TW202316642A - Photodiode which comprises a light-absorbing substrate, a first electrode portion, a second electrode portion, an anti-reflection layer, and a distributed Bragg reflection layer - Google Patents

Photodiode which comprises a light-absorbing substrate, a first electrode portion, a second electrode portion, an anti-reflection layer, and a distributed Bragg reflection layer Download PDF

Info

Publication number
TW202316642A
TW202316642A TW110137072A TW110137072A TW202316642A TW 202316642 A TW202316642 A TW 202316642A TW 110137072 A TW110137072 A TW 110137072A TW 110137072 A TW110137072 A TW 110137072A TW 202316642 A TW202316642 A TW 202316642A
Authority
TW
Taiwan
Prior art keywords
light
semiconductor region
reflection layer
absorbing substrate
distributed bragg
Prior art date
Application number
TW110137072A
Other languages
Chinese (zh)
Other versions
TWI802032B (en
Inventor
陳世綱
張智揚
許政義
Original Assignee
鼎元光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鼎元光電科技股份有限公司 filed Critical 鼎元光電科技股份有限公司
Priority to TW110137072A priority Critical patent/TWI802032B/en
Publication of TW202316642A publication Critical patent/TW202316642A/en
Application granted granted Critical
Publication of TWI802032B publication Critical patent/TWI802032B/en

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

The present invention discloses a photodiode, which comprises: a light-absorbing substrate, a first electrode portion, a second electrode portion, an anti-reflection layer, and a distributed Bragg reflection layer. The anti-reflection layer is arranged to receive light entering the light-absorbing substrate, and the distributed Bragg reflection layer is arranged to reflect light passing through the light-absorbing substrate to be emitted from the light-absorbing substrate back into the light-absorbing substrate in order to increase the photo current and the spectral sensitivity of the photodiode. The light-absorbing substrate has a top surface and a bottom surface that are opposite to each other and the light-absorbing substrate includes a first semiconductor region, a second semiconductor region and a third region. The first semiconductor region and the semiconductor region are each in contact with the third region, and the first semiconductor region and the second semiconductor region are separated by the third region. The first semiconductor region and the second semiconductor region have opposite types of conductivity. The distributed Bragg reflection layer is formed by stacking multiple layers of dielectric materials. The anti-reflection layer is arranged on the top surface and in contact with the first semiconductor region, and the distributed Bragg reflection layer is arranged on the bottom surface and in contact with the second semiconductor region; or alternatively, the anti-reflection layer is arranged on the bottom surface and in contact with the second semiconductor region, and the distributed Bragg reflection layer is arranged on the top surface and in contact with the first semiconductor region.

Description

收光二極體Photodiode

本發明係有關一種收光二極體,特別是一種表面具有分散式布拉格反射層的收光二極體。The invention relates to a light-receiving diode, in particular to a light-receiving diode with a distributed Bragg reflection layer on the surface.

收光二極體(photodiode)是將光訊號轉變為電訊號的半導體器件,可應用在可見光、紅外光、紫外光的偵測上。一些光學雷達(LIDAR)系統中的接收器中利用收光二極體來接收由系統所發出、碰到目標物所反射回的光線,並將之轉換為電訊號,供系統由光線發射與接收的時間差而計算目標物的距離、深度或範圍。A photodiode is a semiconductor device that converts light signals into electrical signals, and can be used in the detection of visible light, infrared light, and ultraviolet light. The receiver in some optical radar (LIDAR) systems uses light-receiving diodes to receive the light emitted by the system and reflected back when it hits the target, and converts it into an electrical signal for the system to transmit and receive from the light. Calculate the distance, depth or range of the target by using the time difference.

一些非侵入式的血氧濃度測量儀器則利用了紅光及紅外光之光源以及收光二極體。由於含氧血紅素與缺氧血紅素對於紅光與紅外光有較大的吸收率差異,利用紅光與紅外光穿透皮膚組織與血管,並檢測經反射後的光強度變化,可計算出血氧濃度。因此,收光二極體對於紅光與紅外光波段之靈敏度是影響血氧濃度測量準確度的關鍵因素。Some non-invasive blood oxygen concentration measuring instruments utilize red and infrared light sources and light-receiving diodes. Since oxygen-containing hemoglobin and oxygen-deficient hemoglobin have a large absorption rate difference for red light and infrared light, using red light and infrared light to penetrate skin tissue and blood vessels, and detecting changes in light intensity after reflection, it can be calculated blood oxygen concentration. Therefore, the sensitivity of light-receiving diodes to red light and infrared light bands is a key factor affecting the accuracy of blood oxygen concentration measurement.

當光線進入收光二極體後,光子會在收光二極體內的空乏區被吸收,並激發出電子電動對。該些載流子經由飄移與擴散後會產生光電流。然而,部分未被吸收的光線將會穿透收光二極體離開而無法產生響應。由於習知的收光二極體在紅外光波段的光電流及光譜感度較弱,因此用於測量血氧濃度時效果不盡理想,存有待改進之處。When the light enters the light-receiving diode, the photon will be absorbed in the depletion region in the light-receiving diode, and the electron electrokinetic pair will be excited. These carriers will generate photocurrent after drifting and diffusing. However, part of the unabsorbed light will pass through the light-receiving diode and leave without generating a response. Due to the weak photocurrent and spectral sensitivity of conventional light-receiving diodes in the infrared light band, the effect when used to measure blood oxygen concentration is not satisfactory, and there is room for improvement.

因此,本發明之發明人思索並設計出一種收光二極體,以改進習知技術的不足之處,增進產業利用性。Therefore, the inventor of the present invention conceived and designed a light-receiving diode to improve the deficiencies of the conventional technology and enhance industrial applicability.

為了達成上述目的,本發明使用之技術手段為提供一種收光二極體,包括:一光吸收基板,該光吸收基板具有互為背側之頂側表面及底側表面,該光吸收基板上具有一第一半導體區域及一第二半導體區域以及一第三區域,第一半導體區域與該第二半導體區域分別接觸該第三區域,第一半導體區域與該第二半導體區域係由該第三區域相隔離,該第一半導體區域與該第二半導體區域具有相反的導電類型;一抗反射層,以及一分散式布拉格反射層,係由多層介電材料膜堆疊形成;其中,該抗反射層係設置於該頂側表面並接觸該第一半導體區域,該分散式布拉格反射層係設置於該底側表面接觸該第二半導體區域,或者,該抗反射層係設置於該底側表面並接觸該第二半導體區域,該分散式布拉格反射層係設置於該頂側表面並接觸該第一半導體區域;其中,該抗反射層係設置成接收一光線進入該光吸收基板,該分散式布拉格反射層設置成將穿過該光吸收基板而欲自該光吸收基板射出之光線反射回該光吸收基板。In order to achieve the above-mentioned purpose, the technical means used in the present invention is to provide a light-receiving diode, including: a light-absorbing substrate, the light-absorbing substrate has a top surface and a bottom surface that are the back sides of each other, and the light-absorbing substrate has a A first semiconductor region, a second semiconductor region and a third region, the first semiconductor region and the second semiconductor region respectively contact the third region, the first semiconductor region and the second semiconductor region are formed by the third region Separated from each other, the first semiconductor region and the second semiconductor region have opposite conductivity types; an antireflection layer and a distributed Bragg reflection layer are formed by stacking multiple layers of dielectric material films; wherein the antireflection layer is disposed on the top surface and contacting the first semiconductor region, the distributed Bragg reflection layer is disposed on the bottom surface contacting the second semiconductor region, or the anti-reflection layer is disposed on the bottom surface and contacts the In the second semiconductor region, the distributed Bragg reflection layer is arranged on the top surface and contacts the first semiconductor region; wherein, the anti-reflection layer is arranged to receive a light entering the light-absorbing substrate, and the distributed Bragg reflection layer It is arranged to reflect back to the light-absorbing substrate the light passing through the light-absorbing substrate and intended to exit from the light-absorbing substrate.

在本發明的收光二極體之一實施例中,該第一半導體區域為p型半導體,該第二半導體區域為n型半導體。In one embodiment of the light receiving diode of the present invention, the first semiconductor region is a p-type semiconductor, and the second semiconductor region is an n-type semiconductor.

在本發明的收光二極體之一實施例中,該第一半導體區域為n型半導體,該第二半導體區域為p型半導體。In one embodiment of the light receiving diode of the present invention, the first semiconductor region is an n-type semiconductor, and the second semiconductor region is a p-type semiconductor.

在本發明的收光二極體之一實施例中,該分散式布拉格反射層的厚度為2µm至30µmIn one embodiment of the light receiving diode of the present invention, the thickness of the distributed Bragg reflection layer is 2 μm to 30 μm

在本發明的收光二極體之一實施例中,該抗反射層含有氮化矽。In one embodiment of the light receiving diode of the present invention, the anti-reflection layer contains silicon nitride.

在本發明的收光二極體之一實施例中,該分散式布拉格反射層的厚度為3µm。In one embodiment of the light receiving diode of the present invention, the thickness of the distributed Bragg reflection layer is 3 μm.

本發明之收光二極體利用分散式布拉格反射層將穿過該光吸收基板欲自該光吸收基板射出之光線反射回光吸收基板,減少了光損失,提升了光電流及光譜感度。在一個實施例中,該分散式布拉格反射層4的厚度為2µm至30µm,對於900nm至1000nm的紅外光波段,可達95%至99%的反射率,提升了收光二極體對於紅外光波段的光電流及光譜感度,改進了先前技術中的收光二極體在紅外光波段的光電流及光譜感度較弱的問題,增加了收光二極體的感測性能(例如血氧濃度檢測)與利用性。The light-receiving diode of the present invention uses a distributed Bragg reflection layer to reflect light passing through the light-absorbing substrate to be emitted from the light-absorbing substrate back to the light-absorbing substrate, thereby reducing light loss and improving photocurrent and spectral sensitivity. In one embodiment, the thickness of the distributed Bragg reflective layer 4 is 2 μm to 30 μm, and for the infrared light band of 900 nm to 1000 nm, the reflectivity can reach 95% to 99%, which improves the performance of the light receiving diode for the infrared light band. The photocurrent and spectral sensitivity of the light-receiving diodes in the prior art are improved, and the photocurrent and spectral sensitivity of the light-receiving diodes in the infrared light band are weak, and the sensing performance of the light-receiving diodes (such as blood oxygen concentration detection) and availability.

有關本發明的詳細說明和技術內容,配合圖式說明如下,然而所附圖式僅提供參考與說明用,以幫助理解本發明,非用以限制本發明之範圍。The detailed description and technical content of the present invention are described below with the drawings. However, the attached drawings are only provided for reference and description to help understand the present invention, and are not intended to limit the scope of the present invention.

請參閱第1A圖至第2B圖, 收光二極體100包括:一光吸收基板1、一第一電極部21,一第二電極部22、一抗反射層3以及一分散式布拉格反射層4。Please refer to Figure 1A to Figure 2B, the light receiving diode 100 includes: a light absorbing substrate 1, a first electrode part 21, a second electrode part 22, an anti-reflection layer 3 and a distributed Bragg reflection layer 4 .

該光吸收基板1具有互為背側之頂側表面S1及底側表面S2。該光吸收基板1上具有一第一半導體區域Rd1及一第二半導體區域Rd2以及一第三區域Rin。第一半導體區域Rd1與該第二半導體區域Rd2分別接觸該第三區域Rin,第一半導體區域Rd1與該第二半導體區域Rd2係由該第三區域Rin相隔離。本實施例中,該光吸收基板1為矽基板。The light-absorbing substrate 1 has a top surface S1 and a bottom surface S2 which are back sides of each other. The light absorbing substrate 1 has a first semiconductor region Rd1 , a second semiconductor region Rd2 and a third region Rin. The first semiconductor region Rd1 and the second semiconductor region Rd2 respectively contact the third region Rin, and the first semiconductor region Rd1 and the second semiconductor region Rd2 are separated by the third region Rin. In this embodiment, the light absorbing substrate 1 is a silicon substrate.

該第一半導體區域Rd1與第二半導體區域Rd2為該光吸收基板1中摻雜較高濃度的雜質的區域,而該第三區域Rin為輕度摻雜的區域。該第一半導體區域Rd1與該第二半導體區域Rd2具有相反的導電類型,摻雜有導電類型相反的雜質。例如:該第一半導體區域Rd1摻雜施體雜質(例如週期表VA族元素)而成為n型半導體,第二半導體區域Rd2摻雜受體雜質(例如週期表IIIA族元素)而成為p型半導體。或者,該第二半導體區域Rd2摻雜施體雜質而成為n型半導體,第一半導體區域Rd1摻雜受體雜質而成為p型半導體。The first semiconductor region Rd1 and the second semiconductor region Rd2 are regions doped with higher concentration of impurities in the light-absorbing substrate 1 , and the third region Rin is a lightly doped region. The first semiconductor region Rd1 and the second semiconductor region Rd2 have opposite conductivity types, and are doped with impurities of opposite conductivity types. For example: the first semiconductor region Rd1 is doped with donor impurities (such as group VA elements of the periodic table) to become an n-type semiconductor, and the second semiconductor region Rd2 is doped with acceptor impurities (such as group IIIA elements of the periodic table) to become a p-type semiconductor . Alternatively, the second semiconductor region Rd2 is doped with donor impurities to become an n-type semiconductor, and the first semiconductor region Rd1 is doped with acceptor impurities to become a p-type semiconductor.

該第一電極部21係接觸該第一半導體區域Rd1,該第二電極部22係接觸該第二半導體區域Rd2。該收光二極體100可透過該第一電極部21與該第二電極部22連接至一電路或接受一外加電壓。第一電極部21與第二電極部22的材質可為適合與第一半導體區域Rd1及第二半導體區域Rd2形成歐姆接觸及導電的金屬或合金。第一電極部21與第二電極部22可採蒸鍍、濺鍍、電鍍等方式而形成。第一電極部21與第二電極部22各自可為連續的圖案。第一電極部21與第二電極部22可設於該光吸收基板1的同側或不同側。於本發明圖式所示的實施例中,該第一電極部21與該第二電極部22均設置於頂側表面S1。該第二電極部22可利用挖接孔(via)接觸該第二半導體區域Rd2(該挖接孔並非位於本發明圖式中所採的剖面,圖式中未示出)。The first electrode part 21 is in contact with the first semiconductor region Rd1, and the second electrode part 22 is in contact with the second semiconductor region Rd2. The light receiving diode 100 can be connected to a circuit or receive an external voltage through the first electrode portion 21 and the second electrode portion 22 . The material of the first electrode portion 21 and the second electrode portion 22 can be a metal or an alloy suitable for forming ohmic contact and conducting electricity with the first semiconductor region Rd1 and the second semiconductor region Rd2 . The first electrode portion 21 and the second electrode portion 22 can be formed by vapor deposition, sputtering, electroplating, and the like. Each of the first electrode part 21 and the second electrode part 22 can be a continuous pattern. The first electrode portion 21 and the second electrode portion 22 can be disposed on the same side or different sides of the light absorbing substrate 1 . In the embodiment shown in the figures of the present invention, the first electrode portion 21 and the second electrode portion 22 are both disposed on the top surface S1. The second electrode portion 22 can contact the second semiconductor region Rd2 through a via (the via is not located in the section taken in the drawings of the present invention, and is not shown in the drawings).

抗反射層3及分散式布拉格反射層4係各自設置於該頂側表面S1或該底側表面S2,各自接觸該第一半導體區域Rd1或該第二半導體區域Rd2。該收光二極體100則以該抗反射層3所在的面做為收光面,可用晶粒(光吸收基板1)的正面(頂側表面S1)或背面(底側表面S2)收光。如第1A圖及第2A圖所示,該抗反射層3係設置於該頂側表面S1並接觸該第一半導體區域Rd1,該分散式布拉格反射層4係係設置於該底側表面S2並接觸該第二半導體區域Rd2。亦可如第1B圖及第2B圖所示,該抗反射層3係設置於該底側表面S2接觸該第二半導體區域Rd2,該分散式布拉格反射層4係設置於該頂側表面S1並接觸該第一半導體區域Rd1。The anti-reflection layer 3 and the distributed Bragg reflection layer 4 are respectively disposed on the top surface S1 or the bottom surface S2 , respectively contacting the first semiconductor region Rd1 or the second semiconductor region Rd2 . The light-receiving diode 100 uses the surface where the anti-reflection layer 3 is located as the light-receiving surface, and can be used to receive light from the front (top surface S1 ) or back (bottom surface S2 ) of the crystal grain (light-absorbing substrate 1 ). As shown in Figure 1A and Figure 2A, the anti-reflection layer 3 is disposed on the top surface S1 and contacts the first semiconductor region Rd1, and the distributed Bragg reflection layer 4 is disposed on the bottom surface S2 and contacts the first semiconductor region Rd1. contact the second semiconductor region Rd2. Also as shown in FIG. 1B and FIG. 2B, the anti-reflection layer 3 is disposed on the bottom surface S2 in contact with the second semiconductor region Rd2, and the distributed Bragg reflection layer 4 is disposed on the top surface S1 and contact the first semiconductor region Rd1.

如第2A圖與第2B圖所示,該抗反射層3係設置成接收一光線L,並使該光線L進入該光吸收基板1。光線L通過該抗反射層3進入光吸收基板1時,會有一部分(<1%)光線Lr被該抗反射層3反射。本實施例中,進入該光吸收基板1的光線L1會在該光吸收基板1內的光吸收區域中被吸收並產生光電流。該分散式布拉格反射層4設置將穿過該光吸收基板1而欲自該光吸收基板1射出的光線L2反射回光吸收基板1內,即光線L2r。需說明的是,圖式中的光線角度僅為示意,並未依光線實際上所經過介質之折射率按比例繪製。由於光線L2r被反射回該光吸收基板1而減少了光損失,因此提升了收光二極體100的光電流及光譜感度。As shown in FIG. 2A and FIG. 2B , the anti-reflection layer 3 is configured to receive a light L and make the light L enter the light-absorbing substrate 1 . When the light L passes through the anti-reflection layer 3 and enters the light-absorbing substrate 1 , a part (<1%) of the light Lr is reflected by the anti-reflection layer 3 . In this embodiment, the light L1 entering the light-absorbing substrate 1 will be absorbed in the light-absorbing region of the light-absorbing substrate 1 to generate photocurrent. The distributed Bragg reflection layer 4 is configured to reflect the light L2 that passes through the light-absorbing substrate 1 and intends to exit the light-absorbing substrate 1 back into the light-absorbing substrate 1 , that is, the light L2r. It should be noted that the light angles in the drawings are only for illustration, and are not drawn to scale according to the refractive index of the medium through which the light actually passes. Since the light L2r is reflected back to the light-absorbing substrate 1 to reduce light loss, the photocurrent and spectral sensitivity of the light-receiving diode 100 are improved.

抗反射層3的材質可為氮化矽(SiNx),以電漿輔助化學氣相沉積(PECVD)成型於該光吸收基板1上。The material of the anti-reflection layer 3 can be silicon nitride (SiNx), formed on the light-absorbing substrate 1 by plasma-assisted chemical vapor deposition (PECVD).

本實施例中,分散式布拉格反射層(distributed Bragg reflector)4由多層介電材料膜堆疊形成。較佳地實施例中,該分散式布拉格反射層4的厚度為2µm至30µm。第3圖中展示了本發明的一個實施例之收光二極體100對於波長在300nm~1200nm範圍內之光線的反射率,此實施例中,分散式布拉格反射層4的厚度為3µm,對於900nm至1000nm的紅外光波段,反射率可達95%至99%,因此收光二極體100對於此波段的光電流及光譜感度可進一步提升。In this embodiment, a distributed Bragg reflector (distributed Bragg reflector) 4 is formed by stacking multiple layers of dielectric material films. In a preferred embodiment, the thickness of the distributed Bragg reflection layer 4 is 2 µm to 30 µm. The 3rd figure has shown the reflectivity of the light receiving diode 100 of an embodiment of the present invention for the light in the range of 300nm~1200nm wavelength, in this embodiment, the thickness of the distributed Bragg reflection layer 4 is 3 μm, for 900nm In the infrared band to 1000nm, the reflectivity can reach 95% to 99%, so the photocurrent and spectral sensitivity of the light receiving diode 100 for this band can be further improved.

以上所述僅為本發明之較佳可行實施例,非因此即侷限本發明之專利範圍,舉凡運用本發明說明書及圖式內容所為之等效結構變化,均理同包含於本發明之範圍內。The above description is only a preferred feasible embodiment of the present invention, and therefore does not limit the patent scope of the present invention. For example, all equivalent structural changes made by using the description and drawings of the present invention are all included in the scope of the present invention. .

10 0:收光二極體 1:光吸收基板 Rd1:第一半導體區域 Rd2:第二半導體區域 Rin:第三區域 S1:頂側表面 S2:底側表面 21:第一電極部 22:第二電極部 3:抗反射層 4:分散式布拉格反射層 L:光線 Lr:光線 L1:光線 L2:光線 L2r:光線10 0: light-receiving diode 1: light-absorbing substrate Rd1: first semiconductor region Rd2: second semiconductor region Rin: third region S1: top surface S2: bottom surface 21: first electrode portion 22: second electrode Part 3: Anti-reflective layer 4: Distributed Bragg reflective layer L: Light Lr: Light L1: Light L2: Light L2r: Light

第1A圖為本發明之收光二極體之一實施例示意圖,其中抗反射層與第一半導體區域接觸,分散式布拉格反射層與第二半導體區域接觸。 第1B圖為本發明之收光二極體之一另實施例示意圖,其中抗反射層與第二半導體區域接觸,分散式布拉格反射層與第一半導體區域接觸。 第2A圖為第1A圖所示實施例之收光二極體之光線接收示意圖。 第2B圖為第1B圖所示實施例之收光二極體之光線接收示意圖。 第3圖顯示本發明實施例中之收光二極體對於波長在300nm-1200nm範圍內之光線的反射率。FIG. 1A is a schematic diagram of an embodiment of a light-receiving diode of the present invention, wherein the anti-reflection layer is in contact with the first semiconductor region, and the distributed Bragg reflection layer is in contact with the second semiconductor region. Fig. 1B is a schematic diagram of another embodiment of the light-receiving diode of the present invention, wherein the anti-reflection layer is in contact with the second semiconductor region, and the distributed Bragg reflection layer is in contact with the first semiconductor region. Fig. 2A is a schematic diagram of the light receiving diode of the embodiment shown in Fig. 1A. Fig. 2B is a schematic diagram of the light receiving diode of the embodiment shown in Fig. 1B. Fig. 3 shows the reflectance of the light-receiving diode in the embodiment of the present invention for light with a wavelength in the range of 300nm-1200nm.

100:收光二極體 100: light receiving diode

1:光吸收基板 1: Light absorbing substrate

Rd1:第一半導體區域 Rd1: first semiconductor region

Rd2:第二半導體區域 Rd2: second semiconductor region

Rin:第三區域 Rin: the third area

S1:頂側表面 S1: top side surface

S2:底側表面 S2: Bottom side surface

21:第一電極部 21: The first electrode part

22:第二電極部 22: Second electrode part

3:抗反射層 3: Anti-reflection layer

4:分散式布拉格反射層 4: Distributed Bragg reflection layer

Claims (6)

一種收光二極體,包括: 一光吸收基板,該光吸收基板具有互為背側之頂側表面及底側表面,該光吸收基板上具有一第一半導體區域及一第二半導體區域以及一第三區域,第一半導體區域與該第二半導體區域分別接觸該第三區域,第一半導體區域與該第二半導體區域係由該第三區域相隔離,該第一半導體區域與該第二半導體區域具有相反的導電類型; 一抗反射層;以及 一分散式布拉格反射層,係由多層介電材料膜堆疊形成; 其中, 該抗反射層係設置於該頂側表面並接觸該第一半導體區域,該分散式布拉格反射層係設置於該底側表面接觸該第二半導體區域,或者, 該抗反射層係設置於該底側表面並接觸該第二半導體區域,該分散式布拉格反射層係設置於該頂側表面並接觸該第一半導體區域; 其中, 該抗反射層係設置成接收一光線進入該光吸收基板,該分散式布拉格反射層設置成將穿過該光吸收基板而欲自該光吸收基板射出之光線反射回該光吸收基板。 A light-receiving diode, comprising: A light-absorbing substrate, the light-absorbing substrate has a top side surface and a bottom-side surface which are the back sides of each other, the light-absorbing substrate has a first semiconductor region, a second semiconductor region and a third region, the first semiconductor region respectively contacting the third region with the second semiconductor region, the first semiconductor region and the second semiconductor region are separated by the third region, the first semiconductor region and the second semiconductor region have opposite conductivity types; an anti-reflection layer; and A distributed Bragg reflection layer is formed by stacking multiple layers of dielectric material films; in, the antireflection layer is disposed on the top surface and contacts the first semiconductor region, the distributed Bragg reflection layer is disposed on the bottom surface and contacts the second semiconductor region, or, the anti-reflection layer is disposed on the bottom surface and contacts the second semiconductor region, and the distributed Bragg reflection layer is disposed on the top surface and contacts the first semiconductor region; in, The anti-reflection layer is configured to receive light entering the light-absorbing substrate, and the distributed Bragg reflection layer is configured to reflect light that passes through the light-absorbing substrate and intends to exit the light-absorbing substrate back to the light-absorbing substrate. 如請求項1所述之收光二極體,其中該第一半導體區域為p型半導體,該第二半導體區域為n型半導體。The light-receiving diode according to claim 1, wherein the first semiconductor region is a p-type semiconductor, and the second semiconductor region is an n-type semiconductor. 如請求項1所述之收光二極體,其中該第一半導體區域為n型半導體,該第二半導體區域為p型半導體。The light-receiving diode according to claim 1, wherein the first semiconductor region is an n-type semiconductor, and the second semiconductor region is a p-type semiconductor. 如請求項2或3所述之收光二極體,其中該分散式布拉格反射層的厚度為2µm至30µm。The light-receiving diode as described in Claim 2 or 3, wherein the thickness of the distributed Bragg reflection layer is 2 µm to 30 µm. 如請求項2或3所述之收光二極體,其中該抗反射層含有氮化矽。The light-receiving diode according to claim 2 or 3, wherein the anti-reflection layer contains silicon nitride. 如請求項4所述之收光二極體,其中該分散式布拉格反射層的厚度為3µm。The light-receiving diode as described in Claim 4, wherein the thickness of the distributed Bragg reflection layer is 3 μm.
TW110137072A 2021-10-05 2021-10-05 Photodiode TWI802032B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110137072A TWI802032B (en) 2021-10-05 2021-10-05 Photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110137072A TWI802032B (en) 2021-10-05 2021-10-05 Photodiode

Publications (2)

Publication Number Publication Date
TW202316642A true TW202316642A (en) 2023-04-16
TWI802032B TWI802032B (en) 2023-05-11

Family

ID=86943224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137072A TWI802032B (en) 2021-10-05 2021-10-05 Photodiode

Country Status (1)

Country Link
TW (1) TWI802032B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155881A1 (en) * 2009-10-23 2016-06-02 Alta Devices, Inc. Thin film iii-v optoelectronic device optimized for non-solar illumination sources
WO2017015578A1 (en) * 2015-07-22 2017-01-26 Miroslaw Florjanczyk Compound semiconductor photonic integrated circuit with dielectric waveguide
CN106662686B (en) * 2015-07-28 2020-06-23 Jsr株式会社 Optical filter, ambient light sensor, and electronic device
EP3913673B1 (en) * 2017-04-04 2023-03-22 Artilux Inc. Method and circuit to operate a high-speed light sensing apparatus
EP3612805A1 (en) * 2017-04-20 2020-02-26 trinamiX GmbH Optical detector

Also Published As

Publication number Publication date
TWI802032B (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US11041982B2 (en) Silicon-germanium based optical filter
US8975645B2 (en) Optical filter
US20140159183A1 (en) High-efficiency bandwidth product germanium photodetector
EP4246581A2 (en) Photodetectors, preparation methods for photodetectors, photodetector arrays, and photodetection terminals
CN103840033B (en) High Efficiency Bandwidth Product Germanium Photodetector
CN106158998B (en) A kind of visible ray and near infrared band silicon substrate fiber waveguide integrated photodetector
TWI802032B (en) Photodiode
JP6208513B2 (en) Light emitting / receiving device
RU2488916C1 (en) Semiconductor infrared detector
US20230112479A1 (en) Photodiode
Stiebig et al. Standing-wave interferometer
CN110109128B (en) Infrared emission and detection integrated chip
JPS61277024A (en) Light spectrum detector
CN213304148U (en) Silicon-based photoelectric detector
JP2016174163A (en) Optical filter
EP1159764A1 (en) Polarization sensitive detector
JP2015216231A (en) Light receiving/emitting device
JPS61221689A (en) Detector for radial rays
CN213601884U (en) Photoelectric detector with wavelength selective response
CN112599629A (en) Photoelectric detector with wavelength selective response
CN202395007U (en) Purplish/blue silicon photodiode
JP2013205228A (en) Semiconductor sensor
Imenkov et al. Improvement in the quantum sensitivity of InAs/InAsSb/InAsSbP heterostructure photodiodes
JPS6269568A (en) Semiconductor color sensor
JP2880518B2 (en) Optical semiconductor device