JPS61222349A - Demodulator - Google Patents

Demodulator

Info

Publication number
JPS61222349A
JPS61222349A JP5742585A JP5742585A JPS61222349A JP S61222349 A JPS61222349 A JP S61222349A JP 5742585 A JP5742585 A JP 5742585A JP 5742585 A JP5742585 A JP 5742585A JP S61222349 A JPS61222349 A JP S61222349A
Authority
JP
Japan
Prior art keywords
frequency
circuit
demodulation
carrier
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5742585A
Other languages
Japanese (ja)
Inventor
Hiroyasu Murata
博康 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5742585A priority Critical patent/JPS61222349A/en
Publication of JPS61222349A publication Critical patent/JPS61222349A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To decrease the scale of a circuit by providing a frequency band shift circuit of a reception signal to the pre-stage of a demodulator to convert a ratio of a sampling frequency to a frequency of a demodulation carrier in the demodulator to a prescribed value. CONSTITUTION:A frequency shift circuit 10 consists of a tone input section giving a prescribed input to an output of an A/D converter 11 and a tone input having a frequency corresponding to a carrier frequency of the output of A/D conversion. A demodulation circuit 12 gives a prescribed carrier frequency to the A/D conversion output or a band-shift signal. Since the signal is subjected to band shift by the frequency band shift circuit 10 and the ratio of the carrier frequency to the sampling frequency is limited to a prescribed value, the arithmetic scale in a roll-off filter 13 is reduced.

Description

【発明の詳細な説明】 (1)概 要 モデム、即ちv1m装置にあっては、位相変調された受
信信号を波形整形するためにロールオフフィルタを用い
る。このロールオフフィルタは、複数段の遅延回路と乗
算器を持ち各出力を波形により設定されるフィルタ係数
を介して乗算し且つ演算する。このロールオフフィルタ
では、受信信号のキャリア周波数とサンプリング周波数
との間の比が所定の値であれば等間隔に0点を有する出
力特性が得られることから、これを利用してO−ルオフ
フィルタの回路規模を小さくすることが可能であるが、
一般に、復調装置における受信は、高群(高周波数)受
けと低群(低周波数)受けとがあり、それぞれ異なった
周波数帯域に対して復調操作をしなければならないから
、結局回路規模の縮小は無理とされていた。本発明は、
受信信号に対して周波数帯域シフト処理を行なうことに
より、周波数を可変し、高群の信号に対しても低群信号
に対しても同じ波形整形処理が行なえる様にし、ロール
オフフィルタの演算量を軽減させるものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Overview A modem, ie, a v1m device, uses a roll-off filter to shape the waveform of a phase-modulated received signal. This roll-off filter has multiple stages of delay circuits and multipliers, and multiplies and calculates each output via a filter coefficient set according to the waveform. In this roll-off filter, if the ratio between the carrier frequency and the sampling frequency of the received signal is a predetermined value, an output characteristic having 0 points at equal intervals can be obtained. Although it is possible to reduce the circuit scale of
In general, reception in a demodulator includes high group (high frequency) reception and low group (low frequency) reception, and demodulation operations must be performed for each different frequency band, so ultimately the circuit size can be reduced. It was considered impossible. The present invention
By performing frequency band shift processing on the received signal, the frequency is varied, and the same waveform shaping processing can be performed on both high group signals and low group signals, reducing the amount of calculation for the roll-off filter. This will reduce the

(2)産業上の利用分野 本発明はデータ伝送システムのモデムの受信部における
復調装置に関するものである。
(2) Field of Industrial Application The present invention relates to a demodulator in a modem receiving section of a data transmission system.

(3)従来の技術 従来のデー タ伝送システムのモデムにおいて、。(3) Conventional technology In modems of conventional data transmission systems.

位置変調データを波形整形するために、ロールオフフィ
ルタ(ROF)が用いられる。これは、直列接続した複
数段の遅延回路を設け、それぞれの出力を波形により設
定されるフィルタ係数を介して加算器に入れて出力する
。この出力特性は等間隔に0点を有し、それぞれの間は
余弦特性をもつように構成された低域通過フィルタであ
る。データ伝送システムでは、この波形整形を送信側、
受信側で分担する場合と、受信側で100%行なう場合
とがある。
A roll-off filter (ROF) is used to waveform shape the position modulation data. This includes a plurality of stages of delay circuits connected in series, and the outputs of each stage are input to an adder via filter coefficients set according to the waveform and output. This output characteristic is a low-pass filter configured to have zero points at equal intervals and a cosine characteristic between the zero points. In a data transmission system, this waveform shaping is performed on the transmitting side,
There are cases where the receiving side shares the responsibility, and cases where the receiving side performs 100% of the work.

受信側で復調を行なう場合は、第5図に示すように、自
動、等化器の前段にアナログ・デジタル変換器(以下A
/D変換器という)1.1111回路2、O−ルオフフ
ィルタ(以下ROFという)3の各回路が設けられる。
When demodulating on the receiving side, as shown in Figure 5, an analog-to-digital converter (hereinafter referred to as A) is installed before the automatic equalizer.
/D converter) 1.1111 circuit 2, and an O-ROF filter (hereinafter referred to as ROF) 3 are provided.

この場合、I11回路2とROF3とではデジタル処理
により復調と波形整形が行なわれる。このため、A/D
変換器1では搬送周波数に対して少なくとも2倍以上の
サンプリング周波数によるサンプリングが行なわれてデ
ジタル変換される。
In this case, the I11 circuit 2 and the ROF 3 perform demodulation and waveform shaping by digital processing. For this reason, A/D
The converter 1 performs sampling at a sampling frequency that is at least twice the carrier frequency and performs digital conversion.

第6図は、第5図の復調回路2とROF3の詳細説明図
であり、へ/D変換出力に対して一定のキャリア周波数
ωCを与え、実数成分と虚数成分に分け、それぞれの出
力をロールオフフィルタ3内のフィルタ回路3A、3B
に送る。フィルタ回路3A、3Bは、上述したように、
複数の余弦特性をもつ遅延回路4−1〜4−nと、それ
ぞれの出力に対し乗算部5−1〜5−nで特性に応じた
フィルタ係数R1〜Rnを乗算し、これを演算部6で加
算したものをROF実数成分、虚数成分として出力する
FIG. 6 is a detailed explanatory diagram of the demodulation circuit 2 and ROF 3 in FIG. 5. A constant carrier frequency ωC is given to the D/D conversion output, the output is divided into a real component and an imaginary component, and each output is rolled. Filter circuits 3A and 3B in off-filter 3
send to As mentioned above, the filter circuits 3A and 3B are
Delay circuits 4-1 to 4-n each having a plurality of cosine characteristics, and their respective outputs are multiplied by filter coefficients R1 to Rn according to the characteristics in multipliers 5-1 to 5-n. The added values are output as the ROF real component and imaginary component.

(4)発明が解決しようとする問題点 このような復調装置において、モデム受信部をデジタル
信号処理を用いて実現した場合、扱っている値は離散値
となるため、これを利用して復調回路とROF回路の規
模を小さくすることができる。しかし、このような回路
規模の小型化は、サンプリング周波数と復調用キャリア
の周波数との比が4=1のときに可能となるのみで、こ
の関係が成り立たないとき(例えば上記比率が8=1で
あるような)は復調回路とROF回路を、上記手法を用
いることによって小規模化することはできなかった。
(4) Problems to be solved by the invention In such a demodulator, if the modem receiving section is implemented using digital signal processing, the values handled will be discrete values, so this can be used to solve the problem in the demodulation circuit. This allows the scale of the ROF circuit to be reduced. However, such miniaturization of the circuit scale is only possible when the ratio of the sampling frequency to the frequency of the demodulating carrier is 4=1, and when this relationship does not hold (for example, when the above ratio is 8=1) ), it was not possible to downsize the demodulation circuit and the ROF circuit by using the above method.

本発明は、このような従来の問題点に着目してなされた
もので、その目的は、復調回路によってII調操作を行
なうに当り、サンプリング周波数と復調用キャリアの周
波数との比が一定の条件を満たしていなくても復調回路
とROFとの回路規模を小さくすることのできる復調方
式を提供することである。
The present invention has been made by focusing on such conventional problems, and its purpose is to satisfy the condition that the ratio between the sampling frequency and the frequency of the demodulating carrier is constant when performing II modulation operation by a demodulating circuit. It is an object of the present invention to provide a demodulation method that can reduce the circuit scale of a demodulation circuit and an ROF even if the following is not satisfied.

(5)問題点を解決するための手段 、F記目的を達成するため、本発明は、第1図に示すよ
うに位相変調された受信信号を[Iしロールオフフィル
タを通し、波形整形して出力するようにしたデータ伝送
システムにおいて、復調器の前段に受信信号の周波数帯
域シフト回路を設け、復調器内にa3けるサンプリング
周波数と11!JJ用キヤリアの周波数比を一定の値に
変換するようにしたことを要旨とするものである。
(5) Means for Solving the Problems In order to achieve the object described in F, the present invention provides a method for waveform-shaping the phase-modulated received signal by passing it through a roll-off filter as shown in FIG. In a data transmission system, a frequency band shift circuit for the received signal is provided before the demodulator, and the sampling frequency of a3 and 11! are set in the demodulator. The gist of this is that the frequency ratio of the JJ carrier is converted to a constant value.

(6)作 用 位相変調された受信信号はアナログ・デジタル変換され
た後必要に応じて周波数帯域のシフト操作が行われる。
(6) Operation After the phase-modulated received signal is converted from analog to digital, the frequency band is shifted as necessary.

この周波数帯域シフトが行なわれた後の信号は、そのキ
ャリア成分の周波数がサンプリング周波数に対して一定
の比率、即ち1:4になる。このため、キャリア周波数
の1周期の間にゼロサンプリングが2回行なわれるから
、このゼロサンプリング値に対しては演算処理しなくて
済み、その分ロールオフフィルタの構成が簡素化される
After this frequency band shift has been performed, the frequency of the carrier component of the signal has a constant ratio to the sampling frequency, that is, 1:4. Therefore, since zero sampling is performed twice during one cycle of the carrier frequency, there is no need to perform arithmetic processing on this zero sampling value, and the configuration of the roll-off filter is simplified accordingly.

(7)実施例 第2図は、第1図に示す本発明の一実施例に係る復調装
置の、周波数帯域シフト回路10と、復調回路12と、
ROF 13の詳細説明図である。この実施例において
、周波数帯域シフト回路10はA/D変換出力に対して
所定入力を与えるトーン入力部によって構成され、A/
D変換出力のキャリア周波数に対応した周波数のトーン
入力が行なわれる。
(7) Embodiment FIG. 2 shows a frequency band shift circuit 10, a demodulation circuit 12, and a demodulation device according to an embodiment of the present invention shown in FIG.
FIG. 2 is a detailed explanatory diagram of the ROF 13. In this embodiment, the frequency band shift circuit 10 is constituted by a tone input section that provides a predetermined input to the A/D conversion output.
A tone input at a frequency corresponding to the carrier frequency of the D-converted output is performed.

復調回路12は、第4図及び第5図に基づいて説明した
と同様、A/D変換出力又は帯域シフトされた信号に対
して一定のキャリア周波数ωCを与え、受信信号を実数
成分と虚数成分に分ける。この実施例では、受信信号が
周波数帯域シフト回路10によって帯域シフトされ、そ
のキャリア周波数とサンプリング周波数との比が所定の
値に規制されているため、ROF13における演算規模
を小さくすることが出来る。よってROF13は従来の
ROF3に比べて約半分の遅延回路14−1.14−2
、・・・9乗算部15−1.15−2.・・・、演算部
16の回路構成をもっている。
As explained based on FIGS. 4 and 5, the demodulation circuit 12 applies a constant carrier frequency ωC to the A/D conversion output or the band-shifted signal, and divides the received signal into a real component and an imaginary component. Divide into In this embodiment, the received signal is band-shifted by the frequency band shift circuit 10, and the ratio between the carrier frequency and the sampling frequency is regulated to a predetermined value, so that the scale of calculation in the ROF 13 can be reduced. Therefore, ROF13 has about half the delay circuit 14-1, 14-2 compared to the conventional ROF3.
,...9 multipliers 15-1.15-2. . . . has the circuit configuration of the calculation section 16.

かかる構成を有する復調装置による受信時の復調動作に
ついて説明する。この受信復調をV 22bisモデム
によって行った場合についてみる。
The demodulating operation during reception by the demodulating device having such a configuration will be explained. Let us consider the case where this reception demodulation is performed by a V22bis modem.

受信信号は高群2400)1z 、低群1200)1 
zで受信される。この受信信号に対するサンプリング周
波数は9600)1 zである。先ず高群の信号を復調
するには、上記周波数の関係からサンプリング周波数と
復調用キャリアの周波数比が4:1となり、第3図(b
 )で示すようにサンプリング点131゜B2.・・・
のうち半分はゼロ(0)サンプリングとなるから、上記
半分の規模に縮小構成されたRO[13によって演算処
理が行ない得る。
The received signal is high group 2400) 1z, low group 1200) 1
Received at z. The sampling frequency for this received signal is 9600)1z. First, in order to demodulate a high group signal, the frequency ratio of the sampling frequency and demodulation carrier is 4:1 from the above frequency relationship, and as shown in Fig. 3 (b).
), the sampling point is 131°B2. ...
Since half of them are zero (0) sampling, arithmetic processing can be performed by RO[13, which is reduced in size to half of the above.

他方、1200H2の低群受けを行なう場合についてみ
る。この場合、上記高群受けと同様な方法で復調を行な
うとすると、サンプリング周波数と復調用キャリアの周
波数比が8:1となり、受信信号は第3図<a )に示
すように一周期に8点でサンプリングされることになる
。そして、ゼロサンプリングも全サンプリングに対して
半分とならないから、演ww4模が大きくなり、上記R
OF13では演算処理が難しくなる。
On the other hand, let's look at the case of performing low group reception on the 1200H2. In this case, if demodulation is performed in the same manner as the above-mentioned high group reception, the frequency ratio of the sampling frequency and demodulation carrier will be 8:1, and the received signal will be 8:1 in one period as shown in Fig. 3 It will be sampled at points. And since the zero sampling is not half of the total sampling, the performance ww4 model becomes large, and the above R
Arithmetic processing becomes difficult in OF13.

そこで、周波数帯域シフト回路10によって受信信号の
周波数帯域シフトを行なう。この例においては、上記周
波数帯域シフト回路10において、受信信号(1200
H2)に対して1200Hzのトーン入力を与える。こ
れにより、受信信号は、第4図(a )に示すように、
最初中心周波数が1200H2であったものが、同図(
b)に示すように中心周波数がOH2と2400Hzと
の二つの信号になる。
Therefore, the frequency band shift circuit 10 shifts the frequency band of the received signal. In this example, in the frequency band shift circuit 10, the received signal (1200
H2) is given a 1200 Hz tone input. As a result, the received signal becomes as shown in Fig. 4(a).
The one whose center frequency was initially 1200H2 is shown in the same figure (
As shown in b), there are two signals with center frequencies of OH2 and 2400 Hz.

そして、この信号に対して一定の処理を施すことによっ
て中心周波数がOH2の信号成分を消去すれば、結果的
に中心周波数が2400Hzにシフトされたことになる
。そして、この2400LIZの信号は、上述した高群
受けの場合の受信信号と同じであるから、上記高群受け
と同じ処理操作が行なえ、半分の規模に縮小構成された
ROF13によって演算処理が行なわれる。
Then, if the signal component with the center frequency OH2 is eliminated by performing certain processing on this signal, the center frequency will be shifted to 2400 Hz as a result. Since the signal of this 2400 LIZ is the same as the received signal in the case of the high group receiver described above, the same processing operation as the above high group receiver can be performed, and the calculation processing is performed by the ROF 13 which is reduced in size to half. .

こうして、高群受けであっても、低群受けであっても受
信信号の復調動作を小規模なROFによって行なうこと
が出来る。なお、本発明では受信信号をシフトするため
に、周波数帯域シフト回路を余分に設ける必要があり、
この弁装置全体の構成が大規模になるように思われるが
、この周波数帯域シフト回路は簡単な構成のものが使用
できる反面、一般にROFは、従来は80段程度の構成
であったものが半分の40段程度の構成に規模縮小する
ことが可能となるので、装置全体の規模縮小という点で
は後者の方が大きなメリットを持つ。
In this way, the demodulation operation of the received signal can be performed by a small-scale ROF regardless of whether it is a high group reception or a low group reception. Note that in the present invention, in order to shift the received signal, it is necessary to provide an extra frequency band shift circuit.
The overall configuration of this valve device seems to be large-scale, but while a simple configuration can be used for this frequency band shift circuit, in general, the ROF has a conventional configuration of about 80 stages, but only half of the conventional configuration. Since it is possible to reduce the scale to a configuration of about 40 stages, the latter has a greater advantage in terms of reducing the scale of the entire device.

(8)発明の詳細 な説明したように、本発明によれば、復調装置の復調回
路前段に周波数帯域シフト回路を設け、受信信号の周波
数帯域を必要に応じてシフトさせ復調処理するようにし
たため、サンプリング周波数とキャリア周波数との比を
一定に調整することが出来るようになり、これによって
復調装置における演算規模を小さくすることが可能にな
る。
(8) As described in detail, according to the present invention, a frequency band shift circuit is provided before the demodulation circuit of the demodulation device, and the frequency band of the received signal is shifted as necessary for demodulation processing. , it becomes possible to adjust the ratio between the sampling frequency and the carrier frequency to a constant value, thereby making it possible to reduce the scale of calculation in the demodulator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の復調装置の基本構成を示す図、第2図
は本発明の一実施例に係る復調装置の構成を示す図、第
3図(a)、(b)は上記11WA装置に入力される受
信信号のサンプリング状態を示す図、第4図は上記復調
装置に用いられる周波数帯域シフト回路の作動を示す図
、第5図は従来の復調装置の基本構成を示す図、第6図
は上記従来の復調装置の内部構造を示す図である。 1.11・・・アナログ・デジタル変換器2.12・・
・復ll@路 3.13・・・ロールオフフィルタ 4.14・・・遅延回路   5,15・・・乗算器6
.16・・・演算部 10・・・・・・・・・周波数帯域シフト回路特許出願
人     富士通株式会社 82        氏       B暢O第35m 第4図
FIG. 1 is a diagram showing the basic configuration of a demodulation device of the present invention, FIG. 2 is a diagram showing the configuration of a demodulation device according to an embodiment of the present invention, and FIGS. 3(a) and (b) are the above-mentioned 11WA device. FIG. 4 is a diagram showing the operation of the frequency band shift circuit used in the demodulator, FIG. 5 is a diagram showing the basic configuration of the conventional demodulator, and FIG. The figure shows the internal structure of the conventional demodulator. 1.11...Analog-to-digital converter 2.12...
・Return 3.13... Roll-off filter 4.14... Delay circuit 5, 15... Multiplier 6
.. 16... Arithmetic unit 10... Frequency band shift circuit patent applicant Fujitsu Ltd. 82 Mr. BnobuO No. 35m Figure 4

Claims (1)

【特許請求の範囲】[Claims] 位相変調された受信信号を復調回路に入力し、復調出力
をロールオフフィルタを通し波形整形して等化器に入力
するデータ伝送システムにおいて、上記復調回路の前段
に周波数帯域シフト回路を設け、受信信号に対して所定
の乗算処理を施すことによりサンプリング周波数と復調
用キャリア周波数との比が一定の値になるようにしたこ
とを特徴とする復調装置。
In a data transmission system in which a phase-modulated received signal is input to a demodulation circuit, and the demodulated output is passed through a roll-off filter to shape the waveform and input to an equalizer, a frequency band shift circuit is provided before the demodulation circuit, and the reception A demodulation device characterized in that a ratio between a sampling frequency and a carrier frequency for demodulation becomes a constant value by performing predetermined multiplication processing on a signal.
JP5742585A 1985-03-20 1985-03-20 Demodulator Pending JPS61222349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5742585A JPS61222349A (en) 1985-03-20 1985-03-20 Demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5742585A JPS61222349A (en) 1985-03-20 1985-03-20 Demodulator

Publications (1)

Publication Number Publication Date
JPS61222349A true JPS61222349A (en) 1986-10-02

Family

ID=13055301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5742585A Pending JPS61222349A (en) 1985-03-20 1985-03-20 Demodulator

Country Status (1)

Country Link
JP (1) JPS61222349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269014A (en) * 1988-09-05 1990-03-08 Fujitsu Ltd Demodulation system
WO2003045026A1 (en) * 2001-11-20 2003-05-30 Sanyo Electric Co., Ltd. Radio reception apparatus, symbol timing control method, and symbol timing control program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166856A (en) * 1982-03-27 1983-10-03 Fujitsu Ltd Receiving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166856A (en) * 1982-03-27 1983-10-03 Fujitsu Ltd Receiving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269014A (en) * 1988-09-05 1990-03-08 Fujitsu Ltd Demodulation system
WO2003045026A1 (en) * 2001-11-20 2003-05-30 Sanyo Electric Co., Ltd. Radio reception apparatus, symbol timing control method, and symbol timing control program
US7149491B2 (en) 2001-11-20 2006-12-12 Sanyo Electric Co., Ltd. Radio reception apparatus symbol timing control method, and symbol timing control program

Similar Documents

Publication Publication Date Title
US4803700A (en) Method of, and demodulator for, digitally demodulating an SSB signal
US5872480A (en) Programmable down-sampler having plural decimators and modulator using same
JPH08181573A (en) Cascade connection integrator
JPH01108835A (en) Psk signal demodulation system
JPH11261659A (en) Digital signal transmission device
EP0015681A1 (en) Binary transversal filter
US4947408A (en) Digital carrier demodulator employing components working beyond normal limits
JP3226561B2 (en) FSK signal receiving circuit
EP0782259B1 (en) Digital center line filter
JPS61222349A (en) Demodulator
US5574450A (en) Synchronization adder circuit
JP2002300224A (en) Receiver
JP2721454B2 (en) Timing extraction method
JP2899160B2 (en) Demodulation / roll-off filter processing method
JPH0735847A (en) Reception circuit
JP2004201267A (en) Digital filter, its factor calculation apparatus and factor calculation method
JPH09135150A (en) Digital filter and receiving device
KR0124399B1 (en) Timing information generating device in baseband
JP2002271431A (en) Low-pass filter
JP2901427B2 (en) FM demodulator
SU1598186A1 (en) Device for receiving narrow-band frequency telegraphy signals
JP2001332972A (en) Device and method for processing signal
JPS62200849A (en) Demodulation system
JP3137410B2 (en) AM / FM direct receiver
JP2647191B2 (en) Channel separation device