JPH0252995B2 - - Google Patents

Info

Publication number
JPH0252995B2
JPH0252995B2 JP57230153A JP23015382A JPH0252995B2 JP H0252995 B2 JPH0252995 B2 JP H0252995B2 JP 57230153 A JP57230153 A JP 57230153A JP 23015382 A JP23015382 A JP 23015382A JP H0252995 B2 JPH0252995 B2 JP H0252995B2
Authority
JP
Japan
Prior art keywords
film
radiation
scintillator
type semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230153A
Other languages
Japanese (ja)
Other versions
JPS59122988A (en
Inventor
Shotaro Oka
Ryoichi Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP57230153A priority Critical patent/JPS59122988A/en
Publication of JPS59122988A publication Critical patent/JPS59122988A/en
Publication of JPH0252995B2 publication Critical patent/JPH0252995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 この発明は、放射線計測素子に関する。さらに
詳しくは、放射線エネルギーを効率良くかつ高空
間分解能で検知でき、さらに集積化、小形化、軽
量化及びハイブリツド化された放射線計測素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation measurement element. More specifically, the present invention relates to a radiation measuring element that can detect radiation energy efficiently and with high spatial resolution, and that is integrated, smaller, lighter, and hybridized.

近年、CT等の放射線を用いた医療機器や各種
放射線測定機器の技術の進歩に伴ない、放射線の
強度分布の測定が重要な課題となつている。かよ
うな放射線の強度分布の測定器としては多数の区
画構成された電離箱を組み合せて各区画ごとの放
射線強度を測定するものが知られているが、これ
らは振動に弱くさらにその構造が複雑でかつ重
く、取扱い上や製造上不利であつた。
In recent years, with advances in the technology of medical devices that use radiation such as CT and various radiation measurement devices, the measurement of radiation intensity distribution has become an important issue. As a measuring device for measuring the intensity distribution of radiation, there is a device that measures the radiation intensity of each section by combining an ionization chamber composed of a large number of sections, but these are susceptible to vibration and have a complicated structure. It was large and heavy, making it difficult to handle and manufacture.

従つて、より小型化、軽量化された分布測定し
うる放射線計測素子が望まれていた。
Therefore, there has been a desire for a radiation measuring element that is smaller and lighter and capable of measuring distribution.

この点に関し、この発明の発明者らは半導体光
検出素子に注目した。半導体光検出素子は従来可
視光の検出素子として知られているが、放射線に
対しても若干の感度を有する。そしてその感応部
分は、半導体光検出素子作製の際に容易にアレー
状に分画形成できるため、強度分布の測定器とし
ては適切なものと考えられる。しかしながら、か
ようなアレー型の半導体光検出素子を用いた場合
に得られる放射線測定感度はやはり不充分なもの
であつた。
In this regard, the inventors of the present invention focused on semiconductor photodetecting elements. Semiconductor photodetecting elements are conventionally known as visible light detecting elements, but they also have some sensitivity to radiation. Since the sensitive portion can be easily fractionated into an array when manufacturing a semiconductor photodetecting element, it is considered to be suitable as an instrument for measuring intensity distribution. However, the radiation measurement sensitivity obtained when such an array type semiconductor photodetector element is used is still insufficient.

さらに、上記アレー型半導体光検出素子の測定
感度を向上させるために、その放射線入射面に、
通常のシンチレーシヨンカウンターで用いられる
ような螢光体(シンチレータ)層を接着剤で接合
させて放射線の一部又は大部分を半導体光検出素
子の感度良好な可視光に変換し、測定感度を上昇
させることも考えられる。しかしこのようにアレ
ー型半導体光検出素子にシンチレータを単に組合
せた場合には、シンチレータからの変換された可
視光はクロストーキング現象(入射した放射線の
入射方向から側方に変換可視光が分散される)に
よつて、入射位置に対応するフオトダイオードの
感応部分に効率良く入射せず、結局強度分布の測
定においては不鮮明となり実用に供し得ないもの
であつた。また、この点を改善するためシンチレ
ータ層に多数の区画板(例えば、重金属板等)を
入れてクロストーキング現象を防ぐことも考えら
れるが、形成する区画板自体の幅の薄さにも限度
があり、デツドスペースが多く分解能が若干上昇
しても全体としての検知効率は不充分であるし、
第一、製作上困難を極め、実用に供し得ないもの
である。
Furthermore, in order to improve the measurement sensitivity of the array type semiconductor photodetecting element, on its radiation incident surface,
A phosphor (scintillator) layer, similar to that used in ordinary scintillation counters, is bonded with adhesive to convert part or most of the radiation into visible light, which is highly sensitive to semiconductor photodetectors, increasing measurement sensitivity. It is also possible to do so. However, when a scintillator is simply combined with an array type semiconductor photodetector like this, the converted visible light from the scintillator is subject to a crosstalking phenomenon (the converted visible light is dispersed laterally from the direction of incidence of the incident radiation). ), the light does not efficiently enter the sensitive part of the photodiode corresponding to the incident position, and as a result, the measurement of the intensity distribution becomes unclear and cannot be put to practical use. In addition, to improve this point, it is possible to prevent the crosstalk phenomenon by inserting a large number of partition plates (for example, heavy metal plates, etc.) into the scintillator layer, but there is a limit to the thinness of the width of the partition plates themselves. There is a large amount of dead space, and even if the resolution increases slightly, the overall detection efficiency is insufficient.
First, it is extremely difficult to manufacture and cannot be put to practical use.

この発明はかような従来の問題点を解消すべく
なされたものである。この発明の発明者らは、ア
レー型半導体光検出素子に、微細針状区画構造を
有するシンチレータ薄層を形成できる事実を見出
し、さらにこのようなシンチレータ薄膜を用いた
ものは区画板等を用いることなく分解能が顕著に
改善され、さらに放射線計測素子の小型化、軽量
化が可能となる事実を見出しこの発明に到達し
た。
This invention has been made to solve these conventional problems. The inventors of the present invention discovered that it is possible to form a scintillator thin layer having a fine needle-like partition structure in an array type semiconductor photodetector, and furthermore, it is possible to form a scintillator thin layer having a fine needle-like partition structure in an array type semiconductor photodetecting element, and furthermore, it is possible to use a partition plate etc. in a device using such a scintillator thin film. This invention was achieved by discovering the fact that the resolution is significantly improved, and that the radiation measurement element can be made smaller and lighter.

かくしてこの発明によれば、p型(又はn型)
半導体基体の表面に複数のn型(又はp型)半導
体領域を分画形成してなるアレー型半導体光検知
素子の上に、電磁波透過性膜を介して、略垂直状
にのびる多数の微細針状区画構造を有するシンチ
レータ膜を密着形成してなることを特徴とする放
射線計測素子が提供される。
Thus, according to this invention, p-type (or n-type)
A large number of fine needles extend approximately vertically through an electromagnetic wave transparent film onto an array type semiconductor photodetecting element formed by dividing a plurality of n-type (or p-type) semiconductor regions on the surface of a semiconductor substrate. A radiation measuring element is provided, which is characterized in that it is formed by closely forming a scintillator film having a partitioned structure.

この発明の最も特徴とする点は、アレー型半導
体光検出素子と特定の構造を有するシンチレータ
膜とを組合せたことにある。上記特定の構造、す
なわち略垂直状にのびる多数の微細針状区画構造
を有するシンチレータ膜は、X線像強管等の高品
質テレビジヨン受像管における発光スクリーンと
して用いられることは知られている(特公昭55−
19029号公報参照)が、この発明のごとき半導体
素子に直接組合せたことはそれ自身新規なものと
いえる。
The most distinctive feature of this invention lies in the combination of an array type semiconductor photodetector element and a scintillator film having a specific structure. It is known that a scintillator film having the above-mentioned specific structure, that is, a large number of fine needle-like partition structures extending approximately vertically, is used as a luminescent screen in high-quality television picture tubes such as X-ray image tubes ( Special Public Service 1977-
19029) is directly combined with a semiconductor device such as the present invention, which can be said to be novel in itself.

以下、添付図面に従いこの発明の放射線計測素
子について詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The radiation measuring device of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、この発明の具体例である放射線計測
素子1を示す模式的構成説明図である。図におい
て、この発明の放射線計測素子1は、p型半導体
基体2の表面にリン、ヒ素等のドーピングにより
4つのn型半導体領域3を分画形成してなるアレ
ー型半導体光検出素子、たとえばフオトダイオー
ドの上に、放射線及び可視光を良好に透過する厚
み約0.1μmのSiO2蒸着膜4を介して、厚み約
160μmのCsI(Tl)からなるシンチレータ膜5を
密着形成してなり、さらにシンチレータ膜5の外
面を保護すべく、かつ内部発生螢光を反射すべく
全体が、アルミニウム蒸着保護膜6によつて被覆
されてなる。そして、上記シンチレータ膜5は、
アレー型半導体光検出素子に対して略垂直状にの
びる多数の微細針状区画51が集積されたCsI
(Tl)結晶から構成されてなる。なおアレー型半
導体光検出素子の各n型半導体領域はそれぞれ放
射線計測の別チヤンネルと機能すべく構成されて
おり指示計器に接続されている。
FIG. 1 is a schematic structural explanatory diagram showing a radiation measuring element 1 which is a specific example of the present invention. In the figure, a radiation measuring element 1 of the present invention is an array type semiconductor photodetecting element, such as a photodetector, in which four n-type semiconductor regions 3 are formed in sections on the surface of a p-type semiconductor substrate 2 by doping with phosphorus, arsenic, etc. On top of the diode, a SiO 2 vapor-deposited film 4 with a thickness of about 0.1 μm, which transmits radiation and visible light well, is placed.
A scintillator film 5 made of CsI (Tl) with a thickness of 160 μm is closely formed, and the entire scintillator film 5 is covered with an aluminum vapor-deposited protective film 6 to protect the outer surface of the scintillator film 5 and reflect internally generated fluorescence. It will be done. The scintillator film 5 is
CsI in which a large number of fine acicular sections 51 extending approximately perpendicularly to the array type semiconductor photodetecting element are integrated.
(Tl) It is composed of crystals. Note that each n-type semiconductor region of the array type semiconductor photodetecting element is configured to function as a separate channel for radiation measurement, and is connected to an indicating instrument.

上記構成の放射線計測素子1において、矢印の
方向に進むX構等の放射線は、保護膜6を透過し
て内部に入射する。この際、放射線の一部はシン
チレータ膜5を通過してアレー型フオトダイオー
ドに入射し、他の一部はシンチレータ膜5内でシ
ンチレーシヨンによつて可視光に変換されアレー
型半導体光検出素子に入射するため、アレー型半
導体光検出素子においては放射線及び変換可視光
の両方について検知することとなる。従つて、シ
ンチレータ膜を有していないものに比して検知効
率は改善されている。
In the radiation measuring element 1 having the above configuration, the radiation such as the X beam that travels in the direction of the arrow passes through the protective film 6 and enters the inside. At this time, a part of the radiation passes through the scintillator film 5 and enters the array type photodiode, and the other part is converted into visible light by scintillation within the scintillator film 5 and is transmitted to the array type semiconductor photodetecting element. Therefore, the array type semiconductor photodetecting element detects both radiation and converted visible light. Therefore, the detection efficiency is improved compared to one without a scintillator film.

さらにシンチレータ膜5は、略垂直状にのびる
多数の微細針状区画51からなるため、シンチレ
ーシヨンによつて生ずる可視光は、第2図に示す
ごとくその区画内で反射されつつ入射方向に対応
する半導体光検出素子の感応部分(例えば、n型
半導体領域)に効率良く導びかれ、クロストーキ
ング現象を生ずることもない。従つて、フオトダ
イオードの感応部分間の干渉もほとんど生じるこ
となく分解能の優れた放射線強度の分布が測定さ
れることとなる。
Furthermore, since the scintillator film 5 consists of a large number of fine needle-like sections 51 extending approximately vertically, the visible light generated by scintillation is reflected within the sections as shown in FIG. The light is efficiently guided to the sensitive portion (for example, the n-type semiconductor region) of the semiconductor photodetecting element, and no crosstalking phenomenon occurs. Therefore, the radiation intensity distribution with excellent resolution can be measured with almost no interference between the sensitive parts of the photodiodes.

この発明における上記アレー型半導体光検出素
子としてはpn接合型のものを用いたがPIN接合
型でも、金属−半導体接触を利用したいわゆる表
面障壁型のものでもよい。半導体もシリコンに限
らず、ゲルマニウム、各種の化合物半導体等の他
の材料を使用してもよい。これらのうち、基盤の
不純物濃度をできるだけ少なくし、pn接合付近
に生じる空乏層をできるだけ良くするものが好ま
しい。
Although a pn junction type is used as the array type semiconductor photodetecting element in this invention, it may be a PIN junction type or a so-called surface barrier type that utilizes metal-semiconductor contact. The semiconductor is not limited to silicon, and other materials such as germanium and various compound semiconductors may also be used. Among these, it is preferable to reduce the impurity concentration of the base as much as possible and to improve the depletion layer generated near the pn junction as much as possible.

上記アレー型半導体光検出素子の上にシンチレ
ータ膜が密着形成される。
A scintillator film is closely formed on the array type semiconductor photodetecting element.

この発明のシンチレータ膜の材質としては、通
常のシンチレーシヨンカウンターに用いられる無
機シンチレータ、例えば、NaI(Tl)、CsI(Tl)、
KI(Tl)、ZnS(Cu)、CdWO4等が挙げられ、場合
によつては有機シンチレータを用いてもよい。
The material of the scintillator film of this invention includes inorganic scintillators used in ordinary scintillation counters, such as NaI (Tl), CsI (Tl),
Examples include KI (Tl), ZnS (Cu), and CdWO4 , and in some cases, an organic scintillator may be used.

この発明の特定構造のシンチレータ膜は、例え
ば、半導体光検出素子の表面に、放射線や可視光
を透過しうるSiO2膜のような電磁波透過性膜を
蒸着等で形成した後、この上に所望のシンチレー
タを加熱状態で蒸着形成して造膜し、そののち自
然冷却させてSiO2膜の熱膨張率とシンチレータ
膜のそれとの差によつて垂直方向の亀裂を生じせ
しめることにより得られる。より具体的には、例
えば0.1〜1μm程度の薄いSiO2膜を形成させた電
磁波検知ダイオードを予め200℃に加熱しておき、
これを真空下で200℃に保持しつつ厚み20〜
500μm程度のシンチレータ膜を蒸着によつて形成
させ、その後、自然冷却することにより、幅5〜
20μm程度の多数の微細針状区画構造を亀裂によ
つて生じせしめることにより得られる。
The scintillator film having a specific structure of the present invention can be obtained by forming, for example, an electromagnetic wave-transmitting film such as a SiO 2 film that can transmit radiation and visible light on the surface of a semiconductor photodetecting element by vapor deposition, and then depositing the desired film on the surface of the semiconductor photodetecting element. It is obtained by forming a film by vapor deposition of a scintillator in a heated state, and then cooling it naturally to generate vertical cracks due to the difference between the coefficient of thermal expansion of the SiO 2 film and that of the scintillator film. More specifically, for example, an electromagnetic wave detection diode on which a thin SiO 2 film of about 0.1 to 1 μm is formed is heated to 200°C in advance.
While maintaining this at 200℃ under vacuum, the thickness is 20 ~
A scintillator film of about 500 μm is formed by vapor deposition, and then naturally cooled to form a scintillator film with a width of 5 to 50 μm.
It is obtained by creating a large number of fine needle-like compartment structures of about 20 μm in size by cracking.

この発明の上記シンチレータ膜の外面は通常、
湿気等の影響を防ぐための前記のような保護膜を
形成させることが好ましいが、この保護膜として
は被測定放射線を透過しうるものが必要であり、
さらに外部からの可視光を反射する膜を用いるの
が放射線の測定誤差を減少できる点より好まし
い。また、別の観点から該保護膜は、シンチレー
タ膜内でのシンチレーシヨンによる変換可視光の
外部への散乱を防止すべく可視光反射性のものを
用いるのが好ましい。
The outer surface of the scintillator membrane of the present invention is usually
It is preferable to form a protective film as described above to prevent the influence of moisture, etc., but this protective film must be able to transmit the radiation to be measured.
Furthermore, it is preferable to use a film that reflects visible light from the outside because it can reduce radiation measurement errors. Further, from another point of view, it is preferable to use a visible light reflective protective film in order to prevent the converted visible light from being scattered to the outside due to scintillation within the scintillator film.

かような点から、シンチレータ膜の外面には、
前記のごときアルミニウムのような低密度金属の
蒸着薄膜を形成させるのが最も好ましい。
From this point of view, on the outer surface of the scintillator membrane,
Most preferably, a deposited thin film of a low density metal such as aluminum as described above is formed.

なお、放射線計測に当つて、放射線の照射面
は、通常第1図矢印の如くシンチレータ膜側とさ
れるが、逆に半導体光検出素子の底面側に設定し
てもよく、同様な放射線計測を行なうことができ
る。
In radiation measurement, the radiation irradiation surface is usually set on the scintillator film side as shown by the arrow in Figure 1, but it may also be set on the bottom side of the semiconductor photodetector element, and similar radiation measurements can be performed. can be done.

以上述べた如く、この発明の放射線計測素子
は、アレー型半導体光検出素子と特定の構造のシ
ンチレータ膜を組合せているため、放射線検知効
率も改善され、分解能も優れたものである。さら
に従来のシンチレーシヨンカウンターのように
1.5〜3mmのシンチレータ層を必要とせずかつ半
導体素子と一体に形成されているため、小型、軽
量であり製造、取り扱い上も便利である。そして
アレー型電磁波検知ダイオードのアレーはリング
ラフイーで容易に分画形成できかつ多数形成でき
これにより分解能を適宜上昇させることができ
る。従つて高い空間分解能を必要とするCT,X
線イメージ検出器等の放射線の強度分布の測定に
おける計測素子として極めて有用なものである。
As described above, since the radiation measurement element of the present invention combines an array type semiconductor photodetection element and a scintillator film having a specific structure, the radiation detection efficiency is improved and the resolution is also excellent. Furthermore, like a conventional scintillation counter,
Since it does not require a scintillator layer of 1.5 to 3 mm and is formed integrally with the semiconductor element, it is small, lightweight, and convenient in manufacturing and handling. Arrays of array type electromagnetic wave detection diodes can be easily fractionated and formed in large numbers using phosphorography, thereby making it possible to appropriately increase the resolution. Therefore, CT, which requires high spatial resolution,
It is extremely useful as a measuring element in measuring the intensity distribution of radiation such as in a line image detector.

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

実施例 1 第1図に示すような微細針状区画構造のCsI
(Tl)シンチレータ膜(160μm厚)を形成したこ
の発明の放射線計測器を用いて種々のエネルギー
のX線の計測を行ないそのチヤンネル当りの出力
を調べた。なお、ミンチレータ膜を形成していな
い同様なフオトダイオードについても出力を調べ
比較を行なつた。
Example 1 CsI with fine acicular compartment structure as shown in Figure 1
Using the radiation measuring instrument of the present invention on which a (Tl) scintillator film (160 μm thick) was formed, X-rays of various energies were measured and the output per channel was investigated. The output of a similar photodiode without a mintilator film was also investigated and compared.

その結果を第3図に示す。図においてAはこの
発明の放射線計測器による出力を示し、BはCsI
(Tl)結晶接合前の出力(比較例)を示す。また
第3図のデータを基にした出力比(A/B)の変
化を第4図に示す。
The results are shown in FIG. In the figure, A shows the output from the radiation measuring instrument of this invention, and B shows the CsI
(Tl) Shows the output before crystal bonding (comparative example). Further, FIG. 4 shows changes in the output ratio (A/B) based on the data in FIG. 3.

これらの図に示されるように、X線管球電圧V
=50kVでの出力はシンチレータ膜を有していな
いものに比して1.35倍、V=100kVでは2.8倍とな
つており、放射線検知効率の向上に基づく感度の
上昇が認められ、ことに硬X線において顕著な感
度上昇が見られる。
As shown in these figures, the X-ray tube voltage V
The output at V = 50 kV is 1.35 times that of one without a scintillator film, and at V = 100 kV it is 2.8 times higher, indicating an increase in sensitivity due to improved radiation detection efficiency, especially for hard X A remarkable increase in sensitivity is seen in the lines.

実施例 2 放射線検知部間すなわちフオトダイオードのア
レーの隣接エレメント間の干渉を調べた。まず、
第5図のごとく、間隔0.3mmの2つのn型半導体
領域3a,3b間の干渉を調べるべく4mm厚の鉛
板8を約1mmの間隔で放射線受光面に位置して遮
断し、その遮断位置をC及びDに設定して遮断さ
れたn型半導体領域3aに対する遮断効果を測定
器7で測定し、シンチレータ膜内でのクロストー
キング現象の程度を調べた。その結果、いずれの
遮断状態においてもn型半導体領域3aへの影響
はほとんど見られず、シンチレータ膜内でのクロ
ストーキング現象はほとんど見られないことが判
明した。
Example 2 Interference between radiation detectors, that is, between adjacent elements of a photodiode array was investigated. first,
As shown in FIG. 5, in order to examine the interference between two n-type semiconductor regions 3a and 3b with an interval of 0.3 mm, a 4 mm thick lead plate 8 is placed on the radiation receiving surface at an interval of about 1 mm to block the radiation, and the blocking position is were set to C and D, and the blocking effect on the blocked n-type semiconductor region 3a was measured using the measuring device 7, and the degree of crosstalking phenomenon within the scintillator film was investigated. As a result, it was found that in any cut-off state, almost no influence was observed on the n-type semiconductor region 3a, and almost no cross-talking phenomenon was observed within the scintillator film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の放射線計測素子の具体例
を示す模式的構成説明図、第2図は第1図の要部
拡大図、第3図及び第4図は、この発明の放射線
計測素子による放射線検知出力を比較例と共に示
すグラフ、第5図はこの発明の放射線計測素子に
おけるシンチレータ膜の効果の測定方法を例示す
る模式的構成説明図である。 1……放射線計測素子、2……p型半導体基
体、3,3a,3b……n型半導体領域、4……
SuO2蒸着膜、5……シンチレータ膜、51……
微細針状区画、6……保護膜、7……測定器、8
……鉛板。
FIG. 1 is a schematic structural explanatory diagram showing a specific example of the radiation measuring element of the present invention, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIGS. 3 and 4 are the radiation measuring element of the present invention. FIG. 5 is a graph showing the radiation detection output according to the present invention together with a comparative example. DESCRIPTION OF SYMBOLS 1... Radiation measurement element, 2... P-type semiconductor substrate, 3, 3a, 3b... N-type semiconductor region, 4...
SuO 2 vapor deposited film, 5... scintillator film, 51...
Fine acicular section, 6... Protective film, 7... Measuring device, 8
……lead plate.

Claims (1)

【特許請求の範囲】 1 p型(又はn型)半導体基体の表面に複数の
n型(又はp型)半導体領域を分画形成してなる
アレー型半導体光検知素子の上に、電磁波透過性
膜を介して、略垂直状にのびる多数の微細針状区
画構造を有するシンチレータ膜を密着形成してな
ることを特徴とする放射線計測素子。 2 シンチレータ膜の外面に、被測定放射線を透
過しうる保護膜が被覆形成されてなる特許請求の
範囲第1項記載の計測素子。 3 シンチレータ膜の外面に、シンチレーシヨン
による可視光を反射しうる保護膜が被覆形成され
てなる特許請求の範囲第1項又は第2項記載の計
測素子。
[Scope of Claims] 1. An electromagnetic wave transmitting layer is formed on an array type semiconductor photodetecting element formed by dividing a plurality of n-type (or p-type) semiconductor regions on the surface of a p-type (or n-type) semiconductor substrate. 1. A radiation measuring element comprising a scintillator film closely formed with a scintillator film having a plurality of fine needle-like compartment structures extending substantially vertically through the film. 2. The measuring element according to claim 1, wherein the outer surface of the scintillator film is coated with a protective film that can transmit radiation to be measured. 3. The measuring element according to claim 1 or 2, wherein the outer surface of the scintillator film is coated with a protective film capable of reflecting visible light due to scintillation.
JP57230153A 1982-12-29 1982-12-29 Radiation measuring element Granted JPS59122988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230153A JPS59122988A (en) 1982-12-29 1982-12-29 Radiation measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230153A JPS59122988A (en) 1982-12-29 1982-12-29 Radiation measuring element

Publications (2)

Publication Number Publication Date
JPS59122988A JPS59122988A (en) 1984-07-16
JPH0252995B2 true JPH0252995B2 (en) 1990-11-15

Family

ID=16903421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230153A Granted JPS59122988A (en) 1982-12-29 1982-12-29 Radiation measuring element

Country Status (1)

Country Link
JP (1) JPS59122988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019302B2 (en) 2000-08-03 2006-03-28 Hamamatsu Photonics K.K. Radiation detector, scintillator panel, and methods for manufacturing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288186A (en) * 1985-06-14 1986-12-18 Hamamatsu Photonics Kk Scintillator
JPS6351291U (en) * 1986-09-20 1988-04-06
FR2628562A1 (en) * 1988-03-11 1989-09-15 Thomson Csf IMAGING DEVICE WITH MATRIX STRUCTURE
JPH02276996A (en) * 1989-04-18 1990-11-13 Seiko Instr Inc X-ray image sensor
JPH02277000A (en) * 1989-04-18 1990-11-13 Seiko Instr Inc X-ray image sensor
GB9115259D0 (en) * 1991-07-15 1991-08-28 Philips Electronic Associated An image detector
US5132539A (en) * 1991-08-29 1992-07-21 General Electric Company Planar X-ray imager having a moisture-resistant sealing structure
US5463225A (en) * 1992-06-01 1995-10-31 General Electric Company Solid state radiation imager with high integrity barrier layer and method of fabricating
US5401668A (en) * 1993-09-02 1995-03-28 General Electric Company Method for fabrication solid state radiation imager having improved scintillator adhesion
US7019301B2 (en) 1997-02-14 2006-03-28 Hamamatsu Photonics K.K. Radiation detection device and method of making the same
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
KR100697493B1 (en) 1998-06-18 2007-03-20 하마마츠 포토닉스 가부시키가이샤 A scintillator panel
CN1270192C (en) * 2000-01-13 2006-08-16 浜松光子学株式会社 Radiation image sensor and scintillator panel
JP4234304B2 (en) 2000-05-19 2009-03-04 浜松ホトニクス株式会社 Radiation detector
WO2001088568A1 (en) 2000-05-19 2001-11-22 Hamamatsu Photonics K.K. Radiation detector and method of manufacture thereof
JP4398065B2 (en) 2000-05-19 2010-01-13 浜松ホトニクス株式会社 Radiation detector
KR100693105B1 (en) * 2005-04-26 2007-03-12 라드텍주식회사 A manufacturing method of structured pick cell type scintillator make detector module for obtain permeation image of radioactive rays
JP5460572B2 (en) 2010-12-27 2014-04-02 富士フイルム株式会社 Radiation image detection apparatus and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019302B2 (en) 2000-08-03 2006-03-28 Hamamatsu Photonics K.K. Radiation detector, scintillator panel, and methods for manufacturing same

Also Published As

Publication number Publication date
JPS59122988A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
JPH0252995B2 (en)
US5059800A (en) Two dimensional mosaic scintillation detector
US7521685B2 (en) Structured scintillator and systems employing structured scintillators
US6933503B2 (en) Imaging X-ray detector based on direct conversion
US7019302B2 (en) Radiation detector, scintillator panel, and methods for manufacturing same
US7002155B2 (en) X-ray imaging device
KR20110013208A (en) Radiographic detector formed on scintillator
US20100014631A1 (en) Scintillator based x-ray sensitive integrated circuit element with depleted electron drift region
KR102563942B1 (en) Hybrid Active Matrix Flat Panel Detector System and Method
US20070272872A1 (en) X-ray detector with photodetector embedded in scintillator
US7161155B1 (en) X-ray detector with increased detective quantum efficiency
US20060118728A1 (en) Wafer bonded silicon radiation detectors
JP2004271333A (en) Scintillator panel, image sensor and energy discriminator
EP0589024A1 (en) Low capacitance x-ray radiation detector
JP2003536079A (en) Radiation detection device and method
JPWO2007113898A1 (en) Radiation detector
US5171998A (en) Gamma ray imaging detector
US20120056096A1 (en) Slab Scintillator With Integrated Double-Sided Photoreceiver
US7358500B2 (en) Radiation detection by dual-faced scintillation
JP2005203708A (en) X-ray imaging device
JPWO2007113899A1 (en) Radiation detector
US4418452A (en) X-Ray detector
Burr et al. Evaluation of a position sensitive avalanche photodiode for PET
Blamires Combination of a scintillator and a semiconductor photodiode for nuclear particle detection
JPS603792B2 (en) Multichannel semiconductor radiation detector