JPS61222722A - Heat treatment of stretched film - Google Patents

Heat treatment of stretched film

Info

Publication number
JPS61222722A
JPS61222722A JP6346985A JP6346985A JPS61222722A JP S61222722 A JPS61222722 A JP S61222722A JP 6346985 A JP6346985 A JP 6346985A JP 6346985 A JP6346985 A JP 6346985A JP S61222722 A JPS61222722 A JP S61222722A
Authority
JP
Japan
Prior art keywords
film
stretched film
tenter
wheels
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6346985A
Other languages
Japanese (ja)
Inventor
Kimio Sato
佐藤 公夫
Ichiro Ishizuka
一郎 石塚
Masanobu Sasaki
正信 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6346985A priority Critical patent/JPS61222722A/en
Publication of JPS61222722A publication Critical patent/JPS61222722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the dimensional stability due to heat treatment by also loosing longitudinally by a method wherein upstream side driving wheels and downstream side driving wheels are provided in a tenter and the peripheral speed of the downstream side driving wheel is made smaller than that of the upstream side driving wheel. CONSTITUTION:In a method to heat-treat uniaxially stretched film 1 while running in a tenter 2 under the state that both sides of the film are held with clips 3, the upstream side wheels and downstream side wheels among the running wheels of the clips are made as driving wheels. At the same time, the driving wheels are run under the condition that the peripheral speed of the downstream side driving wheel 5 is made smaller than that of the upstream side driving wheel 4. Because the stretched film is heat-treated under the state also of being loosen longitudinally due to the difference between the speeds of both said wheels, the dimensional stability is made better. Thus, the titled treatment is suitable for manufacturing magnetic tape and the like. In addition, the facilities for the treatment can simply be obtained, because the only replacement of the running wheels in the conventional device with driving wheels is enough.

Description

【発明の詳細な説明】 [産業上の利用分野]           ゛本発明
は、少なくとも一軸方向に″延伸された熱可塑性樹脂か
ら成る延伸フィルムを、テンター内で弛緩熱処理する延
伸フィルムの熱処理方法に−する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for heat treating a stretched film in which a stretched film made of a thermoplastic resin that has been stretched in at least one axial direction is subjected to relaxation heat treatment in a tenter. .

[従来の技術] 一般に、延1伸フィルムを加熱状態下である方向に弛緩
させると、製品フィルムのその方向の熱収縮率を下げる
ことができ、フィルムの寸法安定性を向上できることか
知られてい□る。とくに、磁気テープやコンデンサ等に
用いられる延伸フィルムは、厳しい寸法安定性が要求さ
れるとともに、比−一低瀉(70”0〜100°C)状
態下での寸法゛安定性が要求される。このような寸法安
定性の要求を満たすためには、製品としての延伸フィル
ムあ熱収縮率を、延伸フィルム長手方向にも巾方向にも
ある一定゛レベル以下に抑える必要がある。
[Prior Art] It is generally known that if a stretched film is relaxed in a certain direction under heating conditions, the heat shrinkage rate of the product film in that direction can be lowered and the dimensional stability of the film can be improved. □Ru. In particular, stretched films used in magnetic tapes, capacitors, etc. are required to have strict dimensional stability, and are also required to have dimensional stability under extremely low temperature conditions (70" 0 to 100°C). In order to meet such demands for dimensional stability, it is necessary to suppress the heat shrinkage rate of the stretched film as a product to a certain level or less in both the longitudinal direction and the width direction of the stretched film.

したがって、フィルム製造工程では適切な弛緩熱処理が
施されなくてはならない。
Therefore, appropriate relaxation heat treatment must be performed in the film manufacturing process.

延伸フィルムを弛緩処理する方法として、通常つきのよ
うな方法がとられる。
As a method for relaxing a stretched film, the following method is usually used.

□延伸フィルムを巾方向に弛緩するには、延伸フィルム
両側をクリップで把持し、クリップとともに延伸フィル
ムをテンター内を走行させ、延伸フイルム両側のクリッ
プ走行用レール間寸法を徐々に縮めて、フィルムを弛緩
処理する方法が知られている。ところが、通常、フィル
ムの巾方向にしか調整機構を持たないテンターを利用し
た弛緩処理では、フィルム長手方向の弛緩処理ができな
い。
□To loosen the stretched film in the width direction, hold both sides of the stretched film with clips, run the stretched film together with the clips in the tenter, gradually reduce the distance between the clip running rails on both sides of the stretched film, and loosen the film. Relaxation treatment methods are known. However, in the loosening process using a tenter which has an adjustment mechanism only in the width direction of the film, it is usually not possible to loosen the film in the longitudinal direction.

そのため、フィルム長手方向の弛緩処理は、ロール間を
延伸フィルムを走行させ、各ロールの周速差を利用して
、すなわち上流側ロールに対し下流側ロールの周速を小
として、処理を行う方法をとっている。
Therefore, the relaxation treatment in the longitudinal direction of the film is performed by running the stretched film between rolls and using the difference in circumferential speed of each roll, that is, by setting the circumferential speed of the downstream roll smaller than that of the upstream roll. is taking.

なお、特殊タイプのテンター、たとえば、フィルムを長
手方向にも巾方向にも延伸することが可能な公知の同時
2軸延伸機を用いれば、テンターにて延伸フィルムの長
手方向の弛緩処理は可能である。
Note that if you use a special type of tenter, for example, a known simultaneous biaxial stretching machine that can stretch the film in both the longitudinal and width directions, it is possible to loosen the stretched film in the longitudinal direction with the tenter. be.

[発明が解決しようとする問題点コ しかしながら、上述のような従来知られている技術を用
いての延伸フィルム長手方向弛緩処理には次のような問
題点がある。
[Problems to be Solved by the Invention] However, there are the following problems in the longitudinal direction relaxation treatment of stretched films using the conventionally known techniques as described above.

まず、ロール周速差を利用して弛緩処理する方、法にお
いては、テンターにおける弛緩処理のようにクリップで
フィルム両側を把持し製品となるべきフィルム部分を非
接触にて処理する方法ではなく、フィルムをロール表面
上を走行させながら処理する方法であるため、フィルム
とロール表面との速度差を零に保ちながら処理する条件
(ロール周速、フィルム温度条件等〉を見出しにくいと
いう問題がある。条件が適切に設定されないと、製品と
してのフィルムの平面性が損われたり、ロール表面と走
行フィルム間にすべりが生じてフィルム表面に細かい傷
がついたりするおそれがある。
First, the method of loosening using the difference in circumferential speed of the rolls is not a method of gripping both sides of the film with clips and processing the film part that will become the product without contact, as in the loosening process in a tenter. Since this is a method in which the film is processed while running on the roll surface, there is a problem in that it is difficult to find conditions (roll circumferential speed, film temperature conditions, etc.) to process the film while keeping the speed difference between the film and the roll surface to zero. If the conditions are not set appropriately, the flatness of the film as a product may be impaired, or slippage may occur between the roll surface and the running film, resulting in fine scratches on the film surface.

また、上述の如く同時2軸延伸機を用いれば、テンター
内でのフィルム長手方向の弛緩処理が可能となり、上述
の平面性やフィルム傷の問題は解消可能であるが、公知
の同時2軸延伸機は、いずれも高価でかつ機構が複雑で
あり、しかも高速で走行できるものがないという問題が
ある。したがって、高生産性が望めないとともに、既設
のフィルム製造設備を用いて簡単に前述の寸法安定性の
要求を満たそうとする場合には、採用が困難であつだ。
In addition, if a simultaneous biaxial stretching machine is used as described above, it becomes possible to loosen the film in the longitudinal direction within a tenter, and the problems of flatness and film scratches mentioned above can be solved. All of these machines are expensive, have complicated mechanisms, and none of them can run at high speeds. Therefore, high productivity cannot be expected, and it is difficult to employ this method when the above-mentioned requirement for dimensional stability is easily satisfied using existing film manufacturing equipment.

そこで本発明は、既設の通常のテンターに簡単な改善を
加えるだけで、テンター内でのフィルム長手方向の弛緩
処理を可能とし、磁気テープおよびコンデンサ用等の延
伸フィルムに要求される比較的低温でのフィルム長手方
向低熱収縮率を容易に達成することを目的とする。
Therefore, the present invention makes it possible to loosen the film in the longitudinal direction within the tenter by simply making improvements to the existing ordinary tenter, and allows the film to be relaxed at relatively low temperatures required for stretched films for magnetic tapes and capacitors. The purpose is to easily achieve a low heat shrinkage rate in the longitudinal direction of the film.

口問題点を解決するための手段] この目的に沿う本発明の延伸フィルムの熱処理方法は、
連続的に送られてくる延伸フィルムの両側をクリップで
把持し、該延伸フィルムをクリップの走行によりテンタ
ー内を走行させなから熱処理する延伸フィルムの熱処理
方法において、前記クリップの走行用ホイールのうち、
延伸フィルム走行方向上流側にあるホイールと下流側に
゛あるホイールとを共に駆動ホイールとし、該両駆動ホ
イール間に下流側駆動ホイールの周速の方が小となる周
速差を持たせて、延伸フィルムを前記両駆動ホイール間
で延伸フィルム走行方向に弛緩させる方法から成る。
Means for Solving the Problem] The method for heat treating a stretched film of the present invention in accordance with this objective is as follows:
A stretched film heat treatment method in which both sides of a continuously fed stretched film are gripped with clips and the stretched film is heat-treated while the stretched film is run through a tenter by running the clips, and among the wheels for running the clip,
A wheel on the upstream side and a wheel on the downstream side in the running direction of the stretched film are both used as drive wheels, and a circumferential speed difference is provided between the two drive wheels such that the circumferential speed of the downstream drive wheel is smaller, The stretched film is relaxed between the two drive wheels in the direction of travel of the stretched film.

[作用コ このような熱処理方法においては、テンターの上流側と
下流側に駆動ホイールを設け、両駆動ホイール間に周速
差をもたせることにより、延伸フィルムの両側を把持し
ているクリップの走行速度は、上流側駆動ホイールから
下流側駆動ホイールに近づくにつれ遅くなる。すなわち
、この間では、隣接するクリップ間の機械的なりリアラ
ンスが徐々に累積され、下流側に行く程累積口が多くな
ってクリップ速度が遅くされる。このように、クリップ
速度が下流側程遅くされることにより、この間でフィル
ム走行速度も遅くなり、延伸フィルムが長手方向に弛緩
される。
[Operation] In this heat treatment method, drive wheels are provided on the upstream and downstream sides of the tenter, and by creating a difference in circumferential speed between the two drive wheels, the running speed of the clips holding both sides of the stretched film can be adjusted. becomes slower from the upstream drive wheel to the downstream drive wheel. That is, during this period, the mechanical clearance between adjacent clips is gradually accumulated, and the further downstream there is, the more the number of accumulated openings increases, and the clip speed is slowed down. In this manner, the clipping speed is made slower toward the downstream side, so that the film traveling speed also becomes slower during this time, and the stretched film is relaxed in the longitudinal direction.

この駆動ホイール間の周速差は、その間に配列されたク
リップの連結機構の機械的クリアランス量を累積した量
として得られるものであるから、極端に大きな値は設定
できないが、延伸フィルムの低熱収縮率を得るために必
要な弛緩率は通常それ程高くないので、駆動ホイール間
寸法を十分にとって機械的クリアランスの累積量を十分
にとることができるようにしさえすれば、所定の弛緩率
は容易に得られる。そして、この所定の弛緩率による熱
処理により、延伸フィルムの目檄とする長手方向熱収縮
率が、テンター内の処理によって得られることになる。
This circumferential speed difference between the drive wheels is obtained as the cumulative amount of mechanical clearance of the coupling mechanism of the clips arranged between them, so it is not possible to set an extremely large value, but the low heat shrinkage of the stretched film Since the required relaxation rate to obtain a given relaxation rate is usually not very high, a given relaxation rate can be easily obtained as long as the dimensions between the drive wheels are sufficient to allow for a sufficient amount of cumulative mechanical clearance. It will be done. Then, by heat treatment with this predetermined relaxation rate, a longitudinal heat shrinkage rate that is a desired standard for the stretched film can be obtained by treatment in a tenter.

「実施例コ 以下に本発明の望ましい実施例を図面を参席しつつ説明
する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

(実施例1) IV−0,60からなる直鎖状ポリエチレンテレフタレ
ートを280°Cで溶融押出しした後、口金よりシート
状に吐出し、キャスチングロールに密着させて冷却成形
して160μのシートを成形した。そして、該シートを
多数の加熱ロールから縦延伸装置でロール周速差により
延伸温度92゛   ′Cにて3.2倍に延伸し一軸延
伸フイルムとした。しかる後に、該−軸延伸フィルムを
第1テンターで90°Cの温度条件下で3.4倍に巾方
向に延伸し、2軸延伸フイルムを得た。そして、第1図
に示すように、この2軸延伸フイルム1を第2テンター
2において、巾方向Aに5%の弛緩率、長手方向Bに3
%の弛緩率で弛緩させ、その延伸フィルムをワインダで
轡取った。
(Example 1) Linear polyethylene terephthalate made of IV-0,60 was melt-extruded at 280°C, then discharged into a sheet from a die, cooled and molded in close contact with a casting roll to form a 160μ sheet. did. Then, the sheet was stretched 3.2 times from a number of heated rolls in a longitudinal stretching device at a stretching temperature of 92'C using a difference in roll circumferential speed to form a uniaxially stretched film. Thereafter, the -axially stretched film was stretched in the width direction by 3.4 times in a first tenter at a temperature of 90°C to obtain a biaxially stretched film. As shown in FIG. 1, this biaxially stretched film 1 is placed in a second tenter 2 with a relaxation rate of 5% in the width direction A and a relaxation rate of 3% in the longitudinal direction B.
%, and the stretched film was wound with a winder.

第1図は、第2テンター2の概略平面構成を示しており
、延伸フィルム1は、テンター人口でフィルム両側に多
数無端環状に配列されたクリップ3に把持され、クリッ
プ3の走行とともにテンター内を矢印の方向に走行され
る。クリップ3は、適当な手段、たとえばチェーンリン
クを介して多数連結され(図示略)、隣接するクリップ
の連結機構には、わずかな機械的クリアランスがある。
FIG. 1 shows a schematic planar configuration of the second tenter 2, in which the stretched film 1 is held by a large number of clips 3 arranged in an endless ring on both sides of the film, and as the clips 3 run, the stretched film 1 moves inside the tenter. It runs in the direction of the arrow. The clips 3 are connected in large numbers by suitable means, for example chain links (not shown), with a small mechanical clearance between the connecting mechanisms of adjacent clips.

また、クリップ3は、チェーンリンク等を介して、延伸
フィルム走行方向両側に配設されたレール上を走行され
、テンター人口側からテンター内を通過してテンター出
口に走行し、リターン側を走行して再びテンター人口側
に戻る。
In addition, the clip 3 is run on rails provided on both sides of the stretched film running direction via a chain link, etc., runs from the tenter population side, passes through the tenter, to the tenter exit, and runs on the return side. Then return to the tenter population side again.

テンター2の入口側および出口側には、それぞれクリッ
プ走行用のホイール4.5が設けられているが、本実流
例はホイール4.5の両方が駆動ホイールとされている
。そして、本実施例では、下流側駆動ホイール5(出口
側ホイール)の周速は、前述、の弛緩率3%に合せ、上
流側駆動ホイール4(入口側ホイール)の周速に対し、
−3%の速度に設定されている。なお、この駆動ホイー
ル4.5の周速差は、無段階に設定できるようにするこ
とが望ましい。
Wheels 4.5 for clip running are provided on the entrance side and the exit side of the tenter 2, respectively, and in this actual flow example, both wheels 4.5 are used as drive wheels. In this embodiment, the circumferential speed of the downstream drive wheel 5 (outlet side wheel) is adjusted to the above-mentioned relaxation rate of 3%, and the circumferential speed of the upstream drive wheel 4 (inlet side wheel) is
The speed is set to -3%. Note that it is desirable that the circumferential speed difference of the drive wheels 4.5 can be set steplessly.

また、テンター2は、1ゾーン当りの長さが3−で6ゾ
ーンに分割されており、#1ないし#6ゾーンの温度は
以下に示す通りである。
Further, the tenter 2 is divided into 6 zones with each zone having a length of 3-3, and the temperatures of zones #1 to #6 are as shown below.

#1ゾーン:210”C #2ゾーン:210”C #3ゾーン:210”C #44ゾーン:180C #5ゾーン:150’C #6’/−ン:140” C なお、フィルム巾方向の弛緩は、図示の如く、#4、#
5ゾーンにて左右のレール巾を狭めることにより行なっ
た。
#1 zone: 210"C #2 zone: 210"C #3 zone: 210"C #44 zone: 180C #5 zone: 150'C #6'/-n: 140"C Note that the relaxation in the film width direction As shown, #4, #
This was done by narrowing the left and right rail widths in 5 zones.

このようなテンター2においては、上流側駆動ホイール
4と下流側駆動ホイール5とに周速差が強制的にもたさ
れているので、その間を走行するクリップ3は、クリッ
プ3間の機械的クリアランスが徐々に累積されていき、
走行速度が下流側にいく程遅くなる。したがって、それ
に応じて延伸フィルム1のテンター内速度も徐々に遅く
なり、遅くなった分フィルムが弛緩熱処理される。そし
て、最終的な弛緩率は、駆動ホイール4.5間の周速差
で決められる。
In such a tenter 2, a circumferential speed difference is forcibly created between the upstream drive wheel 4 and the downstream drive wheel 5, so that the clip 3 running between them has a mechanical clearance between the clips 3. gradually accumulates,
The traveling speed becomes slower toward the downstream side. Accordingly, the speed of the stretched film 1 in the tenter also gradually decreases, and the film is subjected to a relaxation heat treatment corresponding to the decrease in speed. The final relaxation rate is determined by the peripheral speed difference between the drive wheels 4.5.

(比較例) 実施例1と同じ延伸フィルム製造過程で、第2テンター
を従来と同様の構造のテンターとした。
(Comparative Example) In the same stretched film manufacturing process as in Example 1, the second tenter was a tenter with the same structure as the conventional one.

すなわち、入口側ホイール4又は出口側ホイール5のい
ずれか一方のホイールのみを駆動ホイールとし、テンタ
ー人口側と出口側のクリップ速度を同じにして、第2テ
ンター2ではフィルム長手方向の弛緩を行わなかった。
That is, only one of the entrance-side wheel 4 and the exit-side wheel 5 is used as a driving wheel, the clip speeds on the tenter intake side and the exit side are the same, and the film is not relaxed in the longitudinal direction in the second tenter 2. Ta.

上述の実施例1と比較例で得られた延伸フィルムの、8
0’ C,30分の温度条件下における熱収縮率を測定
し比較した。結果を表−1に示す。
8 of the stretched films obtained in Example 1 and Comparative Example above.
Thermal shrinkage rates under a temperature condition of 0'C for 30 minutes were measured and compared. The results are shown in Table-1.

〔表−1〕 表から明らかなように、実施例1ではフィルム長手方向
の熱収縮率を大幅に低下させることができた。ちなみに
、磁気テープやコンデンサ用フィルムにおけるフィルム
長手方向熱収縮率の目標値は、0.2%以下であり、十
分に満足する結果が得られた。
[Table 1] As is clear from the table, in Example 1, the heat shrinkage rate in the longitudinal direction of the film was able to be significantly reduced. Incidentally, the target value of the longitudinal heat shrinkage rate of the film for magnetic tapes and capacitor films was 0.2% or less, and a fully satisfactory result was obtained.

(実施例2) つぎに、前記実施例と同一条件で、直鎖状ポリエチレン
テレフタレートの溶融押出し、口金よりのシート状の吐
出、シート冷却成形、−軸延伸、第1テンターにおける
巾方向延伸を行った後、今度は多数の加熱ロールからな
る第2縦延伸装置に延伸フィルムを通し、そこでロール
周速差により130°Cで1.3倍にフィルム長手方向
に延伸した。しかる後に、実施例1と同一の第2テンタ
ー2で、フィルム巾方向の弛緩率4%、フィルム長手方
向の弛緩率3%として、ワインダで巻取った。第2テン
ター2における温度条件は、実施例1と同一条件である
(Example 2) Next, under the same conditions as in the above example, linear polyethylene terephthalate was melt extruded, discharged into a sheet form from a die, sheet cooling molded, -axially stretched, and widthwise stretched in a first tenter. After this, the stretched film was passed through a second longitudinal stretching device consisting of a large number of heated rolls, where the film was stretched in the longitudinal direction by a factor of 1.3 at 130°C due to the difference in the circumferential speed of the rolls. Thereafter, the film was wound up with a winder using the same second tenter 2 as in Example 1, with a relaxation rate of 4% in the width direction of the film and 3% in the longitudinal direction of the film. The temperature conditions in the second tenter 2 are the same as in Example 1.

その結果、得られた延伸フィルムの熱収縮率は、フィル
ム長手方向に0.12%、フィルム巾方向に0.05%
であり、やはり目標範囲内に十分に入る良好な値が得ら
れた。このように、第2縦延伸により、F−5値(5%
伸張における強度)が16kQ/II’と高いにもかか
わらず、第2テンターにおける弛緩熱処理により、製品
フィルムの低熱収縮率が得られた。
As a result, the heat shrinkage rate of the obtained stretched film was 0.12% in the longitudinal direction of the film and 0.05% in the width direction of the film.
As expected, a good value that was well within the target range was obtained. In this way, the F-5 value (5%
Although the tensile strength (strength in elongation) was as high as 16 kQ/II', a low heat shrinkage rate of the product film was obtained by the relaxation heat treatment in the second tenter.

(実施例3) 本実施例では、フィルム生産条件は後述するように前述
の実施例1とほぼ同様の条件である。しかし、第2テン
ターの構造を第2図に示すように変更した。
(Example 3) In this example, the film production conditions are almost the same as those in the above-mentioned Example 1, as described later. However, the structure of the second tenter was changed as shown in FIG.

第2図に示すように、第2テンター10中に新たに駆動
ホイール11を設け、駆動ホイールを、テンター中の上
流側駆動ホイール11と下流側駆動ホイールとしての出
口駆動ホイール12とし、入口側ホイール13は従来装
置同様非駆動ホイール(フリーホイール)とした。この
ようにすると、フィルム長手方向の弛緩率S1は駆動ホ
イール11の周速V1と駆動ホイール12の周速■2と
によって決まり、次式で表わされる。
As shown in FIG. 2, a drive wheel 11 is newly installed in the second tenter 10, and the drive wheels are an upstream drive wheel 11 in the tenter, an outlet drive wheel 12 as a downstream drive wheel, and an inlet drive wheel. 13 is a non-driving wheel (freewheel) as in the conventional device. In this way, the relaxation rate S1 in the longitudinal direction of the film is determined by the circumferential speed V1 of the drive wheel 11 and the circumferential speed 2 of the drive wheel 12, and is expressed by the following equation.

S+ = (Vl−Vz ・)/V+ Xl 00 (
%)また、フィルム巾方向の弛緩率S2は、各ホイール
13.11.12の位置におけるそれぞれのクリップ1
4走行用レールの左右レール間中をLl、Ll、13と
し、LlとL3とを同一寸法とすると、次式で表わされ
る。
S+ = (Vl-Vz ・)/V+ Xl 00 (
%) Also, the relaxation rate S2 in the film width direction is calculated for each clip 1 at the position of each wheel 13.11.12.
Assuming that the distance between the left and right rails of the four running rails is Ll, Ll, and 13, and that Ll and L3 are of the same size, it is expressed by the following equation.

82 = (L+ −12)/L+ X100 (%)
このように、Llと13を同一寸法とし、駆動ホイール
11.12間に周速差をもたせることにより、同一テン
ター内で、延伸フィルム1をフィルム巾方向に弛緩させ
る部分と、フィルム長手方向に弛緩させる部分とを完全
に分離させることが可能となり、それぞれを弛緩を確実
にかつ正確な弛緩率でもって行わせることができる。
82 = (L+ -12)/L+ X100 (%)
In this way, by making Ll and 13 the same size and providing a difference in circumferential speed between the drive wheels 11 and 12, the stretched film 1 can be relaxed in the film width direction and in the film longitudinal direction within the same tenter. It becomes possible to completely separate the parts to be relaxed, and each part can be relaxed reliably and at an accurate relaxation rate.

つぎにこの実施例3における条件と得られた延伸フィル
ムの特性について説明する。
Next, the conditions in this Example 3 and the characteristics of the obtained stretched film will be explained.

IV−0,60からなる直鎖状ポリエチレンテレフタレ
ートを280°Cで溶融押出しした後、口金よりシート
状にキャスチングロールに密菅させ厚さ160μのシー
トを成形した後、多数の加熱ロールから成る縦延伸装置
でロール周速差により延伸温度92°Cで3.2倍に延
伸した後、第1テンターにおいて延伸温度90″Cにて
3.8倍に延伸した。そして、その延伸フィルムを、上
述の第2テンター10において、フィルム巾方向弛緩率
4%、フィルム長手方向弛緩率2%にて、弛緩熱処理し
ワインダで巻取った。なお、第2テンター10における
温度条件は、ホイール13とホイール11@が220°
C1ホイール11とホイール12間が120°Cであっ
た。
Linear polyethylene terephthalate made of IV-0.60 is melt-extruded at 280°C, then tightly passed through a casting roll through a die to form a 160μ thick sheet. After stretching 3.2 times in a stretching device at a stretching temperature of 92°C due to the difference in roll circumferential speed, the stretched film was stretched 3.8 times in a first tenter at a stretching temperature of 90''C. In the second tenter 10, the film was subjected to a relaxation heat treatment with a relaxation rate of 4% in the width direction and a relaxation rate of 2% in the longitudinal direction, and was wound up with a winder.The temperature conditions in the second tenter 10 were as follows: @ is 220°
The temperature between C1 wheel 11 and wheel 12 was 120°C.

その結果、得られた延伸フィルムの熱収縮率は、80°
C130分の熱風条件下において、フィルム長手方向に
0.06%、フィルム巾方向に0゜02%と小さな十分
に満足できる値が得られた。
As a result, the heat shrinkage rate of the obtained stretched film was 80°
Under hot air conditions of C130 minutes, small and fully satisfactory values of 0.06% in the longitudinal direction of the film and 0.02% in the width direction of the film were obtained.

[発明の効果コ 以上詳述したように、本発明によるときは、テンターに
上流側駆動ホイールと下流側駆動ホイールを・設け、そ
の間に所定の周速差をもたせてテンター内で延伸フィル
ムをフィルム長手方向にも弛緩熱処理できるようにした
ので、従来のテンター設備の簡単な改善で、フィルムを
非接触の状態で確実にかつ容易に所定の弛緩率でフィル
ム長手方向に弛緩させることができ、フィルムの平面性
を損うことなくかつフィルム面にロール等で傷をつけた
りすることなく、延伸フィルムの熱収縮率を所定範囲内
に収めることができるという効果が得られる。したがっ
て、高速製膜、高生産性を確保しつつ、磁気テープやコ
ンデンサ用フィルムにおける低温条件下での厳しい寸法
安定性を満たすことが可能となる。
[Effects of the Invention] As detailed above, according to the present invention, the tenter is provided with an upstream drive wheel and a downstream drive wheel, and a predetermined circumferential speed difference is provided between them, and the stretched film is stretched in the tenter. Since we have made it possible to perform relaxation heat treatment in the longitudinal direction as well, by simply improving the conventional tenter equipment, we can reliably and easily relax the film in the longitudinal direction at a predetermined relaxation rate in a non-contact state. The effect is that the heat shrinkage rate of the stretched film can be kept within a predetermined range without impairing the flatness of the stretched film or damaging the film surface with a roll or the like. Therefore, it is possible to satisfy the strict dimensional stability of magnetic tapes and capacitor films under low-temperature conditions while ensuring high-speed film formation and high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る延伸フィルムの熱処理
方法の実施に用いるテンターの概略平面図、 第2図は第1図とは別の構造例を示すテンターの概略平
面図、 である。 1・・・・・・延伸フィルム 2.10・・・・・・テンター 3.14・・・・・・クリップ 4.11・・・・・・上流側駆動ホイール5.12・・
・・・・下流側駆動ホイール13・・・・・・入口ホイ
ール
FIG. 1 is a schematic plan view of a tenter used to carry out a method for heat treatment of stretched film according to an embodiment of the present invention, and FIG. 2 is a schematic plan view of a tenter showing an example of a structure different from that in FIG. 1. . 1...Stretched film 2.10...Tenter 3.14...Clip 4.11...Upstream drive wheel 5.12...
...Downstream drive wheel 13...Inlet wheel

Claims (1)

【特許請求の範囲】[Claims] (1)連続的に送られてくる延伸フィルムの両側をクリ
ップで把持し、該延伸フィルムをクリップの走行により
テンター内を走行させながら熱処理する延伸フィルムの
熱処理方法において、前記クリップの走行用ホイールの
うち、延伸フィルム走行方向上流側にあるホイールと下
流側にあるホイールとを共に駆動ホイールとし、該両駆
動ホイール間に下流側駆動ホイールの周速の方が小とな
る周速差を持たせて、延伸フィルムを前記両駆動ホイー
ル間で延伸フィルム走行方向に弛緩させることを特徴と
する延伸フィルムの熱処理方法。
(1) A stretched film heat treatment method in which both sides of a continuously fed stretched film are gripped with clips, and the stretched film is heat-treated while being run in a tenter by the running of the clips. Of these, the wheel on the upstream side and the wheel on the downstream side in the running direction of the stretched film are both drive wheels, and there is a difference in circumferential speed between the two drive wheels such that the circumferential speed of the downstream drive wheel is smaller. . A method for heat treating a stretched film, comprising relaxing the stretched film in the running direction of the stretched film between the two drive wheels.
JP6346985A 1985-03-29 1985-03-29 Heat treatment of stretched film Pending JPS61222722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6346985A JPS61222722A (en) 1985-03-29 1985-03-29 Heat treatment of stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6346985A JPS61222722A (en) 1985-03-29 1985-03-29 Heat treatment of stretched film

Publications (1)

Publication Number Publication Date
JPS61222722A true JPS61222722A (en) 1986-10-03

Family

ID=13230120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6346985A Pending JPS61222722A (en) 1985-03-29 1985-03-29 Heat treatment of stretched film

Country Status (1)

Country Link
JP (1) JPS61222722A (en)

Similar Documents

Publication Publication Date Title
US4330499A (en) Process and apparatus for the simultaneous biaxial stretching of a plastic film
US6916440B2 (en) Processes and apparatus for making transversely drawn films with substantially uniaxial character
US4261944A (en) Method for the manufacture of biaxially stretched polyolefin film
KR960013068B1 (en) Thermoplastic resin film & a method for producing the same
US3652759A (en) Production of biaxially oriented polyamide film
US7153122B2 (en) Apparatus for making transversely drawn films with substantially uniaxial character
JPS61222722A (en) Heat treatment of stretched film
JP2841755B2 (en) Polyamide film and method for producing the same
JPH07314552A (en) Production of thermoplastic resin film
JPH04142918A (en) Manufacture of thermoplastic resin film
JPS62134244A (en) Heat treatment of polyester film
JP2841817B2 (en) Method for producing thermoplastic resin film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JP2841816B2 (en) Method for producing thermoplastic resin film
JPH03193329A (en) Reduction of bowing of thermoplastic resin stretched film
JP2936699B2 (en) Method for producing polyamide film
JPH03284934A (en) Manufacture of biaxially oriented polyester film
JP2000190387A (en) Manufacture of biaxially oriented polyamide film
JPH0637079B2 (en) Method for producing thermoplastic resin film
JPH04290726A (en) Manufacture of thermoplastic resin film
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JPS62183327A (en) Manufacture of biaxially oriented film
JPH03207632A (en) Manufacture of low bowing thermoplastic resin stretched film
JPH0245976B2 (en) NIJIKUENSHINHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPS59115812A (en) Method and device for manufacturing thermoplastic resin film