JPS61222691A - Manufacture of zirconium clad material - Google Patents

Manufacture of zirconium clad material

Info

Publication number
JPS61222691A
JPS61222691A JP6416185A JP6416185A JPS61222691A JP S61222691 A JPS61222691 A JP S61222691A JP 6416185 A JP6416185 A JP 6416185A JP 6416185 A JP6416185 A JP 6416185A JP S61222691 A JPS61222691 A JP S61222691A
Authority
JP
Japan
Prior art keywords
rolling
zirconium
temperature
steel
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6416185A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ogawa
和博 小川
Minoru Miura
実 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6416185A priority Critical patent/JPS61222691A/en
Publication of JPS61222691A publication Critical patent/JPS61222691A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To make a joining strength sufficient with preventing the formation of embrittled layer at a joining part by making a base metal and zirconium group clad material in a laminated body with overlapping by providing a gap between them so as not to come into contact directly and by subjecting to hot rolling after reducing the pressure of the gap to be vacuum eta1torr. CONSTITUTION:The clad material 2 having smaller size than that of base metal 1 is placed on it by pinching supporting rod 3, then side face frame material 4 is placed along the edge part of the four sides of the base metal 1 and the clad material 2 is surrounded by placing upper face frame piece 5 thereon further. The base metal 1, side face frame material 4 and upper face frame material 5 are then tack-welded and hermetically sealed by electron beam welding inside the vacuum chamber reduced to <=1torr. This tack-welded assembly material is taken out of the vacuum chamber to subject the tack-welded part to main welding and this assembly material is inputted into heating furnace as it is and after heating to the prescribed temp. the whole assembly material with frame materials is subjected to hot rolling by the specified rolling schedule and after removing the frame material after rolling the part to pinch the supporting rod 3 of both ends is cut.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、普通鋼、低合金鋼、ステンレス鋼などの鋼ま
たはニッケル基合金を母材とし、純ジルコニウムまたは
ジルコニウム合金を合わせ材とする、ジルコニウム系ク
ラッド材の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a method in which steel such as ordinary steel, low alloy steel, stainless steel, or a nickel-based alloy is used as a base material, and pure zirconium or a zirconium alloy is used as a bonding material. The present invention relates to a method for manufacturing a zirconium-based cladding material.

(従来の技術) 純ジルコニウムならびにジルカロイのようなジルコニウ
ム合金(以下、これらを総称してジルコニウム系材料と
いう)は、耐食性にすぐれ、また熱中性子吸収断面積が
極めて小さいため、原子炉材料、特に軽水炉の燃料被覆
用に主に利用されてきた。最近になって、ジルコニウム
の優れた耐食性に着目して、ジルコニウム系材料が比較
的高価であるにもかかわらず、電子工業、医療機械材料
などの他の用途への利用が検討され始めている。
(Prior Art) Pure zirconium and zirconium alloys such as zircaloy (hereinafter collectively referred to as zirconium-based materials) have excellent corrosion resistance and an extremely small thermal neutron absorption cross section, so they are used as nuclear reactor materials, especially light water reactors. It has been mainly used for fuel cladding. Recently, attention has been paid to the excellent corrosion resistance of zirconium, and although zirconium-based materials are relatively expensive, their use in other applications such as the electronic industry and medical equipment materials has begun to be considered.

しかし、普通鋼、さらには高耐食性のステンレス鋼ある
いはインコネルなどのニッケル基合金といった汎用材料
との溶接が困難なため、ジルコニウム系材料の利用分野
は極めて狭められている。
However, because it is difficult to weld with general-purpose materials such as ordinary steel, highly corrosion-resistant stainless steel, or nickel-based alloys such as Inconel, the field of application of zirconium-based materials is extremely limited.

この溶接が困難な理由として、一般に異種金属の直接融
接は接合面に非常に脆弱な合金層を生じ、ZrとFeま
たはZrとNiについても例外ではないこと、さらにこ
れらの溶接に対する適当なろう接材料がないことが挙げ
られる。
The reason why this welding is difficult is that direct fusion welding of dissimilar metals generally produces a very brittle alloy layer on the joint surface, and Zr and Fe or Zr and Ni are no exception. One example is the lack of contact materials.

鉄とジルコニウムのように直接溶接しにくい異種金属を
接合させるために開発された溶接技術の1つに拡散溶接
法がある。これは、被溶接材料を直接密着させるか、あ
るいは間に挿入材を挟んで密着させ、通常は真空下ある
いは不活性雰囲気中で変形を生じない程度の軽加圧下に
おいて固相線以下の温度に加熱することにより、接合面
において相互に相手材への金属の拡散を生じさせる接合
法であり、高融点金属であっても非常に低温(通常その
金属の融点の約半分程度の温度)で溶接することができ
、そのため接合面での脆化などの劣化が極めて少ない、
また、拡散により最終的に接合部が母材と均質化し、接
合部自体が消失してしまうので、接合強度も非常に高い
、拡散溶接法は、異種金属間の溶接に限らず、直接融接
の困難な同種金属、たとえば融点が極めて高(、再結晶
により脆化しやすいタングステン、モリブデンなどの同
種金属間の溶接への利用も試みられている。
Diffusion welding is one of the welding techniques developed to join dissimilar metals that are difficult to weld directly, such as iron and zirconium. This is done by bringing the materials to be welded into close contact, either directly or with an insert between them, and then heating the materials to a temperature below the solidus line under light pressure that does not cause deformation, usually in a vacuum or inert atmosphere. It is a joining method that causes metal to diffuse into the mating material at the joint surface by heating, and even high-melting point metals are welded at a very low temperature (usually about half the melting point of the metal). Therefore, there is extremely little deterioration such as embrittlement at the joint surface.
In addition, due to diffusion, the joint becomes homogenized with the base metal and the joint itself disappears, so the joint strength is extremely high. Diffusion welding is not limited to welding between dissimilar metals, but direct fusion welding Attempts have also been made to use it for welding similar metals that are difficult to weld, such as tungsten and molybdenum, which have extremely high melting points (and which are susceptible to embrittlement due to recrystallization).

ジルコニウム系材料に対する拡散溶接の例としては、鋼
を挿入材とするジルカロイ同士の同種材料の接合のほか
に、挿入材を介在させないジルカロイとオーステナイト
系ステンレスII (SUS302)料の接合の例にあ
っては、ジルカロイとステンレス鋼とを直接密着させて
、約1020’Cの温度に加熱するため、接合面で2「
とFeの脆弱な合金層の形成は避けられず、拡散溶接法
によってもジルコニウム系材料を鋼などの異種金属に十
分な接合強度で溶接することはできなかった。
Examples of diffusion welding for zirconium-based materials include joining Zircaloys of the same type with steel as an insert material, as well as joining Zircaloys and austenitic stainless steel II (SUS302) materials without intervening inserts. In this method, Zircaloy and stainless steel are directly brought into close contact with each other and heated to a temperature of approximately 1020'C, so that 2"
The formation of a brittle alloy layer of Fe and Fe is unavoidable, and even by diffusion welding, it has not been possible to weld zirconium-based materials to dissimilar metals such as steel with sufficient bonding strength.

(発明が解決しようとする問題点) 鋼のような鉄系材料とジルコニウム系材料との異種材料
間の溶接は、第1図に示すように、溶接すべき素材と同
種の材料からなるクラッド材(すなわち、同種の鋼とジ
ルコニウム材料からなるクランド鋼板)があれば、これ
を継手として図示のり、同種材料の溶接となって、接合
面の脆化を生ずることなく溶接することが可能となる。
(Problems to be Solved by the Invention) In welding between different materials such as iron-based materials such as steel and zirconium-based materials, as shown in Fig. (In other words, if there is a crund steel plate made of the same type of steel and zirconium material), this can be used as a joint in the figure, and the same type of materials can be welded without causing embrittlement of the joint surface.

ジルコニウムのように高融点の金属を合わせ材とするク
ラッド鋼板は、母材の鋼と合わせ材とを重ね合わせて熱
間圧延する圧延クランド決死火薬を置き、その爆発力を
利用して接合する爆着クラッド法により製造するのが最
も一般的である。
Clad steel plates made of high-melting-point metals such as zirconium are made by hot-rolling the base steel and the laminate, placing explosives on a rolling clamp, and using the explosive force to join them together. It is most commonly manufactured using the cladding method.

しかし、ジルコニウムまたはジルコニウム合金と普通鋼
、低合金鋼、ステンレス鋼などの鋼とを重ねて熱間圧延
すると、前述したように異種金属の加熱になって、接合
部に脆弱な金属間化合物を含有する合金層が生成するた
め、十分な強度を持つ接合部を得ることは困難である。
However, when hot-rolling zirconium or zirconium alloy and steel such as ordinary steel, low-alloy steel, or stainless steel, the dissimilar metals are heated and the joint contains brittle intermetallic compounds, as described above. It is difficult to obtain a joint with sufficient strength due to the formation of an alloy layer.

また、ジルコニウムおよびジルコニウム合金はいずれも
酸素、窒素などとの親和力が強いため、高温に加熱され
ると大気を吸収して脆化する。これらの問題点があるた
め、ジルコニウム系材料を合わせ材とするクラッド鋼板
の圧延による製造方法はいまだに確立されていない。一
方、爆着クラッド法は、火薬を以上は母材が鋼である場
合について述べたが、母材がニッケル基合金である場合
も事情は全く同じであり、やはり同様の理由により、ニ
ッケル基合金の母材とジルコニウム系材料の合わせ材と
からクランド材を製造する方法として満足できるものは
ない。
Furthermore, since both zirconium and zirconium alloys have a strong affinity for oxygen, nitrogen, etc., when heated to high temperatures, they absorb atmospheric air and become brittle. Because of these problems, a method for manufacturing clad steel plates using zirconium-based materials as a laminated material by rolling has not yet been established. On the other hand, in the explosive bonding cladding method, we have described the case where the base material is steel, but the situation is exactly the same when the base material is nickel-based alloy, and for the same reason, nickel-based alloy There is no satisfactory method for manufacturing crund material from a base material and a composite material of zirconium-based material.

しかし、ジルコニウムは耐食性が極めてよいことから、
鋼またはニッケル基合金とジルコニウム系材料とのクラ
ッド材の製造方法が確立されれば、ジルコニウム系材料
を鋼またはニッケル基合金に溶接することが可能となり
、ジルコニウム系材料の各種分野への利用が促進される
ものと期待される。
However, since zirconium has extremely good corrosion resistance,
If a method for manufacturing cladding materials of steel or nickel-based alloys and zirconium-based materials is established, it will be possible to weld zirconium-based materials to steel or nickel-based alloys, promoting the use of zirconium-based materials in various fields. It is expected that this will be done.

(問題点を解決するための手段) 本発明者らは、ジルコニウム系材料を合わせ材としたこ
とによって起こる脆化相の形成を極力抑えた圧延クラッ
ド法を開発すべく検討した結果、圧延前の加熱時に母材
と合わせ材とを接触させないように保持し、かつ大気を
実質的に遮断すること、および圧延スケジュールの制御
により、接合部での脆化相の形成を防止して十分な接合
強度を有するジルコニウム系クラッド材が製造できると
の知見を得、本発明に到達した。
(Means for Solving the Problems) The present inventors have studied to develop a rolling cladding method that minimizes the formation of brittle phases caused by using zirconium-based materials as laminated materials. By keeping the base material and composite material from coming into contact with each other during heating, substantially blocking the atmosphere, and controlling the rolling schedule, the formation of brittle phases at the joint is prevented and sufficient joint strength is achieved. The present invention was achieved based on the knowledge that a zirconium-based cladding material having the following properties can be manufactured.

ここに本発明は、鋼またはニッケル基合金からなる母材
と純ジルコニウムまたはジルコニウム合金からなる合わ
せ材とを、間に空隙を設けて重ね合わせて積層体とし、
この空隙部を圧力1トル以下の真空に保持しつつ前記積
層体を母材マトリックス金属とジルコニウムとの共晶温
度以上に加熱した後、前記積層体を圧延の5〜60%が
前記共晶温度以上で、残りの圧延が前記共晶温度より低
温で、起こるように熱間圧延して、母材と合わせ材とを
接合させることを特徴とする、ジルコニウム系クランド
材の製造方法である。
Here, the present invention provides a laminate by laminating a base material made of steel or a nickel-based alloy and a laminated material made of pure zirconium or a zirconium alloy with a gap therebetween,
After heating the laminate to a temperature higher than the eutectic temperature of the base matrix metal and zirconium while maintaining the void in a vacuum with a pressure of 1 torr or less, 5 to 60% of the laminate is rolled to the eutectic temperature. The above is a method for producing a zirconium-based crund material, characterized in that the remaining rolling is performed at a temperature lower than the eutectic temperature to join the base material and the laminated material by hot rolling.

(作用) 以下、本発明を添付図面を参照しながら詳しく投明する
(Operation) Hereinafter, the present invention will be disclosed in detail with reference to the accompanying drawings.

本発明の方法により製造するクラッド材は、鋼マタはニ
ッケル基合金を母材とし、純ジルコニウムまたはジルコ
ニウム合金を合わせ材とするものである。本明細書にお
いて、「鋼」とは、普通鋼のほかに合金鋼をも包含する
意味である。また、クラッド材の母材とは、一般に価格
の安い方の材料を意味し、したがって、合わせ材の方が
必ずしも薄いとは限らない。
The cladding material manufactured by the method of the present invention has a nickel-based alloy as the steel base material, and a bonding material of pure zirconium or a zirconium alloy. In this specification, "steel" includes not only ordinary steel but also alloy steel. Furthermore, the base material of the cladding material generally refers to the cheaper material, and therefore the laminated material is not necessarily thinner.

本発明者らの得た知見によれば、FeおよびNiの一方
または両方を合計で5J1!量%以上含存する金属材料
をジルコニウム系材料と密着させて高温に加熱すると、
FeとZrまたはNiとZrの合金層が形成され、接合
面が脆弱になる。したがって、本発明の方法は、母材が
鋼またはニッケル基合金である場合に限らず、Feおよ
びNiの1種以上を合計で5料を母材とするジルコニウ
ム系クラッド材の製造に応用することができる。
According to the knowledge obtained by the present inventors, the total amount of one or both of Fe and Ni is 5J1! When a metal material containing % or more is brought into close contact with a zirconium-based material and heated to a high temperature,
An alloy layer of Fe and Zr or Ni and Zr is formed, and the joint surface becomes brittle. Therefore, the method of the present invention can be applied not only to cases where the base material is steel or nickel-based alloy, but also to the production of zirconium-based cladding materials using a total of five materials of one or more of Fe and Ni. I can do it.

母材として特に好適な鋼は、熱間加工性およびクラッド
鋼としての有用性の面から、普通鋼、低合金鋼およびオ
ーステナイトステンレス鋼であり、またCr、 Mo含
有耐熱鋼も母材として使用できる。
Particularly suitable steels for the base material are ordinary steel, low alloy steel, and austenitic stainless steel from the viewpoint of hot workability and usefulness as clad steel, and heat-resistant steels containing Cr and Mo can also be used as the base material. .

母材として好適なニッケル基合金の例には、インコネル
(8ONi −14Cr−6Fe) 、インコロイ、ハ
ステロイなどがある。
Examples of nickel-based alloys suitable as the base material include Inconel (8ONi-14Cr-6Fe), Incoloy, and Hastelloy.

合わせ材は純ジルコニウムまたはジルコニウム合金であ
り、現在容易に入手できるジルコニウム合金にはジルカ
ロイ−2(1,55n−0,12Fe−0,lCr−0
,05Ni)およびジルカロイ−4(1,55n−0゜
18Fe−0,I Cr)がある、ジルカロイは純ジル
コニウムに比べて高温水中および含窒素雰囲気中での耐
食性が改善されている。なお、ジルコニウム合金はジル
カロイに限られるものではなく、本発明においては他の
ジルコニウム合金も使用できる。
The bonding material is pure zirconium or a zirconium alloy, and currently available zirconium alloys include Zircaloy-2 (1,55n-0,12Fe-0, lCr-0).
,05Ni) and Zircaloy-4 (1,55n-0°18Fe-0,ICr), Zircaloy has improved corrosion resistance in high temperature water and nitrogen-containing atmospheres compared to pure zirconium. Note that the zirconium alloy is not limited to zircaloy, and other zirconium alloys can also be used in the present invention.

ジルコニウム合金はZrを50%以上含有するものが好
ましい。
The zirconium alloy preferably contains 50% or more of Zr.

母材および合わせ材の種類は、用途に応じて適宜選択さ
れる。たとえば、クラッド材の用途が継手である場合に
は、溶接すべき材料と同種の母材および合わせ材を選択
するのが有利である。
The types of base material and bonding material are appropriately selected depending on the application. For example, when the cladding material is used as a joint, it is advantageous to select a base material and a mating material of the same type as the material to be welded.

本発明の方法によれば、母材とジルコニウム系合わせ材
とを直接接触させないように、間に空隙を設けて重ね合
わせて積層体とし、この空隙の圧力を1トル以下の真空
に減圧する。母材と合わせ材とを離間させるのは、これ
らが直接接触すると、たとえ真空に保持して大気の影響
を排除しても、圧延前の加熱時に共晶反応によって掻め
て脆弱なZrとFeまたばZrとN1の合金層が形成さ
れるので、かかる合金層の形成を防止するためである。
According to the method of the present invention, the base material and the zirconium-based laminated material are stacked with a gap between them so as not to come into direct contact to form a laminate, and the pressure in the gap is reduced to a vacuum of 1 Torr or less. The reason why the base material and the composite material are separated is that if they come into direct contact, even if they are kept in a vacuum to eliminate the influence of the atmosphere, the fragile Zr and Fe will be scraped by a eutectic reaction during heating before rolling. Furthermore, since an alloy layer of Zr and N1 is formed, this is to prevent the formation of such an alloy layer.

この目的にとって、空隙部の間隔は0.5n以上とする
のが好ましい、この空隙の間隔が過大であると、後の圧
延時に不都合を生ずる恐れもあるので、通常は空隙部の
間隔はlotm以下とする。
For this purpose, it is preferable that the gap between the voids is 0.5n or more.If the gap is too large, it may cause problems during subsequent rolling, so the gap between the voids is usually less than lotm. shall be.

空隙部を圧力1トル以下の高真空度に保持するのは、積
層体の高温加熱時に合わせ材中のZrが界面で大気を吸
収し、大気、特に窒素と反応して脆弱化するのを防止す
るためである。Zrは高温環境では、たとえば40 p
p−といった極微量の窒素によめ爾什するので、空陣抽
杏かかる高真空にI蓼持+=−大気を排除する必要があ
る。圧力が1トルを超えると、上記の脆弱化が顕著とな
って、得られるクラッド材の接合強度が低下する。この
目的から、高真空度であるほど(すなわち、圧力が低い
ほど)望ましいわけであり、実際に圧力1トル以下の高
真空でも真空度が高くなるほど接合強度はいくらか増大
する傾向が認められる。しかし、その増大はわずかであ
り、一方、真空度が高くなるほどコスト高となるので、
空隙部の圧力は経済性を考慮してlトル以下の範囲内で
選択すればよい。
Maintaining the voids at a high degree of vacuum with a pressure of 1 Torr or less prevents Zr in the laminated material from absorbing the atmosphere at the interface and reacting with the atmosphere, especially nitrogen, and becoming brittle when the laminate is heated to high temperatures. This is to do so. In a high temperature environment, Zr is, for example, 40 p
Since it is filled with extremely small amounts of nitrogen such as p-, it is necessary to remove the atmosphere from the high vacuum. When the pressure exceeds 1 Torr, the above-mentioned weakening becomes significant and the bonding strength of the resulting cladding material decreases. For this purpose, the higher the degree of vacuum (that is, the lower the pressure), the more desirable it is, and in fact, even in a high vacuum of 1 torr or less, there is a tendency for the bonding strength to increase somewhat as the degree of vacuum increases. However, the increase is small, and on the other hand, the higher the degree of vacuum, the higher the cost.
The pressure in the cavity may be selected within a range of 1 Torr or less in consideration of economic efficiency.

次いで、空隙部に上記高真空度を維持したまま積層体を
熱間圧延のために加熱する。十分な接合強度を有するク
ランド材を製造するには、圧延時に母材と合わせ材とを
界面で金属結合させることが必要なので、圧延前に母材
マトリックス金属(FeまたはNi)とZrとの共晶温
度以上の温度まで加熱しておき、圧延時における界面で
の金属結合の形成を確保する。なお、共晶温度は、Zr
−Feが960℃、Zr−Niが946℃であるので、
一般には圧延前の加熱温度は1000〜1300℃、好
ましくは1050〜1250℃の範囲内となろう、共晶
温度以上への加熱時間は、全板厚25III11当たり
1時間程度が適当であ加熱した積層体をその後所望の厚
みまで熱間圧延して、母材と合わせ材とを接合させ、ク
ラッド材を得る0本発明の方法によれば、この圧延時に
、前記共晶温度以上の温度で行われる圧延を全圧延(=
全圧下率)の5〜60%に規制し、残りの圧延は共晶温
度より低温で行う、共晶温度以上での圧延は、接合界面
で接合に必要な金属結合を形成させるためにある程度ま
では必要であるが、共晶温度以上での圧延が多くなると
、界面に形成される合金層が厚くなり、界面が脆弱化し
て、かえって接合強度の低下をもたらす0本発明者らは
、実験の結果、共晶温度以上で行う圧延が全圧下率の5
〜60%の範囲内である場合に界面で十分な接合強度が
得られることを見出した。共晶温度以上での ′圧延が
全圧下率の5%未満では接合に必要な金属結合が十分に
形成されず、逆にこれが60%を超えると脆弱な合金層
の厚みが増し、いずれも接合強度の低下を生ずる。共晶
温度以上での圧延は、好ましくは全圧下率の10〜50
%とする。
Next, the laminate is heated for hot rolling while maintaining the high degree of vacuum in the gap. In order to produce a gland material with sufficient bonding strength, it is necessary to create a metallic bond between the base material and the composite material at the interface during rolling. It is heated to a temperature above the crystallization temperature to ensure the formation of metallic bonds at the interface during rolling. Note that the eutectic temperature is Zr
-Fe is 960°C and Zr-Ni is 946°C, so
In general, the heating temperature before rolling will be in the range of 1000 to 1300°C, preferably 1050 to 1250°C.The appropriate heating time to above the eutectic temperature is about 1 hour per 25III11 of the total plate thickness. The laminate is then hot-rolled to a desired thickness to bond the base material and the laminated material to obtain a clad material. Total rolling (=
The remaining rolling is carried out at a temperature lower than the eutectic temperature.Rolling above the eutectic temperature is limited to a certain extent in order to form the metallic bond necessary for joining at the joint interface. is necessary, but when rolling is performed at a temperature higher than the eutectic temperature, the alloy layer formed at the interface becomes thicker, which weakens the interface and causes a decrease in bonding strength. As a result, rolling performed above the eutectic temperature resulted in a total reduction of 5.
It has been found that sufficient bonding strength can be obtained at the interface when the ratio is within the range of ~60%. If rolling at a temperature above the eutectic temperature is less than 5% of the total reduction rate, the metal bond necessary for bonding will not be sufficiently formed, and if it exceeds 60%, the thickness of the brittle alloy layer will increase, resulting in failure of bonding. This causes a decrease in strength. The rolling at a temperature higher than the eutectic temperature is preferably performed at a total reduction rate of 10 to 50.
%.

熱間圧延により製造するクラッド材に十分な接合強度を
付与するためには、圧延時の全圧下率は少なくとも70
%とするのが好ましい。
In order to provide sufficient joint strength to the clad material manufactured by hot rolling, the total reduction rate during rolling must be at least 70
% is preferable.

本発明により、上述した方法で、FeおよびNiの1種
以上を含有する母材とZr系合わせ材とが十分な強度で
接合したジルコニウム系クラッド材を製造することが可
能となる。得られたクラッド材は、前述したように、鋼
あるいはニッケル基合金とジルコニウム系材料との溶接
における継手として有用であり(第1図参照)、この継
手により、ジルコニウム系材料を汎用構造材料である普
通鋼、ステンレス鋼もしくはニッケル基合金に溶接する
ことが可能となって、ジルコニウム系材料の用途拡大に
寄与する。なお、ジルコニウム系材料間の同種材料の溶
接は、TIG溶接、電子ビーム溶接等により行うことが
できる。
According to the present invention, it is possible to manufacture a zirconium-based cladding material in which a base material containing one or more of Fe and Ni and a Zr-based composite material are bonded with sufficient strength by the method described above. As mentioned above, the obtained clad material is useful as a joint for welding steel or nickel-based alloys with zirconium-based materials (see Figure 1), and this joint allows zirconium-based materials to be used as general-purpose structural materials. It is now possible to weld ordinary steel, stainless steel, or nickel-based alloys, contributing to the expansion of applications for zirconium-based materials. Note that welding of the same type of zirconium-based materials can be performed by TIG welding, electron beam welding, or the like.

本発明の方法で得られたクラッド鋼は、継手以外にも、
クラッド鋼本来の用途、たとえば腐食環境の厳しい側の
面をジルコニウムとし、他面は鋼として強度を鋼で確保
した高耐食性の構造材料として使用できる。1例として
、硝酸などの高腐食性液体用のタンクを内面がZrとな
るようにクラッド鋼で製造すれば、比較的安価に高耐食
性のタンクを製造することができる。
The clad steel obtained by the method of the present invention can be used not only for joints but also for
Clad steel can be used for its original purpose, for example, as a highly corrosion-resistant structural material with zirconium on the side facing severe corrosive environments and steel on the other side to ensure strength. As an example, if a tank for a highly corrosive liquid such as nitric acid is manufactured from clad steel so that the inner surface is made of Zr, a tank with high corrosion resistance can be manufactured at a relatively low cost.

上述した本発明の方法の具体的な実施手段の1例を第2
図により説明する。
One example of a specific implementation means of the method of the present invention described above is shown in the second example.
This will be explained using figures.

適当な厚みの母材1と、寸法が母材より一回り小さい適
当な厚みの合わせ材2とを用意し、圧力1トル以下の所
定の真空度まで減圧された電子ビーム溶接用真空チャン
バ内において、図示のように、合わせ材の両端に支持棒
3を挟んで合わせ材を母材の中央に置く。支持棒3は、
母材と合わせ材とを離間させるためのものであって、所
望の大きさの空隙を生ずるような太さのものを選択する
A base material 1 of an appropriate thickness and a mating material 2 of an appropriate thickness, which is one size smaller than the base material, are prepared, and placed in a vacuum chamber for electron beam welding that is depressurized to a predetermined degree of vacuum of 1 torr or less. , As shown in the figure, the laminate is placed in the center of the base material with support rods 3 sandwiched between both ends of the laminate. The support rod 3 is
The material is used to separate the base material and the laminate material, and a material with a thickness that creates a gap of the desired size is selected.

支持棒の素材は、母材および合わせ材の材料と共晶反応
しないもの、たとえばタングステンとすることができる
0次いで、図示のように、母材の四辺の縁部に沿って側
面枠材4を置き、さらに側面枠材4の上に上面枠材5を
乗せて、合わせ材を包囲する。枠材は、たとえば5S4
1鋼、5US304ステンレス鋼から製作することがで
き、スケールロスを考えて相当に強固な構造とするのが
好ましい。
The material of the support rod may be a material that does not react eutectically with the materials of the base material and the mating material, such as tungsten. Next, as shown in the figure, side frame members 4 are attached along the edges of the four sides of the base material. Then, the top frame material 5 is placed on the side frame material 4 to surround the laminated material. For example, the frame material is 5S4
It can be manufactured from 1 steel or 5 US 304 stainless steel, and preferably has a fairly strong structure considering scale loss.

組立を最初から減圧した真空チャンバ内で行う代わりに
、外部で組立てて組立終了後に真空チャンバに移して減
圧するか、あるいは減圧前の真空チャンバ内で組立た後
に減圧してもよい。
Instead of performing assembly in a vacuum chamber with reduced pressure from the beginning, it may be assembled externally and transferred to a vacuum chamber after assembly to reduce pressure, or it may be assembled in a vacuum chamber before reducing pressure and then reduced in pressure.

次いで、減圧した真空チャンバ内において、図、示によ
うに、母材と側面枠材との接触部および側面枠材と上面
枠材との接触部を電子ビーム溶接により外面から仮付し
、枠材と母材から構成される容器を密封する。これによ
り、母材と合わせ材との間の空隙部および合わせ材の周
囲空間は外部から遮断され、周囲圧力に関係なくその内
部の高真空度が保持できる。
Next, in a depressurized vacuum chamber, as shown in the figure, the contact areas between the base material and the side frame material and the contact areas between the side frame material and the top frame material are temporarily attached from the outside by electron beam welding, and the frame is assembled. The container consisting of wood and base material is sealed. As a result, the gap between the base material and the laminated material and the space surrounding the laminated material are isolated from the outside, and a high degree of vacuum inside the material can be maintained regardless of the ambient pressure.

仮付した組立材を真空チャンバから取り出し、仮付の電
子ビーム溶接部をたとえば被覆アーク溶接、MIG、T
IG溶接等により本溶接し、加熱時に内部の真空が保持
できるよう溶接部を強化する0図中、6は溶接個所を示
す。
The tacked assembly is removed from the vacuum chamber, and the tacked electron beam welded parts are welded using, for example, shielded arc welding, MIG, T
Main welding is performed by IG welding, etc., and the welded part is strengthened so that the internal vacuum can be maintained during heating.

次いで、この組立材をそのまま通常の加熱炉に装入し、
所定の温度に加熱した後、枠材ごと組立材全体を本発明
による圧延スケジュールで熱間圧延する。
Next, this assembled material is put into a normal heating furnace as it is,
After heating to a predetermined temperature, the entire assembled material including the frame material is hot rolled according to the rolling schedule according to the present invention.

圧延後に枠材を除去するが、枠材板面にスケール等を付
着させておけば、清浄面が直接接触しにくいため、圧延
によって枠材が母材および合わせ材と接合することがな
く、容易に除去できる。その後、両端の支持棒を挟み込
んでいる部分を切断除去すれば、目的とするクラッド材
が得られる。
The frame material is removed after rolling, but if there is scale etc. attached to the surface of the frame material plate, it is difficult for the clean surface to come into direct contact with the frame material, which prevents the frame material from joining with the base material and laminated material during rolling. can be removed. Thereafter, by cutting and removing the portions that sandwich the support rods at both ends, the desired cladding material can be obtained.

上に説明した具体的方法は単に1例に過ぎず、その他の
方法でも本発明が実施できることは当業者には理解され
よう。
Those skilled in the art will understand that the specific method described above is merely an example, and that the present invention can be practiced in other ways.

次に本発明によるクラッド材の製造を実施例により具体
的に説明する。
Next, the production of the cladding material according to the present invention will be specifically explained using examples.

(実施例) 下記第1表に示すように、母材に軟鋼(SS41)、オ
ーステナイトステンレス鋼(StlS310)およびニ
ッケル基合金(インコネル625)を使用し、合わせ材
には純ジルコニウム(AsTMクレー )’12607
02)およびジルコニウム合金(ジルカロイ−2)を使
用して、次に述べるようにして各種条件で圧延法により
クラッド材を製造した。なお、ジルカロイを合わせ材と
するクランド材は、母材がオーステナイトステンレス鋼
の場合にのみ製造した。
(Example) As shown in Table 1 below, mild steel (SS41), austenitic stainless steel (StlS310), and nickel-based alloy (Inconel 625) were used as the base materials, and pure zirconium (AsTM clay) was used as the bonding material. 12607
02) and a zirconium alloy (Zircaloy-2), cladding materials were produced by a rolling method under various conditions as described below. Note that the crund material using Zircaloy as the laminating material was manufactured only when the base material was austenitic stainless steel.

第1表 使用材料の寸法は、母材が厚み50mmx幅200 f
i×長さ300 m、合わせ材が厚み35鶴×幅140
mx長さ240鶴であった。この母材と合わせ材を使用
して、第2図に示す構成の組立材を製作した0組立は、
最初から0.01〜200トルの範囲内の各種の所定圧
力に減圧しである電子ビーム溶接用真空チャンバ内で行
い、支持棒としては直径3.2m*X 8−のタングス
テン棒を使用し、母材と合わせ材との間隙を2mmに保
持した。枠材には厚み28−一の母材と同じ材料を使用
した。比較のために、タングステン棒を挟まずに母材と
合わせ材とを直接接触させた組立材も製作した。
The dimensions of the materials used in Table 1 are as follows: The base material is 50 mm thick x 200 mm wide.
i x length 300 m, thickness of mating material 35 x width 140 m
It was mx length 240 cranes. Using this base material and mating material, the assembly material with the configuration shown in Figure 2 was manufactured.
The process was carried out in a vacuum chamber for electron beam welding, which was initially reduced to various predetermined pressures within the range of 0.01 to 200 Torr, and a tungsten rod with a diameter of 3.2 m * 8- was used as a support rod. The gap between the base material and the laminated material was maintained at 2 mm. The same material as the base material with a thickness of 28-1 was used for the frame material. For comparison, we also produced an assembled material in which the base material and the laminate were in direct contact without sandwiching the tungsten rod.

電子ビーム溶接により仮付の済んだ組立材を真空チャン
バから取り出し、被覆アーク溶接により本溶接した後、
加熱炉に入れて炉内で1200℃の最高温度に180分
間加熱し、後述のように圧延スケジュールを変えて圧下
率75%で熱間圧延し、枠材の除去と両端の支持棒の部
分の切断を行って、厚み20■簡のクラフト材を得た。
The assembled materials that have been temporarily attached by electron beam welding are taken out of the vacuum chamber, and after main welding is performed by shielded arc welding,
The material was placed in a heating furnace and heated in the furnace to a maximum temperature of 1200°C for 180 minutes, and the rolling schedule was changed as described later and hot rolled at a reduction rate of 75% to remove the frame material and the support rods at both ends. The material was cut to obtain a 20-inch thick kraft material.

なお、比較のために、加熱温度を1000℃、900℃
および800℃とした実験も行った。
For comparison, the heating temperature was 1000℃ and 900℃.
Experiments were also conducted at 800°C.

熱間圧延は、開始温度1050℃からの圧延(960℃
以上で終了、第1段圧延)と開始温度900℃からの圧
延(第2段圧延)の2段階に分けて行った。
Hot rolling is rolling from a starting temperature of 1050°C (960°C
The process was divided into two stages: 1st stage rolling) and rolling from a starting temperature of 900°C (2nd stage rolling).

上述のように、共晶温度はZr−Feが960℃、Zr
 −Niが946℃であるので、母材が鋼およびニッケ
ル基合金のいずれも場合であっても、第1段圧延は共晶
温度以上での圧延となり、第2段圧延は共晶温度以下で
の圧延となる。この第1段圧延と第2段圧延で行う圧延
の割合を変えて熱間圧延を実施した。また、比較のため
に、100%の圧延を1050℃〜960℃の範囲内(
共晶温度以上)または900℃以下(共晶温度未満)で
実施して、クラッド材を製造した0代表的な熱間圧延ス
ケジュールを第3図に示す0図中、Aは本発明の範囲内
の圧延スケジュールであり、Bは本発明の範囲外のもの
である。また、960℃はZr−Feの共晶温度である
As mentioned above, the eutectic temperature is 960°C for Zr-Fe, and
-Ni is 946°C, so even if the base material is steel or a nickel-based alloy, the first stage rolling will be at a temperature above the eutectic temperature, and the second stage rolling will be at a temperature below the eutectic temperature. This results in rolling. Hot rolling was carried out by changing the ratio of rolling performed in the first stage rolling and the second stage rolling. For comparison, 100% rolling was performed within the range of 1050°C to 960°C (
Figure 3 shows a typical hot rolling schedule in which the cladding material was produced by carrying out the hot rolling at a temperature (above the eutectic temperature) or below 900°C (below the eutectic temperature). In Fig. 3, A is within the scope of the present invention. B is outside the scope of the present invention. Further, 960°C is the eutectic temperature of Zr-Fe.

得られたクラッド材をJIS G 0601に規定の剪
断強度試験方法に準拠して、母材と合わせ材とを平衡方
向に剥離させた場合の接合界面での剪断強度を測定し、
接合強度を評価した。結果を第4図〜第6図にグラフに
まとめて示す。
The shear strength of the obtained cladding material at the bonding interface when the base material and the composite material are peeled in the equilibrium direction is measured in accordance with the shear strength test method specified in JIS G 0601,
The bonding strength was evaluated. The results are summarized and shown in graphs in FIGS. 4 to 6.

第4図は、母材と合わせ材との間の空隙部の真空度が接
合強度に及ぼす影響を示すグラフである。
FIG. 4 is a graph showing the influence of the degree of vacuum in the gap between the base material and the bonding material on the bonding strength.

熱間圧延前の最高加熱温度は1200℃であり、圧延ス
ケジュールは第3図のA(すなわち、共晶温度以上で3
0%、残り70%を共晶温度未満で圧延)であった、こ
のグラフから明らかなように、母材と合わせ材の間に空
隙を設けた場合には、圧力1トル以下の高真空度では、
いずれの材料であっても20kgf /m&前後の優れ
た界面剪断強度が得られるのに対し、圧力が1トルを超
えると剪断強度は急激に低下し、10)ル以上の圧力で
は接合強度はほぼ零となる。一方、母材と合わせ材を密
着させて空隙を設けなかった場合には、真空度を1トル
以上に高めても接合強度の向上はまった(認められず、
はぼ零のままである。したがって、母材と合わせ材の離
間配置と高真空度の保持の両条件が十分な接合強度の確
保に必須であることがわかる。
The maximum heating temperature before hot rolling is 1200°C, and the rolling schedule is A in Figure 3 (i.e., 3 times above the eutectic temperature).
0%, and the remaining 70% rolled below the eutectic temperature).As is clear from this graph, when a gap is provided between the base material and the composite material, a high degree of vacuum with a pressure of 1 Torr or less is achieved. So,
Although an excellent interfacial shear strength of around 20 kgf/m can be obtained with any material, the shear strength rapidly decreases when the pressure exceeds 1 Torr, and the bonding strength is almost It becomes zero. On the other hand, when the base material and the plying material were brought into close contact with each other without creating any voids, the bonding strength improved significantly even if the degree of vacuum was increased to 1 Torr or more (not observed).
It remains as zero. Therefore, it can be seen that both the conditions of spacing the base material and the bonding material and maintaining a high degree of vacuum are essential to ensure sufficient bonding strength.

第5図は、圧力0.1トルで加熱および熱間圧延した場
合の圧延前の炉内における最高加熱温度と界面剪断強度
との関係を示すグラフである。圧延スケジュールは、加
熱温度が1200℃の場合は第3図のA線であり、加熱
温度が1000℃の場合は全圧延の20%が960℃以
上、残りが900℃以下の圧延であり、また加熱温度が
900℃以下の場合はその温度から100%の圧延を行
った。母材と合わせ材間に空隙部を設けた場合には、加
熱温度が共晶温度より低いと接合強度はほぼ零であるが
、加熱温度が共晶温度を超えると接合強度が約20 k
gf/m&またはそれ以上に急上昇し、共晶温度以上へ
の加熱が接合に必要であることがわかる。これに対し、
密着させた場合には、共晶温度以上に加熱しても接合強
度はほぼ零のままであり、密着では脆弱な合金層が厚く
形成されて、実質的に接合は得られない、ただしここで
零と記した値は、クラッド材の剪断試験片製作時の機械
加工により、接合界面が剥離したものを含んでいる。
FIG. 5 is a graph showing the relationship between the maximum heating temperature in the furnace before rolling and the interfacial shear strength when heated and hot rolled at a pressure of 0.1 torr. The rolling schedule is line A in Figure 3 when the heating temperature is 1200°C, and when the heating temperature is 1000°C, 20% of the total rolling is at 960°C or higher and the rest is rolling at 900°C or lower. When the heating temperature was 900° C. or lower, 100% rolling was performed from that temperature. When a gap is provided between the base material and the mating material, the bonding strength is almost zero if the heating temperature is lower than the eutectic temperature, but the bonding strength is approximately 20 k if the heating temperature exceeds the eutectic temperature.
It can be seen that the temperature rises rapidly to gf/m& or higher, and that heating to the eutectic temperature or higher is necessary for bonding. On the other hand,
If they are brought into close contact, the bonding strength will remain almost zero even if heated above the eutectic temperature, and if they are brought into close contact, a fragile alloy layer will form thickly and no bond will be obtained in practice.However, here Values marked as zero include those where the bonding interface was peeled off due to machining during the fabrication of the shear test piece of the cladding material.

第6図には、加熱および圧延時の真空度を0.1ある場
合の、共晶温度以上とそれより低温での圧延の割合が界
面剪断強度に及ぼす影響を示すグラフである0図中、下
の横軸は共晶温度以上での圧延(第1段の1050〜9
60℃での圧延)の割合を、上の横軸は共晶温度未満で
の圧延(第2段の900℃からの圧延)の割合をそれぞ
れ示す、このグラフが示すように、共晶温度以上での圧
延が5〜60%の範囲内であると、母材と合わせ材とを
離間させた場合には接合強度が大幅に向上し、この範囲
をはずれると十分な接合強度は得られない、特に共晶温
度以上での圧延の割合が0%であるか、80%を超えた
場合にはいずれも接合強度は0もしくはバラツキ大とな
り、この割合が10〜50%である場合に15kgf/
+a!以上の界面剪断強度が得られるのと対照的である
。一方、密着配置の場合には、共晶温度以上での圧延の
割合を5〜60%に制限しても、接合強度はほぼ零のま
まであって、密着配置によっては接合を達成することが
できない。
Figure 6 is a graph showing the influence of the ratio of rolling at temperatures above and below the eutectic temperature on the interfacial shear strength when the degree of vacuum during heating and rolling is 0.1. The lower horizontal axis is the rolling temperature above the eutectic temperature (1050 to 9 in the first stage).
As this graph shows, the upper horizontal axis shows the ratio of rolling below the eutectic temperature (rolling from 900°C in the second stage). If the rolling rate is within the range of 5 to 60%, the bonding strength will be significantly improved when the base material and the composite material are spaced apart, and if it is outside this range, sufficient bonding strength will not be obtained. In particular, if the ratio of rolling above the eutectic temperature is 0% or exceeds 80%, the bonding strength will be 0 or will vary greatly, and if this ratio is 10 to 50%, the joint strength will be 15kgf/
+a! This is in contrast to the above-mentioned interfacial shear strength obtained. On the other hand, in the case of a close arrangement, even if the ratio of rolling above the eutectic temperature is limited to 5 to 60%, the bonding strength remains almost zero, and it is difficult to achieve bonding depending on the close arrangement. Can not.

(発明の効果) 以上の説明から理解されるように、本発明により、鋼ま
たはニッケル基合金のようなFeもしくはNiを5%以
上含有する金属材料からなる母材と、純ジルコニウムま
たはジルコニウム合金からなる合わせ材とから、界面で
の接合強度が十分なジルコニウム系クラッド材の製造方
法が確立され、したがって、本発明はジルコニウム系材
料の用途拡大に大きく寄与するものである。
(Effects of the Invention) As can be understood from the above description, the present invention enables a base material made of a metal material containing 5% or more of Fe or Ni, such as steel or a nickel-based alloy, and pure zirconium or a zirconium alloy. A method for manufacturing a zirconium-based cladding material with sufficient bonding strength at the interface has been established from a laminated material of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鉄系材料とジルコニウム系材料とのクラッド
材を継手とする溶接性を示す略式説明図、第2図は、本
発明の方法によるクラッド材の製造に使用する組立材の
構造を示す略式説明図、第3図は、圧延スケジュールの
例を示す図、第4図は、母材と合わせ材との間隙におけ
る真空度が接合強度に及ぼす影響を示すグラフ、第5図
は、圧延前の炉内での最高加熱温度が接合強度に与える
影響を示すグラフ、および第6図は、共晶温度以上での
圧延割合の変動による接合強度の変化を示すグラフであ
る。 1:母材    2:合わせ材 3:支持棒   4.5:枠材 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 − 第1図 クラッド材 第2図 1tha酊殊屋(トク轟り 手続補正書 昭和60年10月30日 特許庁長官 宇 賀  道 部 殿 昭和60年特許願第064161号 2、発明の名称 ジルコニウム系クラッド材の製造方法 3、補正をする者 事件との関係  特許出願人 住所 大阪市東区北浜5丁目15番地 名称 (211)住友金属工業株式会社4、代理人 (別紙) (1)明細書第2頁、155行目「インコネル」の後に
r(インコ社の商品名)jを加入する。 (2)同第8頁、9行目の「インコロイ」の後に「(イ
ンコ社の商品名)1を加入し、また同頁、9〜10行目
の「ハステロイ」の後に「(キャボット社の商品名)j
を加入する。 (3)同第15頁、9行目および同第16頁の第1表中
にそれぞれrsUs 310 JとあるのをrSUS 
310SJと訂正する。 (4)第4図、第5図、第6図をそれぞれ添付の図面写
しに朱書したように訂正する。
Fig. 1 is a schematic explanatory diagram showing the weldability of a cladding material made of iron-based material and zirconium-based material as a joint, and Fig. 2 shows the structure of the assembled material used for manufacturing the cladding material by the method of the present invention. 3 is a diagram showing an example of a rolling schedule, FIG. 4 is a graph showing the influence of the degree of vacuum in the gap between base material and mating material on joint strength, and FIG. 5 is a diagram showing an example of a rolling schedule. FIG. 6 is a graph showing the influence of the maximum heating temperature in the previous furnace on the bonding strength, and FIG. 6 is a graph showing changes in the bonding strength due to variations in the rolling ratio above the eutectic temperature. 1: Base material 2: Laminating material 3: Support rod 4.5: Frame material Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Akira Hirose - Figure 1 Clad material Figure 2 1 tha drunken procedure Amendment dated October 30, 1985 Michibe Uga, Commissioner of the Patent Office, 1985 Patent Application No. 064161 2, Title of invention: Process for manufacturing zirconium-based cladding material 3, Person making the amendment Relationship with the case Patent applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries Co., Ltd. 4, Agent (attached sheet) (1) R after "Inconel" on page 2 of the specification, line 155 (Inco's product name) (2) Add "(Inco's product name) 1" after "Incoloy" on the 9th line of the same page, and after "Hastelloy" on the 9th to 10th lines of the same page. “(Cabot product name)
join. (3) rsUs 310 J in Table 1 on page 15, line 9 and page 16 of the same page is rSUS.
Corrected to 310SJ. (4) Figures 4, 5, and 6 are corrected as indicated in red on the attached drawing copy.

Claims (2)

【特許請求の範囲】[Claims] (1)鋼またはニッケル基合金からなる母材と純ジルコ
ニウムまたはジルコニウム合金からなる合わせ材とを、
間に空隙を設けて重ね合わせて積層体とし、この空隙部
を圧力1トル以下の真空に保持しつつ前記積層体を母材
マトリックス金属とジルコニウムとの共晶温度以上に加
熱した後、前記積層体を圧延の5〜60%が前記共晶温
度以上で、残りの圧延が前記共晶温度より低温で起こる
ように熱間圧延して、母材と合わせ材とを接合させるこ
とを特徴とする、ジルコニウム系クラッド材の製造方法
(1) A base material made of steel or nickel-based alloy and a mating material made of pure zirconium or zirconium alloy,
A laminate is formed by stacking the laminate with a gap between them, and the laminate is heated to a temperature equal to or higher than the eutectic temperature of the base matrix metal and zirconium while maintaining the gap in a vacuum with a pressure of 1 torr or less. The body is hot-rolled so that 5 to 60% of the rolling occurs at a temperature above the eutectic temperature and the remaining rolling occurs at a temperature below the eutectic temperature, thereby bonding the base material and the laminate. , a method for producing zirconium-based cladding material.
(2)母材が、普通鋼、低合金鋼、オーステナイト系ス
テンレス鋼またはニッケル基合金である、特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the base material is ordinary steel, low alloy steel, austenitic stainless steel, or nickel-based alloy.
JP6416185A 1985-03-28 1985-03-28 Manufacture of zirconium clad material Pending JPS61222691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6416185A JPS61222691A (en) 1985-03-28 1985-03-28 Manufacture of zirconium clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6416185A JPS61222691A (en) 1985-03-28 1985-03-28 Manufacture of zirconium clad material

Publications (1)

Publication Number Publication Date
JPS61222691A true JPS61222691A (en) 1986-10-03

Family

ID=13250064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6416185A Pending JPS61222691A (en) 1985-03-28 1985-03-28 Manufacture of zirconium clad material

Country Status (1)

Country Link
JP (1) JPS61222691A (en)

Similar Documents

Publication Publication Date Title
US5579988A (en) Clad reactive metal plate product and process for producing the same
JP3103004B2 (en) Method of manufacturing cladding
US2813332A (en) Process of preparing composite metal products
US3652237A (en) Composite brazing alloy of titanium, copper and nickel
US3664816A (en) Steel-to-aluminum transition piece
US3561099A (en) Process of making a composite brazing alloy of titanium, copper and nickel
US3060557A (en) Metal cladding process and products resulting therefrom
US2985955A (en) Metal clad article
US3495319A (en) Steel-to-aluminum transition joint
JPH08141754A (en) Manufacture of titanium clad steel plate and titanium clad steel plate
JPS6018205A (en) Manufacture of titanium-clad steel material
JPS61222691A (en) Manufacture of zirconium clad material
US4264029A (en) Compound material and method for producing same
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
US3604103A (en) Method of cladding metals and composites thereof
JPS62220291A (en) Zirconium clad material and its manufacture
JP3812973B2 (en) Airtight joint
JPH0558838B2 (en)
JPH02104482A (en) Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof
JPH01313193A (en) Manufacture of clad steel plate
JPS60203377A (en) Production of titanium clad material
JPH07236B2 (en) Dissimilar material joining method
JPS5841685A (en) Titanium clad steel
JPS62220292A (en) Zirconium dissimilar material joint structure
JPS60261682A (en) Titanium clad steel material and its production