JPS61221689A - Detector for radial rays - Google Patents
Detector for radial raysInfo
- Publication number
- JPS61221689A JPS61221689A JP60062122A JP6212285A JPS61221689A JP S61221689 A JPS61221689 A JP S61221689A JP 60062122 A JP60062122 A JP 60062122A JP 6212285 A JP6212285 A JP 6212285A JP S61221689 A JPS61221689 A JP S61221689A
- Authority
- JP
- Japan
- Prior art keywords
- rays
- light
- substrate
- detection
- scintillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Measurement Of Radiation (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、放射線検出装置に係わり、特に光検出素子の
機能を持たせて放射線検出感度の向上を図った放射線検
出装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detection device, and more particularly to a radiation detection device that has the function of a photodetection element to improve radiation detection sensitivity.
従来、X線等の放射線を検出するものとして、半導体か
らなる各種の放射線検出装置が用いられている。第4図
に半導体放射線検出装置の一例を示す。図中41はWコ
リメータ、42は/l電極、43はN−8r、44はA
LI電極、45はNaI(T2)シンチレータ、46は
電流増幅器をそれぞれ示している。この装置を、X線に
対して直角方向に多段に構成したものが、多チヤンネル
放射線検出装置であるが、主にX線CT(コンピュータ
・トモグラフィ)装置へ適用されるものである。Conventionally, various radiation detection devices made of semiconductors have been used to detect radiation such as X-rays. FIG. 4 shows an example of a semiconductor radiation detection device. In the figure, 41 is a W collimator, 42 is a /l electrode, 43 is N-8r, and 44 is an A
The LI electrode, 45 is a NaI (T2) scintillator, and 46 is a current amplifier. A multichannel radiation detection device is one in which this device is configured in multiple stages in a direction perpendicular to the X-rays, and is mainly applied to an X-ray CT (computed tomography) device.
これは、N−8i43及び電極42.44からなる検出
部で直接的にX線を検出するだけではなく、検出部を通
過したX線をざらに利用してNaI(TI>シンチレー
タ45を発光させ、この光(図中破線矢印で示す)を再
度検出部で受光して感度の増加をはかつている。従って
、検出部はX線検出及び光検出と云う2つの役割を有し
ている。This not only directly detects X-rays with a detection section consisting of N-8i 43 and electrodes 42, 44, but also roughly utilizes the X-rays that have passed through the detection section to cause the NaI (TI> scintillator 45 to emit light). This light (indicated by the broken line arrow in the figure) is received again by the detection section to increase the sensitivity.Therefore, the detection section has two roles: X-ray detection and photodetection.
この半導体放射線検出装置の問題点は、次の点にある。The problems with this semiconductor radiation detection device are as follows.
即ち、光に対する有感部分である空乏層′はALJ電極
44側のみに形成されており、AEi!極42側へ入射
する光に対しては殆ど感度がなく、光の利用効率が低い
点である。That is, the depletion layer', which is a part sensitive to light, is formed only on the ALJ electrode 44 side, and AEi! There is almost no sensitivity to light incident on the pole 42 side, and the light utilization efficiency is low.
第5図は、上記した問題点を改善した半導体放射線検出
装置の一例を示す断面図である(特開昭58−1181
63号公報)。この装置は、前記検出部のAfi電極4
2上にN′″a−3i :t−1(N型アモルファスシ
リコン層)51.a−3i :@(ノンドープアモルフ
ァスシリコン層)52及びAu電極53を積層したもの
である。この構造において、X線をN−3i43で検出
し、且つAu・ 電極44の下に形成される空乏層に
よりNaI(1℃)シンチレータ45からの光(図中破
線で示す)を受光する点は、第4図に示すものと同様で
ある。しかし、へ2電極42上に堆積されているアモル
ファスシリコン層51.52はショットキー型アモルフ
ァス光検出素子として動作し、NaI (TI)シンチ
レータ45からの光をざらに検出することができるため
に、第4図に示した半導体放射線検出装置を凌ぐ感度特
性を有する。FIG. 5 is a sectional view showing an example of a semiconductor radiation detection device that has improved the above-mentioned problems (Japanese Patent Laid-Open No. 58-1181
Publication No. 63). This device has an Afi electrode 4 of the detection section.
N′″a-3i :t-1 (N-type amorphous silicon layer) 51.a-3i :@(non-doped amorphous silicon layer) 52 and Au electrode 53 are laminated on top of 2. In this structure, The point where the N-3i 43 detects the line and receives the light (indicated by the broken line in the figure) from the NaI (1° C.) scintillator 45 by the depletion layer formed under the Au electrode 44 is shown in FIG. However, the amorphous silicon layer 51,52 deposited on the electrode 42 operates as a Schottky-type amorphous photodetector and roughly detects the light from the NaI (TI) scintillator 45. Therefore, it has sensitivity characteristics superior to the semiconductor radiation detection device shown in FIG.
しかしながら、この種の装置にあっても、次のような問
題があった。即ち、NaI (Tl)シンチレータ45
はX線を受けて発光するが、発光ピークは410[nm
l付近にあり、この波長での発光強度を100[%]と
すると、波長500[nmlにおいても30〜40[%
]径程度発光強度を有する。一方、上記ショットキー型
アモルファス光検出素子の光に対する感度は、500〜
600 [nmlにピークを持っている。従って、前記
シンチレータ45の発光の500 [nm1以上の光を
十分に利用できる特性となっている。これに対し、N−
8i 43に形成されているAul極44による空乏層
での光に対する感度は、一般に700〜800 [nm
l付近の波長にそのピークを持っているので、700
[nml以下の波長になると感度が大きく低下する傾向
にあり、500 [nml付近での感度は非常に小さい
ことが判っている。このため、前記シンチレータ発光に
よる光の利用度は非常に小さい。また、上記検出部に用
いているN−s+は高価であり、且つ大口径の結晶を作
成できないと云う問題があり、必然的に前記装置は小さ
くなる。ざらに、ショットキー電極に用いているAuが
高価であり、製造コストが高い等の問題があった。However, even this type of device has the following problems. That is, NaI (Tl) scintillator 45
emits light upon receiving X-rays, but the emission peak is at 410 [nm]
If the emission intensity at this wavelength is 100 [%], even at a wavelength of 500 [nml], it will be 30 to 40 [%].
]The luminous intensity is approximately the same as the diameter. On the other hand, the sensitivity of the Schottky type amorphous photodetecting element to light is 500~
600 [nml]. Therefore, the light emitted from the scintillator 45 with a wavelength of 500 nm or more can be fully utilized. On the other hand, N-
The sensitivity to light in the depletion layer due to the Au electrode 44 formed in the 8i 43 is generally 700 to 800 [nm
Since it has its peak at a wavelength around l, 700
It is known that the sensitivity tends to decrease significantly when the wavelength becomes less than [nml], and the sensitivity near 500 [nml is extremely low. Therefore, the degree of utilization of the light emitted by the scintillator is extremely small. Further, there are problems in that the N-s+ used in the detection section is expensive and cannot produce a crystal with a large diameter, so the device inevitably becomes smaller. Furthermore, the Au used for the Schottky electrode is expensive and the manufacturing cost is high.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、シンチレータと組合わせて使用した場
合に非常に高い検出感度を有し、また任意の大きさのも
のを廉価に実現することのできる放射線検出装置を提供
することにある。The present invention was made in consideration of the above circumstances, and its purpose is to have extremely high detection sensitivity when used in combination with a scintillator, and to realize a device of any size at a low cost. The object of the present invention is to provide a radiation detection device capable of detecting radiation.
本発明の骨子は、透光性基板の両面にアモルファス半導
体層を形成し、該半導体層に放射線及び光の検出素子と
しての機能を持たせることにある。The gist of the present invention is to form amorphous semiconductor layers on both sides of a light-transmitting substrate, and to provide the semiconductor layers with a function as a radiation and light detection element.
即ち本発明は、光検出素子の機能を持たせて検出感度の
向上をはかった放射線検出装置において、透光性基板と
、この基板の両面に形成されたアモルファス半導体層と
、上記基板及び半導体層に対しこれらに入射する放射線
の入射側と反対側に配置され、上記基板及び半導体層を
通過した放射線を照射されて光を放出するシンチレータ
とを具備し、前記半導体層に放射線検出素子と光検出素
子との両方の機能を兼備えさせるようにしたものである
。That is, the present invention provides a radiation detection device that has the function of a photodetection element to improve detection sensitivity, and includes a light-transmitting substrate, an amorphous semiconductor layer formed on both surfaces of this substrate, and a combination of the substrate and the semiconductor layer. A scintillator is disposed on the opposite side to the incident side of the radiation incident on the substrate and emits light when irradiated with the radiation that has passed through the substrate and the semiconductor layer, and the semiconductor layer includes a radiation detection element and a photodetector. It is designed to have both functions.
本発明によれば、アモルファス半導体層からなる検出部
で直接的にX線を検出するだけでなく、該検出部を通過
したX線をざらに利用してシンチレータを発光させ、こ
の光の大部分をダイレクトに再度検出部で受光して感度
の増大をはかることができる。このため、非常に優れた
感度特性を得ることができる。また、アモルファス半導
体装置非常に薄くて済み、且つプラズマ反応を利用して
いるために、基板の大きさの選択性に富んでおり、さら
に容易に形成することができる。このため、装置の製造
コストを低減することも可能である。According to the present invention, in addition to directly detecting X-rays with a detection section made of an amorphous semiconductor layer, the X-rays that have passed through the detection section are roughly utilized to cause a scintillator to emit light, and most of the light is emitted by the scintillator. It is possible to increase the sensitivity by directly receiving the light again at the detection unit. Therefore, very excellent sensitivity characteristics can be obtained. Furthermore, since the amorphous semiconductor device can be very thin and utilizes plasma reaction, it has excellent selectivity in substrate size and can be formed more easily. Therefore, it is also possible to reduce the manufacturing cost of the device.
以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.
第1図は本発明の一実施例に係わる放射線検出装置を示
す概略構成図である。図中10はX線検出素子及び光検
出検出素子の両方の機能を備えた検出部であり、この検
出部10は2枚のWコリメータ21間に配置されている
。なお、検出部10は後述する如<Afl基板11.ア
モルファスシリコン層12,13.14及びSnO2膜
15等から形成されている。検出部10のX線入射側と
反対側には、NaI (TJ2)シンチレータ25が配
置されている。シンチレータ25は検出部10を通過し
たX線の入射により光を発生するもので、その光は検出
部10に照射される。そして、検出部10の検出信号は
、電流増幅器26を介して出力されるものとなっている
。FIG. 1 is a schematic configuration diagram showing a radiation detection apparatus according to an embodiment of the present invention. In the figure, reference numeral 10 denotes a detection section having the functions of both an X-ray detection element and a photodetection detection element, and this detection section 10 is arranged between two W collimators 21. It should be noted that the detection unit 10 has an Afl substrate 11. It is formed of amorphous silicon layers 12, 13, 14, a SnO2 film 15, and the like. A NaI (TJ2) scintillator 25 is arranged on the side opposite to the X-ray incident side of the detection unit 10. The scintillator 25 generates light when X-rays that have passed through the detection section 10 are incident thereon, and the detection section 10 is irradiated with the light. The detection signal of the detection section 10 is outputted via the current amplifier 26.
さて、前記検出部10は第2図(a)(b)に示す如く
して形成される。まず、第2図(a)に示す如く透光性
基板としてのAJ2基板(導電性基板)11の両面にN
型a−s+:H(N型アモルファスシリコン層>12a
、12b、I型a−3i:H(ノンドープアモルファス
シリコン層)13a、13b及びP型a−3i :i(
P型アモルファスシリコン層>14a、14bをグロー
放電分解プラズマCvD法等により順次堆積形成する。Now, the detection section 10 is formed as shown in FIGS. 2(a) and 2(b). First, as shown in FIG. 2(a), N
Type a-s+:H (N-type amorphous silicon layer>12a
, 12b, I type a-3i:H (non-doped amorphous silicon layer) 13a, 13b and P type a-3i:i(
P-type amorphous silicon layers 14a and 14b are sequentially deposited by glow discharge decomposition plasma CVD method or the like.
次いで、第2図(b)に示す如<SnO2膜15a、1
5bをスパッタ或いは蒸着法等により堆積することによ
り形成される。Next, as shown in FIG. 2(b), <SnO2 films 15a, 1
It is formed by depositing 5b by sputtering, vapor deposition, or the like.
ここで、検出部10はX線入射側から見てSnO2膜
p−1−n (a−3i ) /AI/ n−1−p(
a−3i )/5n02構造となっており、A2基板1
1を介してPINダイオードの並列接続構造となってい
る。つまり、検出部10はX線入射側の検出部10bと
シンチレータ側の検出部10aとに分割形成されている
。なお、Ag基板11はそのシンチレータ側を特に鏡面
仕上げしているが、鏡面仕上げを両面に施しても何等差
支えない。また、Wコリメータ21の内面にAg等をコ
ーティングしておき、光の反射効率を上げるようにして
もよい。Here, the detection unit 10 is a SnO2 film when viewed from the X-ray incident side.
p-1-n (a-3i) /AI/ n-1-p(
a-3i)/5n02 structure, A2 substrate 1
It has a parallel connection structure of PIN diodes via 1. That is, the detection section 10 is divided into a detection section 10b on the X-ray incident side and a detection section 10a on the scintillator side. Note that although the scintillator side of the Ag substrate 11 is particularly mirror-finished, mirror-finishing may be applied to both surfaces without any problem. Furthermore, the inner surface of the W collimator 21 may be coated with Ag or the like to increase the light reflection efficiency.
本実施例において、p、i、nの各アモルファスシリコ
ン層の膜厚は各々100[入]以上、5[μm]以上、
100[人]以上としているが、アモルファスシリコン
層13に限ってはX線の検出分とシンチレータ発光によ
る光の検出分を考慮して、X線入射側のアモルファスシ
リコン層13bとシンチレータ側のアモルファスシリコ
ン層13aの膜厚を決定する。このアモルファスシリコ
ンのX線に対する吸収特性を考慮すると、X線入射側の
アモルファスシリコン層13bは5[μm]よりも厚く
、できれば10[μTrL]以上の膜厚としてX線の直
接検出弁をできるだけ多くした方がよい。また、AJ2
基板11は所望する放射線検出装置の大きさに応じて、
その形状及び大きさを選択すればよい。In this example, the film thicknesses of each of the p, i, and n amorphous silicon layers are 100 [μm] or more, 5 [μm] or more, and
Although the number is 100 [persons] or more, regarding the amorphous silicon layer 13, considering the amount of detected X-rays and the amount of light detected by scintillator emission, the amorphous silicon layer 13b on the X-ray incident side and the amorphous silicon on the scintillator side are Determine the thickness of layer 13a. Considering the absorption characteristics of amorphous silicon for X-rays, the amorphous silicon layer 13b on the X-ray incident side should be thicker than 5 [μm], preferably 10 [μTrL] or more, so that as many X-ray direct detection valves as possible are formed. It's better to do so. Also, AJ2
The substrate 11 is made of various materials depending on the size of the desired radiation detection device.
All you have to do is select its shape and size.
このような構造においては、X線は最初検出部10bに
入射し、ここでX線が検出される。次いで、検出部10
bを通過したX線はA2基板11を通過して検出部10
aに入射し、ここでもX線が検出される。そして、検出
部10b、10aを通過したX線はシンチレータ25に
入射し、シンチレータ25を発光させる。シンチレータ
25からの光は、第1図中に破線矢印で示す如く進み、
その大部分は検出部10aに入射し、一部の光はWコリ
メータ21で反射して検出部 10a。In such a structure, the X-rays first enter the detection section 10b, where they are detected. Next, the detection unit 10
The X-rays that have passed through b pass through the A2 substrate 11 and reach the detection unit 10.
a, and X-rays are detected here as well. Then, the X-rays that have passed through the detection units 10b and 10a are incident on the scintillator 25, causing the scintillator 25 to emit light. The light from the scintillator 25 travels as shown by the dashed arrow in FIG.
Most of the light enters the detection section 10a, and some of the light is reflected by the W collimator 21 and passes through the detection section 10a.
10bの横から入射する。この光を再度検出部10a、
10bが検出し、さらに検出部10aのAj2基板11
の表面に入射した光が反射し検出部10aで再度検出さ
れると云うX線検出のプロセスをとる。The light enters from the side of 10b. The detection unit 10a detects this light again.
10b detects, and furthermore, the Aj2 substrate 11 of the detection unit 10a
An X-ray detection process is used in which light incident on the surface of the X-ray is reflected and detected again by the detection unit 10a.
ここで、シンチレータ発光による光の大部分は検出部1
0aにダイレクトに入射するために、前記第4図及び第
5図に示した従来装置に比べてその光の利用効率が格段
に高くなる。ざらに、Na1(7℃)シンチレータ25
の発光波長は410[nmコ付近にピークがあるが、5
00[nml付近でもその発光強度は十分にあり、前記
検出部10の感度特性(ピーク500〜600nmであ
るが、400nm程度から感度を有している)から、そ
の光を十分に利用することができる。Here, most of the light emitted by the scintillator is transmitted to the detection unit 1.
Since the light is directly incident on 0a, the efficiency of using the light is much higher than that of the conventional devices shown in FIGS. 4 and 5. Roughly, Na1 (7℃) scintillator 25
The emission wavelength of has a peak around 410 nm, but
The light emission intensity is sufficient even in the vicinity of 00 nm, and the sensitivity characteristics of the detection unit 10 (the peak is 500 to 600 nm, but it has sensitivity from about 400 nm) makes it possible to fully utilize the light. can.
このように本実施例によれば、へ2基板11の両面にア
モルファスシリコンからなるX線及び光の検出部10a
、10bを設けることにより、X線の検出感度の大幅な
向上をはかり得る。即ち、X線に関しては従来装置と同
様若しくは若干低いが、光に対する感度は従来装置より
著しく向上するので、全体としての感度も向上すること
になる。As described above, according to this embodiment, the X-ray and light detection portions 10a made of amorphous silicon are provided on both sides of the second substrate 11.
, 10b, it is possible to significantly improve the X-ray detection sensitivity. That is, although the sensitivity to X-rays is the same as or slightly lower than that of the conventional device, the sensitivity to light is significantly improved compared to the conventional device, so the sensitivity as a whole is also improved.
また、プラズマCvD法を用いてアモルファスシリコン
を堆積するために、基板の形状及び大きさを任意に選ぶ
ことができる。さらに、高価なAU電極等を用いる必要
もない。このため、選択性に富んだ検出部を比較的容易
に形成することができ、放射線検出装置の製造コストを
低減し得る等の利点がある。Further, since amorphous silicon is deposited using the plasma CVD method, the shape and size of the substrate can be arbitrarily selected. Furthermore, there is no need to use expensive AU electrodes or the like. Therefore, it is possible to relatively easily form a detection section with high selectivity, and there are advantages such as being able to reduce the manufacturing cost of the radiation detection device.
第3図は他の実施例に係わる放射線検出装置を示す概略
構成図である。なお、第1図と同一部分には同一符号を
付して、その詳しい説明は省略する。この実施例が先に
説明した実施例と異なる点は、前記へ2基板の代りに、
絶縁性の透明基板を用いたことにある。即ち、石英ガラ
ス基板31の両面に透明導電膜としての5nO2111
32a。FIG. 3 is a schematic configuration diagram showing a radiation detection device according to another embodiment. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. The difference between this embodiment and the previously described embodiment is that instead of the two substrates described above,
The reason is that an insulating transparent substrate is used. That is, 5nO2111 as a transparent conductive film is coated on both sides of the quartz glass substrate 31.
32a.
32bがそれぞれ形成されている。これらの導電膜32
a、32b上に形成するのは、アモルファスシリコン層
12a、12b、 〜、14a。32b are formed respectively. These conductive films 32
Amorphous silicon layers 12a, 12b, . . . , 14a are formed on the layers 12a, 32b.
14b及びSnO2[115a、15bであり、先の実
施例と全く同様である。14b and SnO2 [115a, 15b, which are exactly the same as in the previous example.
このような構成であっても、先の実施例と同様な効果が
得られるのは勿論のことである。Of course, even with such a configuration, the same effects as in the previous embodiment can be obtained.
なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記放射線及び光の検出部構造としては
、PIN構造の代りに、ショットキー型やPN型として
もよい。また、放射線入射側から見てn + I)/A
λ/ptn構造であってもよい。さらに、これらを積層
させたタンデム構造としでも有効である。また、放射線
入射側から見て、ショットキー型/AR/ntp型或い
はこれと逆の構造としても良く、これら種々の組合わせ
であってもよい。ざらに、I型a−8t:1−1(ノン
ドープアモルファスシリコン層)にP、B、C。Note that the present invention is not limited to the embodiments described above. For example, the structure of the radiation and light detection section may be a Schottky type or a PN type instead of a PIN structure. Also, when viewed from the radiation incidence side, n + I)/A
It may be a λ/ptn structure. Furthermore, a tandem structure in which these are laminated is also effective. Further, when viewed from the radiation incident side, the structure may be a Schottky type/AR/ntp type or the opposite structure, or various combinations thereof may be used. Generally, P, B, and C are added to I type a-8t:1-1 (non-doped amorphous silicon layer).
Zn、(3e等の微量ドーピングを行っても本発明は有
効である。The present invention is effective even if a small amount of Zn, (3e, etc.) is doped.
また、透明導電膜としては、SnO2に限るものではな
く、ITO,I n203を用いてもよい。Further, the transparent conductive film is not limited to SnO2, and ITO, In203 may also be used.
ざらに、検出部構造としてショットキー型とした場合に
は、AU、Pt、Ti、Ta、 Pd等仕事関数の高い
金属を薄くして透明導電膜としても有効である。また、
導電性基板としては、A℃基板の代りにはBe、C等安
定で且つ放射線を透過する金属であれば用いてもよい。In general, when a Schottky type is used as the detection part structure, it is also effective as a transparent conductive film by thinning a metal with a high work function such as AU, Pt, Ti, Ta, or Pd. Also,
As the conductive substrate, any metal such as Be or C that is stable and transmits radiation may be used instead of the A° C. substrate.
同様に、絶縁性基板は石英基板に限らず、放射線を透過
するものであればよい。また、基板を放射線入射側に対
して直角方向に配置しているが、基板を水平方向に配置
することも可能である。ざらに、シンチレータやコリメ
ータ等の材質及び形状は、仕様に応じて適宜変更可能で
ある。その他、本発明の要旨を逸脱しない範囲で、種々
変形して実施することができる。Similarly, the insulating substrate is not limited to a quartz substrate, and may be any substrate that transmits radiation. Further, although the substrate is arranged in a direction perpendicular to the radiation incident side, it is also possible to arrange the substrate in a horizontal direction. In general, the materials and shapes of the scintillator, collimator, etc. can be changed as appropriate depending on the specifications. In addition, various modifications can be made without departing from the gist of the present invention.
・ 第1図は本発明の一実施例に係わる放射線検出装置
を示す概略構成図、第2図(a)(b)は上記装置に使
用した検出部の製造工程を示す断面図、第3図は他の実
施例に係わる放射線検出装置を示す概略構成図、第4図
及び第5図はそれぞれ従来装置を示す概略構成図である
。
10.10a、10b−・・検出部、11・/’l基板
(透光性導電性基板)、12・・・N型アモルファスシ
リコン層、13・・・ノンドープアモルファスシリコン
層、14・・・P型アモルファスシリコン層、15.3
2・・・SnO2膜、2l−Wlリメータ、26・・・
電流増幅器、31・・・石英基板(透光性絶縁性基板)
。
出願人代理人 弁理士 鈴江武彦
X廿
X廿 X響- Fig. 1 is a schematic configuration diagram showing a radiation detection device according to an embodiment of the present invention, Fig. 2 (a) and (b) are sectional views showing the manufacturing process of the detection part used in the above device, and Fig. 3 1 is a schematic configuration diagram showing a radiation detection device according to another embodiment, and FIGS. 4 and 5 are schematic configuration diagrams each showing a conventional device. 10.10a, 10b--detection section, 11/'l substrate (transparent conductive substrate), 12...N-type amorphous silicon layer, 13...non-doped amorphous silicon layer, 14...P Type amorphous silicon layer, 15.3
2...SnO2 film, 2l-Wl remeter, 26...
Current amplifier, 31...quartz substrate (transparent insulating substrate)
. Applicant's agent Patent attorney Takehiko Suzue
Claims (5)
ルファス半導体層と、上記基板及び半導体層に対しこれ
らに入射する放射線の入射側と反対側に配置され、上記
基板及び半導体層を通過した放射線を照射されて光を放
出するシンチレータとを具備し、前記半導体層は放射線
検出素子と光検出素子との両方の機能を兼備えたもので
あることを特徴とする放射線検出装置。(1) A translucent substrate, an amorphous semiconductor layer formed on both surfaces of the substrate, and an amorphous semiconductor layer disposed on the side opposite to the incident side of radiation incident on the substrate and semiconductor layer, 1. A radiation detection device comprising: a scintillator that emits light upon being irradiated with radiation that has passed therethrough; and the semiconductor layer has the functions of both a radiation detection element and a photodetection element.
特許請求の範囲第1項記載の放射線検出装置。(2) The radiation detection device according to claim 1, wherein the substrate is a conductive substrate.
成したものであることを特徴とする特許請求の範囲第1
項記載の放射線検出装置。(3) The substrate is an insulating substrate with transparent conductive films formed on both sides.
The radiation detection device described in Section 1.
置してなることを特徴とする特許請求の範囲第1項記載
の放射線検出装置。(4) The radiation detection device according to claim 1, wherein the main surface of the substrate is arranged in a direction perpendicular to the incident radiation.
ことを特徴とする特許請求の範囲第1項記載の放射線検
出装置。(5) The radiation detection device according to claim 1, wherein the semiconductor layer has a PIN structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60062122A JPS61221689A (en) | 1985-03-28 | 1985-03-28 | Detector for radial rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60062122A JPS61221689A (en) | 1985-03-28 | 1985-03-28 | Detector for radial rays |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61221689A true JPS61221689A (en) | 1986-10-02 |
JPH0562712B2 JPH0562712B2 (en) | 1993-09-09 |
Family
ID=13190938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60062122A Granted JPS61221689A (en) | 1985-03-28 | 1985-03-28 | Detector for radial rays |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61221689A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179980A (en) * | 2004-12-20 | 2006-07-06 | Hamamatsu Photonics Kk | Imaging apparatus and imaging system |
JP2007170908A (en) * | 2005-12-20 | 2007-07-05 | Shimadzu Corp | Radiation detector and imaging device using the same |
US7615757B2 (en) | 2003-09-30 | 2009-11-10 | Hitachi, Ltd. | Semiconductor radiological detector and semiconductor radiological imaging apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015104439B4 (en) | 2015-03-24 | 2019-02-21 | Bayerische Motoren Werke Aktiengesellschaft | Electrochromic element with improved electrolyte layer, process for its production, vehicle glazing and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55142262A (en) * | 1979-04-24 | 1980-11-06 | Toshiba Corp | Semiconductor radiant ray detector |
JPS56167240A (en) * | 1980-05-29 | 1981-12-22 | Toshiba Corp | Photoelectric converter |
JPS58118163A (en) * | 1982-01-05 | 1983-07-14 | Toshiba Corp | Semiconductor radiation detector |
-
1985
- 1985-03-28 JP JP60062122A patent/JPS61221689A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55142262A (en) * | 1979-04-24 | 1980-11-06 | Toshiba Corp | Semiconductor radiant ray detector |
JPS56167240A (en) * | 1980-05-29 | 1981-12-22 | Toshiba Corp | Photoelectric converter |
JPS58118163A (en) * | 1982-01-05 | 1983-07-14 | Toshiba Corp | Semiconductor radiation detector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7615757B2 (en) | 2003-09-30 | 2009-11-10 | Hitachi, Ltd. | Semiconductor radiological detector and semiconductor radiological imaging apparatus |
JP2006179980A (en) * | 2004-12-20 | 2006-07-06 | Hamamatsu Photonics Kk | Imaging apparatus and imaging system |
JP2007170908A (en) * | 2005-12-20 | 2007-07-05 | Shimadzu Corp | Radiation detector and imaging device using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0562712B2 (en) | 1993-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150276947A1 (en) | Subnanosecond scintillation detector | |
US8816464B2 (en) | Photodiode and photodiode array with improved performance characteristics | |
JP2686263B2 (en) | Radiation detection element | |
Canfield et al. | Silicon photodiodes with integrated thin-film filters for selective bandpasses in the extreme ultraviolet | |
JPH0252995B2 (en) | ||
WO2007113898A1 (en) | Radiation detector | |
JP6558676B2 (en) | Radiation detection element and radiation detection apparatus | |
JPS61221689A (en) | Detector for radial rays | |
Lorenz et al. | Fast readout of plastic and crystal scintillators by avalanche photodiodes | |
JPS61259577A (en) | Radiation detector | |
US6130431A (en) | Monolithic pattern-sensitive detector | |
Baertsch et al. | An Ag–GaAs Schottky‐Barrier Ultraviolet Detector | |
JP2594966B2 (en) | Radiation detecting element block and method of manufacturing the same | |
JPH01269083A (en) | Radiant ray detecting element | |
US20240258440A1 (en) | Multilayer antireflection coatings on textured surface for back illuminated silicon photomultiplier | |
JPH05335613A (en) | Ultraviolet-ray receiving device and its manufacture | |
JPS58118163A (en) | Semiconductor radiation detector | |
JPH0738138A (en) | Ultraviolet sensor | |
Wang et al. | New concepts for scintillator/HgI/sub 2/gamma ray spectroscopy | |
JPS6049281A (en) | Radiation measuring element | |
US20230327039A1 (en) | Light detection device | |
JPS58182573A (en) | Radiation detector | |
TW202316642A (en) | Photodiode which comprises a light-absorbing substrate, a first electrode portion, a second electrode portion, an anti-reflection layer, and a distributed Bragg reflection layer | |
Ferenc | A novel photosensor concept | |
JPS602788B2 (en) | Multi-channel semiconductor radiation detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |