素濃度調整が可能となった。
【図面の簡単な説明】
【図1】炭素添加速度と加炭剤の歩留まりとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for adjusting the carbon concentration of molten iron, which is performed by adding a carburizing agent to molten iron.
[0002]
[Prior art]
When refining a steel grade with a target concentration range and adjusting the carbon concentration to the target concentration range, it is difficult to continuously measure the carbon concentration in the molten iron during refining. For example, in vacuum decarburization refining treatment A method of estimating the carbon concentration during processing from the carbon concentration before vacuum decarburization and the exhaust gas analysis result is performed.
[0003]
However, a narrow carbon concentration range in which the [C] concentration in molten iron is, for example, 0.015 to 0.024% by mass (hereinafter simply referred to as% by mass) has been recently demanded.
[0004]
In order to obtain this narrow range of carbon steel, information from the exhaust gas analysis results alone is not sufficient. For example, JP-A-4-143210 discloses a method for obtaining a carbon steel that requires a narrow range. Vacuum degassing refining methods have been proposed.
[0005]
The essence of the invention is that the vacuum pressure during vacuum degassing treatment is controlled to 1.3 × 10 4 to 4 × 10 4 Pa (100 to 300 Torr), and vacuum decarburization treatment is performed at a lower degree of vacuum than in the past. As a result, the decarburization speed can be set to be slow, and the hit ratio can be increased even in carbon steel that requires a narrow range.
[0006]
[Problems to be solved by the invention]
However, when the decarburization speed is slowed in this way, it is possible to increase the correctness of the carbon concentration, but there is a new problem that the decarburization time becomes long.
[0007]
The object of the present invention is to adjust the carbon concentration of molten iron with a high yield of the carburizing agent and good hit ratio in the method of adjusting the carbon concentration by adding a carburizing agent to the excess decarburizing treatment of the molten iron. provide.
[0008]
[Means for Solving the Problems]
The present inventor obtained the following knowledge as a result of repeated carburizing tests for changing the rate at which hydrocarbons were added to molten iron.
[0009]
It was found that when the rate of hydrocarbon addition into molten iron was gradually increased and the carburization test was performed, the yield of hydrocarbon as a carburizing agent suddenly decreased at a certain rate of hydrocarbon addition.
[0010]
FIG. 1 is a graph showing the relationship between the rate of carbon addition and the yield of hydrocarbon carburizer.
[0011]
The carbon addition rate on the horizontal axis is the carbon addition rate (m 3 (standard state) / min · t) converted from the hydrocarbon addition rate per ton of molten iron (hereinafter also referred to simply as “t”). kg / min · t).
[0012]
The conversion method is as follows, for example, when C 3 H 8 is used as the hydrocarbon and the addition rate of the hydrocarbon is 1 m 3 (standard state) / min · t.
[0013]
Gas amount of C 3 H 8 is 1kmol is because it is 22.4 m 3 (standard state), the amount of gas 1 m 3 (standard state), corresponding to 1 / 22.4 = 0.0446kmol.
[0014]
Since C 3 H 8 contains three carbon atoms and the amount of carbon atoms is 12 kg / kmol, the carbon content converted from hydrocarbon is 0.0446 kmol × 3 × 12 kg / kmol = 1.6 kg. It becomes.
[0015]
Therefore, if the addition rate of C 3 H 8 is 1 m 3 (standard state) / min · t, the carbon addition rate is 1.6 kg / min · t.
[0016]
As shown in the figure, it has been found that when the carbon addition rate exceeds 0.2 kg / min · t, the yield of carbon as a carburizing agent rapidly decreases.
[0017]
It can be estimated that the reason why the yield sharply decreases is that when the carbon addition rate exceeds 0.2 kg / min · t, hydrogen bubbles generated by the decomposition of the hydrocarbon block the contact between the molten iron and the hydrocarbon.
[0018]
If the rate of carbon addition exceeds 0.2 kg / min · t, the yield of carbon as a carburizing agent will drastically decrease, so it is necessary to add a large amount of hydrocarbons for a given amount of carbonization. It turned out that the problem of a cost increase arises, and it turned out that it is necessary to carburize the carbon addition rate at 0.2 kg / min or less per molten iron mass t.
[0019]
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A method of adjusting the carbon concentration of molten iron by decarburizing molten iron beyond the lower limit of the target concentration range of carbon, adding hydrocarbon to molten iron, and adding the hydrocarbon. A carbon concentration adjusting method, wherein a carbon addition rate converted from a rate is 0.2 kg / min or less per ton of molten iron.
(2) A method of adjusting the carbon concentration of the molten iron by deoxidizing the molten iron beyond the lower limit of the target concentration range of carbon, adding a hydrocarbon to the molten iron, and carburizing. A carbon concentration adjusting method, wherein the carbon addition rate converted from the hydrocarbon addition rate is 0.2 kg / min or less per ton of molten iron.
(3) The carbon concentration adjusting method as described in (1) or (2) above, wherein the hydrocarbon is added into the molten iron from the flow path of the multiple pipe other than the outermost pipe of the multiple pipe.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In an RH vacuum degassing apparatus (hereinafter also simply referred to as “RH”) of 250 mass tons (hereinafter also simply referred to as “t”), vacuum decarburization is performed from an initial carbon concentration of 0.04%, and the target concentration range of carbon is reduced to 0. The prior art and the present invention will be compared with an example in which molten iron specified at .015 to 0.024% is produced.
[0021]
When the decarburization process is performed with the degree of vacuum disclosed in Japanese Patent Laid-Open No. Hei 4-143210 being constant at 2.66 × 10 4 Pa (200 Torr), the decarburization rate constant K (1 / min) is set to 0. 05.
[0022]
The decarburization rate constant K is obtained by the following equation.
−d [C] / dt = K · [C]
At this time, the time to reach 0.024%, which is the upper limit of the target density range from 0.04%, is 10.2 minutes, and the time to reach 0.015%, which is the lower limit of the target density range, from 0.04% It was 19.6 minutes, and the time that was within the target concentration range during the decarburization process was as long as 19.6-10.2 = 9.4 minutes, and the carbon concentration was targeted even if there were other factors of variation. It is easy to control the concentration range.
[0023]
However, as described in the prior art, there is a problem that the decarburization speed is slow and the decarburization time is long.
[0024]
Therefore, as a method of completing the adjustment of the carbon concentration component in a short time, the decarburization rate constant K (1 / min) was obtained as a result of increasing the degree of vacuum as much as the vacuum exhaust system capability allowed as usual. Became as high as 0.3.
[0025]
However, the time to reach 0.024%, which is the upper limit of the target density range from 0.04%, is 1.7 minutes, and the time to reach 0.015%, which is the lower limit of the target density range, from 0.04% is 3. 3 minutes.
[0026]
Therefore, it was only 3.3-1.7 = 1.6 minutes that was in the target range during the vacuum decarburization process, and it is difficult to control this component range only by vacuum decarburization. I can say that.
[0027]
Therefore, a method of decarburizing from the beginning to a concentration lower than the lower limit of the target concentration range and then performing a carbonization treatment using a solid carbon agent such as coke can be considered.
[0028]
However, the solid carbon agent is added by dropping from an alloy inlet in a vacuum chamber of an RH vacuum degassing apparatus or the like, but the solid carbon agent generally has a low specific gravity and is discharged from the exhaust system or on the inner wall of the vacuum chamber. There is a problem that the deposition rate is high and the yield is low, and the fluctuation of the yield is large.
That is, it is difficult to accurately carburize with a solid carbon agent.
[0029]
The inventors have focused on utilizing carbon in hydrocarbons as a method for stably adding carbon with a high yield.
[0030]
On the other hand, conventionally, for example, as a countermeasure against heat generation of oxygen flowing from the bottom blowing tuyer of an oxygen bottom blowing converter, the bottom blowing tuyere has a double pipe structure, oxygen is flown to the inner pipe, hydrocarbon is flowed to the outer pipe, It is generally practiced to flow about 5% of the oxygen flow rate so as to balance the flow rate of hydrocarbons with the calorific value of oxygen by utilizing the endothermic cooling action during decomposition.
[0031]
However, the carbon produced by the cracking of hydrocarbons is consumed by oxygen at a flow rate about 20 times the flow rate of hydrocarbons and added to the CO gas, so that the function as a carburizing agent for molten iron cannot be used.
[0032]
Since hydrocarbons are not discharged into the exhaust system and attached to the inner wall unlike ordinary solid carburizing agents, there is an advantage that the amount of carburizing can be set simply by managing the hydrocarbon flow rate and time. is there.
[0033]
However, as described above, when the carbon addition rate converted from the hydrocarbon addition rate exceeds 0.2 kg / min · t per t of molten iron, a large amount of hydrogen bubbles are generated as the hydrocarbon decomposes, and the molten iron is added. Since the phenomenon of blocking contact with hydrocarbons occurs, the yield is greatly reduced.
[0034]
The hydrocarbon used in the present invention is, for example, CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10, etc., and these hydrocarbons can be used alone or in combination.
[0035]
In addition, if a large amount of dissolved oxygen remains in the molten iron, the carbon produced by the decomposition reacts with the dissolved oxygen to form CO gas, and similarly the yield of carbon may be reduced. It is preferable to perform deoxidation treatment after decarburization exceeding the lower limit of the target concentration range.
[0036]
The deoxidation treatment can be performed by adding Al or an Al alloy or the like to the molten iron and performing a normal reflux treatment.
[0037]
The present invention can use a vacuum degassing apparatus such as RH, DH or VOD, tank degassing. It can also be used in refining furnaces such as converters and AODs.
[0038]
Below, the case where this invention is performed by RH is demonstrated.
(1) After the molten iron is blown in the converter, it is undeoxidized or weakly deoxidized into the ladle, transported to the RH vacuum degasser with the oxygen concentration in the molten iron being 100 ppm or more, and vacuum degassed. Do charcoal.
[0039]
(2) During vacuum decarburization, oxygen necessary for decarburization is added to molten iron in the form of iron oxide or oxygen gas.
[0040]
(3) The molten iron is decarburized exceeding the lower limit of the target concentration range of carbon, and the carbon concentration of the molten iron is adjusted by adding hydrocarbon to the molten iron and carburizing.
[0041]
(4) Decarburizing the molten iron beyond the lower limit of the target concentration range of carbon, and when the oxygen concentration of the molten iron exceeds 0.08%, after deoxidation treatment, the oxygen concentration of the molten iron is set to 0.08% or less It is desirable to add carburized into the molten iron from the hydrocarbon addition port.
[0042]
(5) As a hydrocarbon addition means, a circulating gas supply tuyere, a lance nozzle immersed in a ladle, a tuyere of a refractory side wall in a vacuum chamber, and the like can be used.
[0043]
(6) The hydrocarbon addition port may be a single pipe, but the decomposition of the hydrocarbon is an endothermic reaction, the addition port is cooled, and the molten iron is likely to stick to the addition port, making it difficult to control the flow rate of hydrocarbons, etc. There is a risk of becoming. Therefore, it is desirable to use a multiple tube such as a double tube or a triple tube in order to prevent cooling at the time of hydrocarbon decomposition at the addition port.
[0044]
That is, when a double pipe is used for the addition port, the outer inert gas serves as a heat insulator and the cooling of the addition port by supplying hydrocarbons to the inner pipe and supplying inert gas to the outer pipe. Can be prevented.
[0045]
If the size of the addition port is sufficient, a triple pipe is also effective, supplying hydrocarbons to the innermost inner pipe or the inner pipe outside the inner pipe, and supplying inert gas to the outermost outer pipe. By supplying, the inert gas passing through the outermost outer tube serves as a heat insulating material, and cooling of the addition port can be prevented.
[0046]
As the inert gas for heat insulation supplied to the multiple tube, Ar, N 2 , CO, CO 2 or the like can be used alone or in combination.
[0047]
【Example】
Take the molten iron that has been coarsely decarburized in a 250t converter into a ladle, vacuum decarburize it with an RH vacuum degasser, and make the target concentration range of [C] in the molten iron 0.015 to 0.024%. Made.
[0048]
Excess decarburization to 0.01% exceeding the lower limit of the target concentration range with an RH vacuum degassing device, and after RH vacuum decarburization, the target carbon concentration for carburization is set to 0.016% and the required amount of added carbon ( kg / t).
[0049]
Converting the amount of hydrocarbon (C 3 H 8 ) gas (m 3 (standard state) / · t) determined from the required amount of added carbon (kg / t), the addition port for the reflux gas tuyere is a double pipe In the structure, a predetermined flow rate (m 3 (standard state) / min · t) was set from the inner pipe, and the Ar flow rate from the outer pipe was set to a constant flow rate of 0.001 m 3 (standard state) / min · t.
Table 1 shows the test results.
[0050]
[Table 1]
Figure 0003646592
[0051]
As shown in Table 1, in the conventional example in which the coke of test number 1 was used as a carburizing agent and the required amount was added all at once to the molten iron, the yield of the carburizing agent was as low as 50%. The variation in yield, which is the difference between the maximum value and the minimum value of the yield, was as large as 40%, so the hit rate in one carburizing process was as low as 50%.
[0052]
When the hydrocarbons of test numbers 2 to 6 are used as a carburizing agent, the carbon addition rate is as high as 92 to 98% at a carbon addition rate of 0.2 kg / min · t or less, and the yield variation is 2 Since it was as small as ˜3, the hit ratio was 100%, which was good.
[0053]
Even when the hydrocarbons with test numbers 7 to 8 are used as the carburizing agent, the carbon addition rate is as low as 40 to 70% when the carbon addition rate exceeds 0.2 kg / min · t, and the variation in the yield varies. Since it was as large as 15 to 30%, the hit rate decreased.
[0054]
【The invention's effect】
According to the present invention, it is possible to adjust the carbon concentration of molten iron with a high yield of the carburizing agent and good hit ratio.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the rate of carbon addition and the yield of a carburizing agent.

Claims (3)

溶鉄を炭素の目標濃度範囲の下限を超えて脱炭し、溶鉄中に炭化水素を添加して加炭することにより溶鉄の炭素濃度を調整する方法であって、前記炭化水素の添加速度から換算される炭素添加速度が溶鉄質量トン当り0.2kg/min以下であることを特徴とする炭素濃度調整方法。A method of adjusting the carbon concentration of molten iron by decarburizing the molten iron beyond the lower limit of the target concentration range of carbon, adding hydrocarbons to the molten iron, and converting from the addition rate of the hydrocarbons The carbon concentration adjusting method is characterized in that the carbon addition rate is 0.2 kg / min or less per ton of molten iron. 溶鉄を炭素の目標濃度範囲の下限を超えて脱炭後に、脱酸処理し、溶鉄内に炭化水素を添加して加炭することにより溶鉄の炭素濃度を調整する方法であって、前記炭化水素の添加速度から換算される炭素添加速度が溶鉄質量トン当り0.2kg/min以下であることを特徴とする炭素濃度調整方法。A method of adjusting the carbon concentration of molten iron by decarburizing after decarburization exceeding the lower limit of the target concentration range of carbon, adding hydrocarbon to the molten iron and carburizing, the hydrocarbon A carbon concentration adjusting method, wherein the carbon addition rate converted from the addition rate is 0.2 kg / min or less per ton of molten iron. 炭化水素を多重管の最外管以外の多重管の流路から溶鉄中に添加することを特徴とする請求項1または2に記載の炭素濃度調整方法。The carbon concentration adjusting method according to claim 1 or 2, wherein the hydrocarbon is added to the molten iron from the flow path of the multiple pipe other than the outermost pipe of the multiple pipe.
JP33161599A 1999-11-22 1999-11-22 Adjusting the carbon concentration of molten iron Expired - Fee Related JP3646592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33161599A JP3646592B2 (en) 1999-11-22 1999-11-22 Adjusting the carbon concentration of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33161599A JP3646592B2 (en) 1999-11-22 1999-11-22 Adjusting the carbon concentration of molten iron

Publications (2)

Publication Number Publication Date
JP2001152235A JP2001152235A (en) 2001-06-05
JP3646592B2 true JP3646592B2 (en) 2005-05-11

Family

ID=18245645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33161599A Expired - Fee Related JP3646592B2 (en) 1999-11-22 1999-11-22 Adjusting the carbon concentration of molten iron

Country Status (1)

Country Link
JP (1) JP3646592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686917B2 (en) * 2001-07-10 2011-05-25 Jfeスチール株式会社 Melting method of molten steel in vacuum degassing equipment
KR100916099B1 (en) * 2002-12-27 2009-09-08 주식회사 포스코 Method of refining molten steel to manufacture semi-low carbon steel
KR101063465B1 (en) * 2003-12-19 2011-09-08 주식회사 포스코 Carbon concentration control method in vacuum decarburization process of molten steel

Also Published As

Publication number Publication date
JP2001152235A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
CN103911487B (en) A kind of method of smelting suprelow carbon steel and the method for continuous casting ultra low-carbon steel
CN109234493B (en) Steelmaking method for stably increasing nitrogen by blowing nitrogen
CN103468866B (en) Refining technology for molten medium-high carbon steel
JP5904237B2 (en) Melting method of high nitrogen steel
CN107236894A (en) A kind of method for making steel of low-sulfur, low titanium Aluminum steel
JP6269550B2 (en) Method for melting high manganese steel
JP3646592B2 (en) Adjusting the carbon concentration of molten iron
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP3922181B2 (en) Melting method of high clean steel
JP2010248536A (en) Method for manufacturing high manganese content metal
JP2005232536A (en) Method for smelting high cleanliness steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
TWI486454B (en) Steel manufacturing method
JP5387012B2 (en) Control method of carbon concentration in molten steel in RH degassing refining
JP6436121B2 (en) Secondary refining method for molten stainless steel
JP7269485B2 (en) Melting method of high nitrogen stainless molten steel
RU2754337C1 (en) Method for production of nitrogen-doped steel in bucket
JP7384294B2 (en) Molten iron refining method
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP3671769B2 (en) Control method of slag forming during refining
JP2023003384A (en) Denitrification treatment method of molten steel
CN117693598A (en) Method for deoxidizing and refining molten steel, method for producing steel material, and steel material
CN115874018A (en) Smelting method for accurately controlling microalloy B element in steel
JPH09143546A (en) Oxygen top blowing method in rh degassing equipment
CN117460846A (en) Method for denitriding molten steel and method for producing steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees