JPS61221583A - Drive circuit of vibration wave motor - Google Patents

Drive circuit of vibration wave motor

Info

Publication number
JPS61221583A
JPS61221583A JP60062834A JP6283485A JPS61221583A JP S61221583 A JPS61221583 A JP S61221583A JP 60062834 A JP60062834 A JP 60062834A JP 6283485 A JP6283485 A JP 6283485A JP S61221583 A JPS61221583 A JP S61221583A
Authority
JP
Japan
Prior art keywords
frequency voltage
voltage
wave motor
vibration wave
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062834A
Other languages
Japanese (ja)
Inventor
Kazuhiro Izukawa
和弘 伊豆川
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60062834A priority Critical patent/JPS61221583A/en
Publication of JPS61221583A publication Critical patent/JPS61221583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To substantially eliminate generation of an audible sound by gradually varying the amplitude of a frequency voltage applied to an electromechanical energy converter. CONSTITUTION:The outputs of an oscillator 8 and a function generator 9 are input to a multiplier 10 to multiply both. The generator 9 applies a voltage E to the input of an integrator made of an operational amplifier OP2 by the ON of a switch SW to operate to gradually vary the vibration of a frequency voltage applied to drive electrostrictive elements 1a, 1b. The output of the multiplier 10 is input to a filter phase shifter 11, and its output is applied through an amplifier 13 to the element 1a and through a phase shifter 12 and an amplifier 14 to the element 1b.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明は進行性振動波により移動体を摩擦駆動する振動
波モータの駆動回路、特Kl振動波モータの始動時、停
止時、加減速時に可聴音の発生のないなめらかな動作を
するのく適切なものに関する。
[Detailed Description of the Invention] <Industrial Application> The present invention provides a drive circuit for a vibration wave motor that frictionally drives a moving body by progressive vibration waves, and a special method for controlling the start, stop, acceleration and deceleration of a Kl vibration wave motor. Relating to something suitable for smooth operation without producing audible sounds.

〈従来技術〉 最近実用化されつつある、進行性振動波によって駆動す
る振動波モータの実施例の概略図が第1図に示しである
。同図で、la、11)は電歪素子で例えばPZT (
チタン酸ジルコン鉛)で、2は振動体で弾性物質からな
〕、電歪素子1a、1bを接着しである。振動体2は電
歪素子1a、11)と共にステータ(不図示)側に保持
されている。
<Prior Art> FIG. 1 is a schematic diagram of an embodiment of a vibration wave motor driven by progressive vibration waves, which has recently been put into practical use. In the same figure, la, 11) is an electrostrictive element, for example, PZT (
2 is a vibrating body made of an elastic material], and the electrostrictive elements 1a and 1b are bonded together. The vibrating body 2 is held on the stator (not shown) side together with the electrostrictive elements 1a, 11).

5Fi移動体で振動体2に対し抑圧接触されていてロー
タを形成する。電歪素子1a及び1bは夫々複数個接着
されておシ、そのうちの一群の電歪素子1aに対し、も
う一群の電歪素子1bは振動波の波長λの阿波長分だけ
ずれ九ピッチで配置される。群内での各電歪素子1a、
la、la・・・・・はA波長のピッチで、相隣り合う
ものの極性が逆になるように配置されている。電歪素子
1b、 tb、 1b・・・・・Kついて4同様に%波
長のピッチで、相隣り合うものは逆極性である。また電
歪素子1a、Ibの表裏には図示を省略したが、夫々電
極膜が設けられて、電歪素子1a及び1bに夫々交流電
圧が印加できるようになっている。
The 5Fi moving body is in pressure contact with the vibrating body 2 to form a rotor. A plurality of electrostrictive elements 1a and 1b are each glued together, and one group of electrostrictive elements 1a and the other group of electrostrictive elements 1b are arranged at nine pitches with a difference of one wavelength of the vibration wave wavelength λ. be done. Each electrostrictive element 1a in the group,
la, la, . . . are pitches of wavelength A, and are arranged so that adjacent ones have opposite polarities. As for the electrostrictive elements 1b, tb, 1b, . Further, although not shown in the drawings, electrode films are provided on the front and back surfaces of the electrostrictive elements 1a and Ib, respectively, so that an alternating current voltage can be applied to the electrostrictive elements 1a and 1b, respectively.

このような構成の振動波モータで一群の電歪素子t a
 K vostnωTの交流電圧を印加し、もう一方群
の電歪素子1 tl K To Cog (alTの交
流電圧を印加する。従って各電歪素子は相隣り合うもの
どうし極性が逆向きで二つの群どうし90°位相のずれ
た交流電圧が印加されて伸縮振動をする。この振動が伝
えられて振動体2は電歪素子1a、tbの配置ピッチに
従って曲げ振動をする。
In a vibration wave motor having such a configuration, a group of electrostrictive elements t a
An alternating current voltage of K vostnωT is applied, and an alternating voltage of tl K To Cog (alT is applied to the electrostrictive element 1 of the other group. Therefore, each electrostrictive element has polarities opposite to each other, and the two groups are connected to each other. AC voltages with a phase shift of 90 degrees are applied to cause stretching vibrations.This vibration is transmitted to the vibrating body 2 to cause bending vibrations in accordance with the arrangement pitch of the electrostrictive elements 1a and tb.

振動体2が一つおきの電歪素子の位置で出っ張ると、他
の一つおきの電歪素子の位置が引っ込む。一方、前記の
如く電歪素子1aは電歪素子1bK対しに波長ずれた位
置に6る九め曲げ振動が進行する。交流電圧が印加され
ている間、次々と振動が励起されて、進行性曲げ振動波
となって振動体2を伝わってゆく。
When the vibrating body 2 protrudes at the position of every other electrostrictive element, the position of every other electrostrictive element retracts. On the other hand, as described above, the electrostrictive element 1a undergoes a bending vibration at a position shifted in wavelength from that of the electrostrictive element 1bK. While the alternating current voltage is applied, vibrations are excited one after another and propagate through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第2図(a)(bl ra+
 (a)IC示しである。いま、進行性曲げm@波が矢
示x1方向に進むとする。0を静止状態に於ける振動体
の中心面とすると振動状態では1J#示の状態と鬼シ、
この中立面6は曲げKよる応力が拮抗している。中立面
6と直交する断面7.についてみると、これら二面の交
1i151では応力がかからず上下振動しているだけで
ある。同時に断面71は交線51を中心として左右の振
シ子振動している。断面72又は7sKついても同じよ
うに交i%$52又は5sを中心として左右の振シ子振
動する。
The progress state of the wave at this time is shown in Figure 2 (a) (bl ra+
(a) IC diagram. Now, assume that the progressive bending m@ wave advances in the direction of arrow x1. If 0 is the central plane of the vibrating body in the resting state, then in the vibrating state, the state is 1J#, and
The stress due to bending K is balanced on this neutral plane 6. Cross section 7 perpendicular to the neutral plane 6. If we look at it, no stress is applied at the intersection 1i151 of these two surfaces, and it only vibrates vertically. At the same time, the cross section 71 is vibrating left and right about the intersection line 51. Even if the cross section is 72 or 7sK, the pendulum oscillates in the same way from side to side centering on the intersection i%$52 or 5s.

同図(a)に示す状態では断面71と振動体2の移動体
s側の表面との交線上の点P1は左右振動の右死点とな
っておシ上方向運動だけしている。
In the state shown in FIG. 4A, a point P1 on the intersection line between the cross section 71 and the surface of the vibrating body 2 on the movable body s side is the right dead center of left-right vibration, and the vibrating body 2 moves only in the upward direction.

この振シ子振動は交線51+52又は53が波の正側で
は(中心面0の上側にあるとき)左方向(波の進行方向
x1と逆方向)の応力が加わり、波の負側(同じく下側
にあるとき)右方向の応力が加わる。即ち同図(alに
於て、交線52と断面72が前者のときの状態で、点P
2は矢示方向の応力が加わる。交線55と断面75が後
者のときの状態で、点P3は矢示方向の応力が加わる。
In this pendulum vibration, when the intersection line 51 + 52 or 53 is on the positive side of the wave (when it is above the center plane 0), stress is applied to the left (opposite to the wave traveling direction x1), and on the negative side of the wave (also (when it is on the lower side) stress is applied in the right direction. That is, in the same figure (al), when the intersection line 52 and the cross section 72 are in the former state, the point P
2, stress is applied in the direction of the arrow. When the intersection line 55 and the cross section 75 are in the latter state, stress is applied to the point P3 in the direction of the arrow.

波が進行し、(1))に示すように波の正側に交線51
がくると点P1は左方向の運動をすると同時に上方向の
運動をする。(0)で点P1は上下振動の上死点で左方
向の運動だけする。((L)で点P1は左方向の運動と
下方向運動をする。さらに、波が進行し、右方向と下方
向の運動、右方向と上方向の運動を経て、(alの状態
に戻る。この一連の運動を合成すると点P1は回転楕円
運動をしている。一方、移動体5は振動体2に加圧接触
しており、同図(C)に示すように、振動体2上の点P
1の回転楕円運動が移動体3をx2方向に摩擦駆動する
。点P2゜Ps及びその他振動体2上の全ての点が点P
1と同じように移動体3を摩am動する。
As the wave progresses, the intersection line 51 is on the positive side of the wave as shown in (1)).
When the point P1 comes, it moves to the left and at the same time moves upward. At (0), point P1 moves only in the left direction at the top dead center of vertical vibration. (At (L), point P1 moves leftward and downward. Furthermore, the wave advances, moves rightward and downward, moves rightward and upward, and returns to the state of (al). When this series of movements is combined, the point P1 is moving in a spheroidal motion.On the other hand, the moving body 5 is in pressure contact with the vibrating body 2, and as shown in FIG. point P
The rotational elliptical motion of 1 frictionally drives the moving body 3 in the x2 direction. Point P2゜Ps and all other points on the vibrating body 2 are point P
Move the moving body 3 in the same way as in step 1.

この上うに駆動される振動波モータであるが、移動体3
を最も効率良く摩擦駆動する九めの振動を励起する最も
好ましい共振周波数を印加することによって生じる振動
のモードの他にも共振して発生する別のモードが存在す
る。これらのモードは、振動波モータを駆動するには不
必要であるため、極力そのような不要なモードの振動を
励起してはならない、さらに、低い共振周波数を有する
不要なモードの振動は、可聴音を発生し不快に感じられ
る。tた一般(前記最も好ましい共振周波数は可聴音領
域(2o Hz〜20 KHz 3以上に設定されてい
る。
Although this is a vibration wave motor driven in this way, the moving body 3
In addition to the mode of vibration that is generated by applying the most preferable resonant frequency that excites the vibration that most efficiently drives friction, there are other modes that are generated by resonance. These modes are unnecessary to drive a vibration wave motor, so vibrations in such unnecessary modes should not be excited as much as possible, and furthermore, vibrations in unnecessary modes with low resonant frequencies should be avoided. It generates audible sounds and feels uncomfortable. In general, the most preferable resonant frequency is set in the audible range (20 Hz to 20 KHz 3 or higher).

又、始動時、停止時、加減速時等の電歪素子に印加する
周波電圧の電圧値が変化するときKは、周波電圧の周波
数の他に他の周波数の成分を含んだ電圧を電歪素子に印
加することKなってしまう。
Also, when the voltage value of the frequency voltage applied to the electrostrictive element changes during starting, stopping, acceleration/deceleration, etc., K is the electrostrictive voltage that contains components of other frequencies in addition to the frequency of the frequency voltage. The voltage applied to the element becomes K.

始動時の周波電圧波形第3図(a)のようにf(t) 
= eg Bin ωOt (t≧0)とする。
Frequency voltage waveform at startup f(t) as shown in Figure 3 (a)
= eg Bin ωOt (t≧0).

0g  は印加電圧の最大値 ω0 は印加電圧の共振角周波数 これをフーリエ変換すると、 ?(ω) =+J’: f(t)e−j”at;−〔π
δ(ω角)−πδ(ω+ωoDjで;碩−■=1〕j となる。これをグラフに示すと第3図(b)、(0)の
よう忙なる。第3図(1))は、角周波数ωを横軸に関
数五ω)の実数部分を縦軸にしている。又第3(0)図
は角周波数ωを横軸に関数F 11.1)の虚数部を縦
軸にしている。
0g is the maximum value of the applied voltage ω0 is the resonance angular frequency of the applied voltage. If we transform this into Fourier transform, we get ? (ω) =+J': f(t)e−j”at;−[π
δ(ω angle)−πδ(ω+ωoDj; 碩−■=1]j. If this is shown in a graph, it will be busy as shown in Fig. 3(b) and (0). Fig. 3(1)) is , the horizontal axis is the angular frequency ω, and the vertical axis is the real part of the function (5ω). In addition, in FIG. 3(0), the horizontal axis represents the angular frequency ω, and the vertical axis represents the imaginary part of the function F11.1).

このように第3図(a)のような過渡的な波形は第3図
(b)に示されるように共振角周波数ω0の他の角周波
数成分を含んでいる九め、第5図(a)のような波形を
印加したのでは、不要モードの振動を励起してしまい、
可聴音を発生してしまってうるさbという欠点がめった
。また停止時、加減速時のように印加する周波電圧の電
圧値変化がある時も同様に可聴音が起こるという欠点路
の欠点を解消することを目的とし、かかる目的の基で本
発明は振動波モータの駆動回路において電気−機械エネ
ルギー変換素子に印加する周波電圧の振幅を徐々に変化
させていくことKよりvs音を実質的に発生させないf
ikすることを特徴とする。
In this way, the transient waveform shown in Figure 3(a) contains other angular frequency components of the resonance angular frequency ω0 as shown in Figure 3(b), and the transitional waveform shown in Figure 5(a) ) If you apply a waveform like this, it will excite vibrations in unnecessary modes,
The problem is that it generates audible sounds and is noisy. Further, it is an object of the present invention to eliminate the drawback of the defective path that an audible sound similarly occurs when there is a change in the voltage value of the applied frequency voltage, such as when stopping or accelerating/decelerating. Gradually changing the amplitude of the frequency voltage applied to the electro-mechanical energy conversion element in the drive circuit of a wave motor.
It is characterized by ik.

〈実施例〉 以下に述べる実権例においては電気−機械エネルギー変
換素子として電歪素子を用りるが他の素子、磁電素子、
圧電素子を用いてもよりのは言うまでもない。
<Example> In the practical examples described below, an electrostrictive element is used as the electro-mechanical energy conversion element, but other elements, magneto-electric elements,
Needless to say, piezoelectric elements can also be used.

第4図は本発明の実施例の回路図で、8は発振部、9は
関数発生部、10は乗算部、11はフィルタ移相部、1
2は90’移相部、13.14 d増幅部、taは発振
用電極部の電歪素子、1a。
FIG. 4 is a circuit diagram of an embodiment of the present invention, in which 8 is an oscillation section, 9 is a function generation section, 10 is a multiplication section, 11 is a filter phase shift section, 1
2 is a 90' phase shift section, 13.14 d is an amplification section, ta is an electrostrictive element of an oscillation electrode section, and 1a.

tbは駆動用電極部の電歪素子、R1−R5は抵抗素子
、Ofはコンデンサ、swはスイッチ、mtハ電源、O
Pt・OI’2 Fi演算増@器である。
tb is an electrostrictive element of the driving electrode section, R1-R5 is a resistance element, Of is a capacitor, sw is a switch, mt is a power supply, O
Pt・OI'2 Fi operation intensifier.

関数発生器9はスイッチswomJc!j7演算増幅器
OP2よシ成る積分回路の入力に電圧見を加える動作を
行う。このときの演算増幅器OP2よシ成る積分回路の
出力電圧VO2はフーリエ級数に展開すると次のように
表わされる。
The function generator 9 is a switch swomJc! j7 It performs the operation of adding a voltage reference to the input of the integrating circuit consisting of operational amplifier OP2. At this time, the output voltage VO2 of the integrating circuit consisting of the operational amplifier OP2 is expressed as follows when expanded into a Fourier series.

ただし、ム。p2は清算増幅器OP2の増@度tはスイ
ッチSWをONにしてからの時刻 このような場合、t ((c+i4のときには(時定数
を充分大き(とりたときには) と近似でき、はぼtK比例する出方電圧702を得るこ
とができる。ここで第4図I/c示すtoにおいては(
t、 << ol−Ft4 )、to2は以下の様にな
る。
However, Mu. p2 is the increase in clearing amplifier OP2 @t is the time after turning on the switch It is possible to obtain an output voltage 702 that is (
t, << ol-Ft4), to2 is as follows.

この出力電圧Voz(to)で乗算部100入力が飽和
するとすれば、乗算部の入力電圧t” Vmil(t)
If the input of the multiplier 100 is saturated with this output voltage Voz(to), then the input voltage of the multiplier t'' Vmil(t)
.

Vmi2(t)、出力電圧をVmo (t )としたと
き各々の特性は第5図(a) (b)((りのように示
される。すなわち出力電圧vo1(t)けt = t6
で出力が飽和する九めそれ以降上昇しない。第5図(a
lは発振部8側の入力電圧TI!1it(t)、(b)
は関数発生部9側の入力電圧”iml 2 (t) 、
 (0)Fi乗算部1oの出方Vmo(t)である。
When Vmi2(t) and the output voltage are Vmo(t), their respective characteristics are shown as in Figure 5 (a), (b) ((i.
The output does not increase after the ninth point where it becomes saturated. Figure 5 (a
l is the input voltage TI on the oscillation unit 8 side! 1it(t),(b)
is the input voltage on the function generator 9 side “iml 2 (t),
(0) This is the output Vmo(t) of the Fi multiplier 1o.

このように徐々に電歪素子に印加する周波電圧を上昇さ
せると発生する他の不要モードを含む周波数成分の絶対
値が減少するので可聴音の音圧レベルを減少させて実質
的に聰えなくすることができる。
In this way, when the frequency voltage applied to the electrostrictive element is gradually increased, the absolute value of the frequency components including other unnecessary modes that occur decreases, reducing the sound pressure level of the audible sound and making it virtually invisible. can do.

この事を式を用、いて示すと、 となる。このフーリエ変換は、 ぃシ〔πδ(ω−ω0)−πδ(ω+ωo))2j となる。このように不要モードを含む周波数成分を含む
項のすべてはtoで除されているためエネルギーのピー
ク値が減少することがわかる。
If we show this using a formula, we get: This Fourier transform becomes: [πδ(ω−ω0)−πδ(ω+ωo))2j]. In this way, it can be seen that the peak value of energy decreases because all terms including frequency components including unnecessary modes are divided by to.

6口 (淘7丁〔πδ(ω−Q)O)−πδ(ω+ωo)1が
振動に必要な周波数成分である)。
6 ports (7 ports [πδ(ω-Q)O)-πδ(ω+ωo)1 is the frequency component necessary for vibration).

またスイッチSWをoyyさせた場合にも本実施例に依
れば関数発生部9の出力は徐々に減少してい〈九め前述
のスイッチSVをONさせ九場合と同様に可聴音の音圧
レベルを減少させることができる。1+モータの加減速
時にも積分回路によ〕前述と同様に電歪素子に印加する
周波電圧の振幅を徐々に変化させるためこの可聴音を減
少できる。
Also, according to this embodiment, even when the switch SW is turned on, the output of the function generator 9 gradually decreases. can be reduced. 1+ Even when the motor is accelerated or decelerated, the amplitude of the frequency voltage applied to the electrostrictive element is gradually changed by the integrating circuit as described above, so that this audible sound can be reduced.

第6図は他の実施例を示す図であシ、第4図の実施例に
おいては時定数を大きくとっ九のに対して、本実施例に
おいては第4図と同じ回路で時定数を小さくとっている
。vmll(t)は、乗算部10の発振部8からの入力
電圧、Vmt2(t)は乗算部10の関数発生部9から
の入力電圧、Two(t)は乗算部10の出力電圧であ
る。ここで、to2はC1R4K比較してほぼ等しい。
FIG. 6 is a diagram showing another embodiment. In the embodiment of FIG. 4, the time constant is set to a large value, whereas in this embodiment, the time constant is set to a small value using the same circuit as that of FIG. I'm taking it. vmll(t) is the input voltage from the oscillation unit 8 of the multiplication unit 10, Vmt2(t) is the input voltage from the function generation unit 9 of the multiplication unit 10, and Two(t) is the output voltage of the multiplication unit 10. Here, to2 is almost equal compared to C1R4K.

(一定) このように1時間とともに徐々に印加周波電圧を上昇す
る電圧を得る方法としては他にFFT(高速フーリエ変
換)アナライザの時間窓として用いられている関数(例
えば、ハニング、/)ミ/グ、ハーフ・コサイン、ガウ
シャン、ブラックマン等)t−発生させる回路を用いる
ことも出来る。
(Constant) Another way to obtain a voltage that gradually increases the applied frequency voltage over one hour is to use a function (for example, Hanning, /), mi/ It is also possible to use a t-generating circuit (eg, half-cosine, Gaussian, Blackman, etc.).

第7図は他の実施例である。第7図(a)は、ブロック
図で8は発振部、11はフィルタ移相部、12は90@
移相部、15.16は電源電圧に応じて増幅度が変わる
増幅器、17は15.16の電源、la、tbは駆動用
電歪素子である。第7図(b)は電源電圧に応じて増幅
度が変わる増幅器、  15.16を示す図で、”4・
R7は抵抗素子、0dL8は硫化カドミウム素子、LI
CDは発光ダイオード、18は電力増幅器である。第7
図(0)は電源17を示す図でB2は電源(電池等)、
Trはトランジスタ、−はダイオード、C2はコンデン
サ、Tはトランス、19はパルス幅可変発振器である。
FIG. 7 shows another embodiment. FIG. 7(a) is a block diagram in which 8 is an oscillation section, 11 is a filter phase shift section, and 12 is 90@
A phase shifter 15.16 is an amplifier whose amplification degree changes depending on the power supply voltage, 17 is a power supply of 15.16, and la and tb are driving electrostrictive elements. Figure 7(b) is a diagram showing an amplifier 15.16 whose amplification degree changes depending on the power supply voltage.
R7 is a resistance element, 0dL8 is a cadmium sulfide element, LI
CD is a light emitting diode, and 18 is a power amplifier. 7th
Figure (0) is a diagram showing the power supply 17, B2 is the power supply (battery, etc.),
Tr is a transistor, - is a diode, C2 is a capacitor, T is a transformer, and 19 is a variable pulse width oscillator.

ここで、電源17の動きを説明する。電源17は電源E
2をトランジスタTrJf−よシパルスI[1fJ変発
振器でチョップし交流化してトランスTKよ〕昇電圧す
る。トランス702次側では、ダイオードmとコンデン
サC2によ〕整流される。
Here, the operation of the power supply 17 will be explained. Power supply 17 is power supply E
The voltage of the transistor TrJf-2 is increased by the pulse I [chopped with a 1fJ variable oscillator, converted to AC, and converted to AC]. On the secondary side of the transformer 70, it is rectified by a diode m and a capacitor C2.

負荷にもよるが、コンデンサC2を変えることKよシ、
電圧中Vの立ち上シ特性を変えることができる。
Depending on the load, you may need to change capacitor C2.
The rise characteristics of voltage V can be changed.

次に第7図(1))の電源電圧に応じて増幅度が変わる
増幅器、15.16 Kついて説明する。電力増幅器1
8の増幅度は硫化カドミウム素子Ca5O化カドミウム
素子CdSの抵抗−ムは電源17の電圧中Vと抵抗Ry
Vcよシ発光ダイオードIJI) K流れる電流により
変化する。このため、電源17の電圧中Vが高くなるに
つれて抵抗Redsが小さくなり増幅度も増加する。
Next, the 15.16 K amplifier whose amplification degree changes depending on the power supply voltage shown in FIG. 7(1)) will be explained. power amplifier 1
The amplification factor of 8 is the resistance of the cadmium sulfide element Ca5O element CdS, which is determined by the voltage V of the power supply 17 and the resistance Ry.
Vc and light emitting diode (IJI) K vary depending on the flowing current. Therefore, as the voltage V of the power supply 17 becomes higher, the resistance Reds becomes smaller and the degree of amplification also increases.

これらの機能により電源17の電圧の立上シによりミ歪
素子に印加する周波電圧の振幅を徐々に上昇させること
ができる。反対に電源電圧の立下が夛時に4tコンテ゛
ン廿C2、抵抗R7によって発光ダイオードLm!!D
の発光が徐々に減少していくため印加電圧を徐々に小さ
くすることができる。したがって前述の実施例と同様可
聴音の発生を押えることができる。チークの加減速時も
同様である。
With these functions, it is possible to gradually increase the amplitude of the frequency voltage applied to the microdistortion element as the voltage of the power supply 17 rises. On the other hand, when the power supply voltage starts to fall, the light emitting diode Lm! ! D
Since the light emission gradually decreases, the applied voltage can be gradually reduced. Therefore, the generation of audible sounds can be suppressed as in the previous embodiment. The same applies to the acceleration and deceleration of cheeks.

他にもシリーズレギュレータ等を用いた電源に於て時定
数を適当に与えることKよっても実現することができる
Alternatively, this can be realized by appropriately providing a time constant in a power supply using a series regulator or the like.

又、本発明は、主発振器を用いる方式(MOPA方式)
Kも自励発振方式にも適用できる。
The present invention also provides a method using a main oscillator (MOPA method).
K can also be applied to self-oscillation systems.

〈発明の効果〉 振動波モータに印加する周波電圧の振幅を徐々に大きく
していくことKより、不要な振動モ−ドの周波数成分を
減少することが出来るようになった。このため可聴域の
撮動も少なくなった。
<Effects of the Invention> By gradually increasing the amplitude of the frequency voltage applied to the vibration wave motor, it has become possible to reduce unnecessary vibration mode frequency components. For this reason, the number of shots in the audible range has decreased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動波モータの主要部の概略図、lJ2図は、
振動波モータの駆動原理を説明する図、 第3図は過渡的外正弦波の時間波形とそのフーリエ変換
による周波数スペクトルを示す図、第4図は、本発明の
実施例の回路図、 第5図は本発明の動作原理を示す図、 第6図は他の実施例の動作原理を示す図、第7図は他の
実施例を示す図である。 la、l・・・駆動用電歪素子 1C・・・発振用電歪素子 2・・・振動体 5・・・移動体 8・・・発振部 9・・・関数発生部 1a・・・乗算部 11・・・フィルタ・移相部 12・・・90’移相部 13.14・・・電力増幅部 !5.16 ・・・電源電圧により増幅度が変わる増幅
器17・・・電源 18・・・電力増幅器 19・・・パルス幅可変発振器 R1−R6・・・抵抗素子 01〜02−、・コンデンサ SW・・・スイッチ M1〜x2・・・直流電源 QPMP2・・・演算増幅器 LIlfD・・・発光ダイオード 04日・・・硫化カドミウム素子 Tr・φ・トランジスタ T・・・トランス Dl・・・ダイオード 躬2図 第4図
Figure 1 is a schematic diagram of the main parts of a vibration wave motor, and Figure lJ2 is:
FIG. 3 is a diagram illustrating the driving principle of a vibration wave motor. FIG. 3 is a diagram showing the time waveform of a transient external sine wave and its frequency spectrum obtained by Fourier transformation. FIG. 4 is a circuit diagram of an embodiment of the present invention. 6 is a diagram showing the operating principle of the present invention, FIG. 6 is a diagram showing the operating principle of another embodiment, and FIG. 7 is a diagram showing another embodiment. la, l...Driving electrostrictive element 1C...Oscillating electrostrictive element 2...Vibrating body 5...Moving body 8...Oscillating section 9...Function generating section 1a...Multiplication Section 11...Filter/phase shift section 12...90' phase shift section 13.14...Power amplification section! 5.16... Amplifier whose amplification degree changes depending on the power supply voltage 17... Power supply 18... Power amplifier 19... Variable pulse width oscillator R1-R6... Resistance elements 01-02-, Capacitor SW. ... Switches M1 to x2 ... DC power supply QPMP2 ... Operational amplifier LIlfD ... Light emitting diode 04 day ... Cadmium sulfide element Tr, φ, Transistor T ... Transformer Dl ... Diode Fig. 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1) 周波電圧を電気−機械変換素子に印加して該素
子に発生した伸縮運動に励起されて生じる振動波により
移動体を駆動する振動波モータの駆動回路において、前
記電気−機械変換素子に印加する前記周波電圧の振幅を
変化させる際に前記振幅を前記モータに可聴音が実質的
に発生しない様徐々に変化させる手段を具備したことを
特徴とする振動波モータの駆動回路。
(1) In a drive circuit for a vibration wave motor that drives a moving body by vibration waves generated by applying a frequency voltage to an electro-mechanical conversion element and being excited by the expansion and contraction movement generated in the element, the electro-mechanical conversion element is A drive circuit for a vibration wave motor, comprising means for gradually changing the amplitude of the applied frequency voltage so as not to substantially generate an audible sound in the motor.
(2) 前記徐々に変化させる手段は前記周波電圧の時
間に対する変化量を指数関数に合うようにした手段とし
たことを特徴とする特許請求の範囲第1項記載の振動波
モータの駆動回路。
(2) The drive circuit for a vibration wave motor according to claim 1, wherein the means for gradually changing the frequency voltage is a means for making the amount of change of the frequency voltage with respect to time match an exponential function.
(3) 前記徐々に変化させる手段は前記周波電圧の時
間に対する変化量を1次関数に合うようにした手段とし
たことを特徴とする特許請求の範囲第1項記載の振動波
モータの駆動回路。
(3) The drive circuit for a vibration wave motor according to claim 1, wherein the means for gradually changing the frequency voltage is a means for making the amount of change of the frequency voltage with respect to time match a linear function. .
(4) 前記徐々に変化させる手段は前記周波電圧の時
間に対する変化量を高速フーリエ変換で用いられる窓関
数と同じくした手段としたことを特徴とする特許請求の
範囲第1項記載の振動波モータの駆動回路。
(4) The vibration wave motor according to claim 1, wherein the means for gradually changing the frequency voltage is a means for making the amount of change of the frequency voltage with respect to time the same as a window function used in fast Fourier transform. drive circuit.
JP60062834A 1985-03-26 1985-03-26 Drive circuit of vibration wave motor Pending JPS61221583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062834A JPS61221583A (en) 1985-03-26 1985-03-26 Drive circuit of vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062834A JPS61221583A (en) 1985-03-26 1985-03-26 Drive circuit of vibration wave motor

Publications (1)

Publication Number Publication Date
JPS61221583A true JPS61221583A (en) 1986-10-01

Family

ID=13211739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062834A Pending JPS61221583A (en) 1985-03-26 1985-03-26 Drive circuit of vibration wave motor

Country Status (1)

Country Link
JP (1) JPS61221583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210454A (en) * 1990-07-18 1993-05-11 Asmo Co., Ltd. Driving circuit for an ultrasonic motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113013A (en) * 1981-12-28 1983-07-05 Shinko Electric Co Ltd Control unit for resonance type electromagnetic vibrator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113013A (en) * 1981-12-28 1983-07-05 Shinko Electric Co Ltd Control unit for resonance type electromagnetic vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210454A (en) * 1990-07-18 1993-05-11 Asmo Co., Ltd. Driving circuit for an ultrasonic motor

Similar Documents

Publication Publication Date Title
JPH0322881A (en) Method and circuit for controlling ultrasonic motor
JPS60170474A (en) Vibration wave motor
JPH072023B2 (en) Ultrasonic motor drive circuit
Wen et al. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation
JPS60176470A (en) Drive system of vibration wave motor
JPS61221583A (en) Drive circuit of vibration wave motor
JPS60176471A (en) Drive circuit of vibration wave motor
JPH07143770A (en) Ultrasonic motor
JPS61221584A (en) Drive circuit of vibration wave motor
US6489705B1 (en) Thin-disc piezoelectric actuating ultrasonic motor
JP2000324865A (en) Vibrating motor and optical fiber switch
JP3453838B2 (en) Ultrasonic motor
JPH08237970A (en) Ultrasonic actuator and its driving method
JP4594034B2 (en) Vibration type driving device, its control device and its control method
JPS61221585A (en) Drive circuit of vibration wave motor
JPH11164574A (en) Oscillatory actuator driver
JPS63299788A (en) Ultrasonic motor driving device
JPH07213078A (en) Ultrasonic motor
JP2699299B2 (en) Ultrasonic motor drive circuit
JPS63268477A (en) Drive circuit for oscillatory wave motor
JPS61157276A (en) Drive circuit of vibration wave motor
JP2001119962A (en) Actuator using piezoelectric crystal element and drive method therefor
JPH0870584A (en) Ultrasonic motor and its manufacture
JP3401096B2 (en) Ultrasonic motor drive
JPS627379A (en) Ultrasonic wave motor apparatus