JPS61221524A - Apparatus for linking small-capacity generation system - Google Patents

Apparatus for linking small-capacity generation system

Info

Publication number
JPS61221524A
JPS61221524A JP6019285A JP6019285A JPS61221524A JP S61221524 A JPS61221524 A JP S61221524A JP 6019285 A JP6019285 A JP 6019285A JP 6019285 A JP6019285 A JP 6019285A JP S61221524 A JPS61221524 A JP S61221524A
Authority
JP
Japan
Prior art keywords
power generation
small
circuit breaker
generation device
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6019285A
Other languages
Japanese (ja)
Other versions
JPH0550209B2 (en
Inventor
篠崎 順彦
江本 政春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP6019285A priority Critical patent/JPS61221524A/en
Publication of JPS61221524A publication Critical patent/JPS61221524A/en
Publication of JPH0550209B2 publication Critical patent/JPH0550209B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は小容量発電システムの連系装置に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to an interconnection device for a small capacity power generation system.

B1発明の概要 本発明は、小容量発電装置と配電系統を連系9させて負
荷に電力を供給するように構成され次小容量発電システ
ムの連系装置において、 前記小容量発電装置の出力端と大地間にコンデンサを接
続して、地絡事故時に連系用の遮断器を遮断させる九め
の継電器に充分な電流が流れるようにするとともに、前
記継電器の動作時間を最適な動作時間に整定し、且つ前
記遮断器が遮断されてから所定の設定時間経過後に、前
記配電系統電圧と小容量発電装置の出力電圧とのベクト
ル差が設定値以下でちるとき前記遮断器に投入指令を与
える自動再閉路継電器を設けることにより、既設の配電
系統の設備を変更すること無く小容量発電設備を既設の
配電系統に連系することができ、しかも地絡事故が発生
しても小容量発電設備や系統に悪影響を与え無いように
したものである。
B1 Summary of the Invention The present invention provides an interconnection device for a small-capacity power generation system configured to interconnect a small-capacity power generation device and a power distribution system to supply power to a load, comprising: an output end of the small-capacity power generation device; A capacitor is connected between the ground and the ground to ensure that sufficient current flows to the ninth relay that shuts off the interconnection circuit breaker in the event of a ground fault, and to set the operating time of the relay to the optimal operating time. and an automatic system that issues a closing command to the circuit breaker when the vector difference between the distribution system voltage and the output voltage of the small-capacity power generator falls below a set value after a predetermined set time has elapsed since the circuit breaker was shut off. By installing a reclosing relay, small-capacity power generation equipment can be connected to the existing distribution system without changing the existing distribution system equipment, and even if a ground fault occurs, the small-capacity power generation equipment or This is to avoid any negative impact on the system.

C0従来の技術 近年、電力の需要はますます増加の傾向にあるが、現在
主流をなしている原子力や火力による発電システムは資
源や設置場所等の面で制約を受ける。この為電力消費地
に分散配置でき、しかも無公害で発電効率の良い燃料電
池発電システムが注目されている。分散配置のためには
小規模発電システムとして、既設の配電系統の負荷端に
接続する方式が最も経済的である。
C0 Conventional Technology In recent years, the demand for electric power has been increasing more and more, but the currently mainstream power generation systems using nuclear power and thermal power are subject to restrictions in terms of resources, installation locations, etc. For this reason, fuel cell power generation systems are attracting attention because they can be distributed across power consumption areas, are non-polluting, and have high power generation efficiency. For distributed deployment, the most economical method for small-scale power generation systems is to connect to the load end of the existing distribution system.

D0発明が解決しようとする問題点 しかしながら既設の配電系統の保護方式や制御方式との
関連があるため、従来の発電設備と配電系統との並列運
転制御方式や、自家用発電システムの保護制御方式をそ
のまま適用することができなかった。すなわち、例えば
従来の大規模な発電設備間の並列運転システムは、配電
系統ではなくほぼ専用に近い送電系統によって結ばれた
構成になっている。このような並列運転システムでは各
発電所毎に並列運転に必要な保護制御機能(同期検出、
同期投入、同期外れ検出等)を備えた設備を持っておシ
、また送電系統にも同期外れや周波数変動等に対応でき
る保護制御設備が設置されている。ところが小規模な発
電システムを既設の配電系統に連系する場合は、配電系
統側に同期WA認の機能が無いばかりでなく、自動再閉
路装置や事故区間表示器等の配電系統特有の制御装置が
存在するため、従来の発電所間の連系方式をそのまま適
用することはできなかった。
The problem that the D0 invention aims to solve However, since it is related to the protection method and control method of the existing power distribution system, it is difficult to implement the parallel operation control method of the conventional power generation equipment and the power distribution system, or the protection control method of the private power generation system. It could not be applied as is. That is, for example, a conventional parallel operation system between large-scale power generation facilities has a configuration in which they are connected not by a power distribution system but by a nearly dedicated power transmission system. In such a parallel operation system, each power plant has protective control functions (synchronization detection,
In addition, power transmission systems are equipped with protection control equipment that can respond to synchronization and frequency fluctuations. However, when connecting a small-scale power generation system to an existing distribution system, not only does the distribution system not have a synchronous WA recognition function, but it also requires control devices specific to the distribution system, such as automatic reclosing devices and fault section indicators. Therefore, it was not possible to apply the conventional interconnection method between power plants as is.

ところで非接地系の配電系統に接続される電気設備の地
絡保護は、従来地絡方向リレー67Gや地絡過電流リレ
ー51Gで行なっていた。すなわち配電系統が非接地で
あるため、該配電系統に接続される発電設備も非接地と
なり、対地容量も小さいので地絡過電流リレー51Gで
地絡保護を行なうのが通常である。
By the way, earth fault protection of electrical equipment connected to a non-grounded power distribution system has conventionally been performed using a ground fault direction relay 67G or a ground fault overcurrent relay 51G. That is, since the power distribution system is not grounded, the power generation equipment connected to the power distribution system is also not grounded, and the grounding capacity is also small, so it is normal to provide ground fault protection using the ground fault overcurrent relay 51G.

ここで配電系統と小容量発電設備を連系したシステムに
おいて、地絡方向リレー67Gや地絡過電流リレー51
Gによって地絡保護を行なう場合の問題点を第4図の回
路図とともに説明する。第4図において、変圧器Tの1
次側は図示しない交流電源に接続されているものとする
。変圧器Tの2次側は遮断器CB6を介して交流母線1
に接続されている。CBl−CBnは、並設された配電
線路(以下、フィーダと称す) Fs〜Fnと前記交流
母線1を結ぶt路に各々介挿され7’C遮断器である。
Here, in a system that interconnects the power distribution system and small-capacity power generation equipment, the ground fault direction relay 67G and the ground fault overcurrent relay 51
Problems in providing ground fault protection using G will be explained with reference to the circuit diagram in FIG. In Fig. 4, 1 of transformer T
It is assumed that the next side is connected to an AC power source (not shown). The secondary side of transformer T is connected to AC bus 1 via circuit breaker CB6.
It is connected to the. CBl-CBn are 7'C circuit breakers inserted in the t-paths connecting parallel distribution lines (hereinafter referred to as feeders) Fs to Fn and the AC bus 1, respectively.

前記交流電源(図示省略)の交流出力電力は、変圧器T
、J断器CB、、交流母線1.遮断器CB、〜CB。
The AC output power of the AC power supply (not shown) is supplied to the transformer T.
, J disconnector CB, , AC bus 1. Circuit breaker CB, ~CB.

およびフィーダF1%Fnt−介して図示しない負荷に
供給される。2は小容量発電装置であシ1例えば燃料電
池発電装置とその直流出力電力を交流変換するインバー
タ(図示省略)とで構成されている。この小容量発電装
置!!2の交流出力電力は、地路過電流リレー51Gの
動作時に遮断される遮断器CBIおよび前記フィーダF
1を介して負荷(図示省略)に供給される。地絡過電流
リレー51Gは、小容量発電装置2と遮断器CBIを結
ぶ電路に介挿された零相変流器Z CToの出力電流に
よって動作する。前記交流母線1には零相電圧変成器G
PTが設けられている。フィーダF1〜FnKは零相変
流器Z’CT、〜ZCTnが各々設けられている。
and is supplied to a load (not shown) via feeder F1%Fnt-. Reference numeral 2 denotes a small-capacity power generation device, which is composed of a fuel cell power generation device 1, for example, and an inverter (not shown) that converts its DC output power to AC. This small capacity power generation device! ! The AC output power of No. 2 is supplied to the circuit breaker CBI and the feeder F, which are cut off when the ground overcurrent relay 51G operates.
1 to a load (not shown). The ground fault overcurrent relay 51G is operated by the output current of the zero-phase current transformer ZCTo inserted in the electric path connecting the small-capacity power generation device 2 and the circuit breaker CBI. The AC bus 1 is equipped with a zero-phase voltage transformer G.
PT is provided. The feeders F1 to FnK are each provided with zero-phase current transformers Z'CT and ZCTn.

地絡方向リレー67G、〜67Gnは、前記零相電圧変
成器GPTの出力電圧と零相変流器ZCT、〜ZCTn
の各出力電流とによりて動作する。電相電圧変成器GP
Tの2次側には微地絡選択リレー10Gが設けられてい
る。79F、〜79Fnは前記遮断器CB、〜CBnを
各々再閉路させるための再閉路リレーである。
The ground fault direction relays 67G, ~67Gn connect the output voltage of the zero-phase voltage transformer GPT and the zero-phase current transformers ZCT, ~ZCTn.
It operates with each output current. Phase voltage transformer GP
A slight ground fault selection relay 10G is provided on the secondary side of T. 79F and 79Fn are re-closing relays for re-closing the circuit breakers CB and CBn, respectively.

上記のように構成された装置において、並列運転中にフ
ィーダF1上のA点、又流量線1上のB点、フィーダF
、上の0点および小容量発電装置2と遮断器CBIを結
ぶ電路上のD点で各々地絡事故が発生すると、次のよう
な事態が生じる。
In the apparatus configured as above, during parallel operation, point A on feeder F1, point B on flow line 1, feeder F
, when a ground fault occurs at point 0 above and point D on the electric line connecting the small-capacity power generator 2 and circuit breaker CBI, the following situation occurs.

(1)A点で地絡事故が発生し次場合、地絡方向リレー
67G、が動作して遮断器CB1が遮断され、電力系統
側からの電力供給は断たれる。ところが小容量発電装置
2には対地容量がほとんど無いので、地絡過電流リレー
51Gを動作させるに充分な零相電流が零相変流器Z 
CToに流れ無い。この為遮断器CBIFi遮断され無
いので、フィーダF1に接続された負荷(図示省略)が
小さい場合、小容量発電装置2からの電力供給が続行さ
れてしまう。すなわち、地絡事故を残したままの状態で
、電力系統側の電源電圧と小容量発電装置2の出力電圧
が非同期になってしまう。この状態で所定時間経過後に
再閉路リレー79F、が動作して遮断器CB、が再閉路
されると、電力系統と小容量発電装置20間で過大な電
流が流れる。この為小容量発電装置2および電力系統に
悪影響を与えてしまう。
(1) If a ground fault occurs at point A, the ground fault direction relay 67G operates to shut off the circuit breaker CB1, cutting off the power supply from the power system. However, since the small-capacity power generation device 2 has almost no ground capacity, the zero-sequence current sufficient to operate the ground fault overcurrent relay 51G flows through the zero-sequence current transformer Z.
There is no flow to CTo. Therefore, since the circuit breaker CBIFi is not cut off, if the load (not shown) connected to the feeder F1 is small, the power supply from the small capacity power generation device 2 will continue. That is, while the ground fault remains, the power supply voltage on the power system side and the output voltage of the small-capacity power generation device 2 become asynchronous. In this state, when the re-closing relay 79F operates to re-close the circuit breaker CB after a predetermined period of time has elapsed, an excessive current flows between the power system and the small-capacity power generation device 20. For this reason, the small-capacity power generation device 2 and the power system will be adversely affected.

(2)B点で地絡事故が発生すると、地絡過電流リレー
51Gお↓び地絡方向リレー67G1〜67Gnは動作
せず、微地絡選択リン−10Gによって遮断器CB1〜
CBnが遮断された後、遮断器CBoが遮断される。こ
の場合遮断器CBIは遮断されないので、前記(1)項
で述べた事と同様の問題が起りてしまり。
(2) When a ground fault occurs at point B, the ground fault overcurrent relay 51G↓ and the ground fault direction relays 67G1 to 67Gn do not operate, and the circuit breakers CB1 to 67Gn are activated by the slight ground fault selection link 10G.
After CBn is cut off, circuit breaker CBo is cut off. In this case, since the circuit breaker CBI is not cut off, a problem similar to that described in item (1) above occurs.

(3)0点で地絡事故が発生すると、地絡方向リレー6
7 Gtによって遮断ICB、が遮断されるだけである
ので、並列運転に支障は無い。
(3) If a ground fault occurs at point 0, the ground fault direction relay 6
Since the cut-off ICB is only cut off by 7 Gt, there is no problem with parallel operation.

(4)  D点で地絡事故が発生した場合、電力系統側
の対地容量を通して地絡点りに地絡電流が流れるので、
零相変流6 Z CT、には地絡過電流リレー51Gを
動作させるに充分な零相電流が流れる。
(4) If a ground fault occurs at point D, the ground fault current will flow to the ground fault point through the ground capacity of the power system.
A zero-sequence current sufficient to operate the earth fault overcurrent relay 51G flows through the zero-sequence transformer 6 Z CT.

この為地絡過電流リレー51Gが動作して遮断器CBI
が遮断されるので、電力系統は正常状態となシ問題は無
い。
For this reason, the ground fault overcurrent relay 51G operates and the circuit breaker CBI
Since the power system is cut off, the power system is in a normal state and there are no problems.

本発明は上記の点に鑑みてなされたもので、既設の配電
系統の設備を変更すること無く小容量発電設備を既設の
配電系統に連系することができ、しかも地絡事故が発生
しても小容量発電設備や系統に悪影響を与え無い小容量
発電システムの連系装置を提供することを目的としてい
る。
The present invention has been made in view of the above points, and allows small-capacity power generation equipment to be connected to the existing distribution system without changing the equipment of the existing distribution system, and moreover, without causing ground faults. The purpose of the present invention is to provide an interconnection device for a small-capacity power generation system that does not adversely affect small-capacity power generation equipment or the grid.

E1問題点を解決する次めの手段 本発明は、小容量発電装置と配電系統を連系させて負荷
に電力を供給するように構成された小容量発電システム
の連系装置において、前記配電系統の配電線路と小容量
発電装置を結ぶ電路に介挿された遮断器と、この遮断器
と鱈記小容量発電装置を結ぶ電路に介挿された零相変流
器と、動作時間が前記配電系統の配電線路に設けられた
地絡方向継電器の動作時間より遅く且つ前記配電系統に
設けられた微地絡選択継電器の動作時間より遠く整定さ
れているとともに、前記零相変流器の出力によって応動
して前!e遮断器に遮断指令を与える地絡過電流継電器
と、前記遮断器が遮断されて25瓢ら所定の設定時間経
過後に、前記配電系統電圧と小容量発電装置の出力電圧
とのベクトル差が設定値以下であるとき前記遮断器に投
入指令を与える自動再閉路継電器と、前記零相変流器お
よび小容量発電装置を結ぶ電路と大地間に接続されたコ
ンデンサとを備えたことf:l!If徴としている。
Next Means for Solving Problem E1 The present invention provides an interconnection device for a small-capacity power generation system configured to interconnect a small-capacity power generation device and a power distribution system to supply power to a load. A circuit breaker inserted in the electric line connecting the distribution line and the small-capacity power generation device, and a zero-phase current transformer inserted in the electric line connecting the circuit breaker and the small-capacity power generation device, The output of the zero-phase current transformer is set to be slower than the operating time of the ground fault direction relay provided on the distribution line of the power system and further than the operating time of the slight ground fault selection relay provided on the distribution system, and Respond and move forward! e A ground fault overcurrent relay that gives a shutdown command to the circuit breaker, and a vector difference between the distribution system voltage and the output voltage of the small capacity power generation device set to a set value after a predetermined set time has elapsed since the circuit breaker has been disconnected. The present invention further comprises: an automatic reclosing relay that issues a closing command to the circuit breaker when: f:l! It is considered as an “If” sign.

20作用 上記+7)!5に構成された装置において、地絡事故が
発生した場合、コンデンサを介して零相変流器に充分な
電流が流れるので、地絡過電流継電器は確実に動作して
遮断器が遮断される。tた、遮断器が遮断され次後所定
の設定時間経過後には、配電系統電圧と小容量発電装置
の出力電圧とのベクトル差が設定値以下であることを条
件に、前記遮断器が再閉路される。この為小容量発電装
置は電力系統から切離されたままの状態になることは無
く、発電装置の稼動率が向上する。
20 actions above +7)! In the device configured in No. 5, when a ground fault occurs, sufficient current flows through the zero-phase current transformer via the capacitor, so the ground fault overcurrent relay operates reliably and the circuit breaker is cut off. In addition, after the circuit breaker is disconnected and a predetermined set time has elapsed, the circuit breaker recloses on the condition that the vector difference between the distribution system voltage and the output voltage of the small capacity generator is less than or equal to the set value. be done. For this reason, the small-capacity power generation device does not remain disconnected from the power grid, and the operating rate of the power generation device improves.

G、実施例 以下、図面を参照しながら本発明の一実施例を説明する
。第1図において第4図と同一部分は同一符号を持って
示し、その説明は省略する。前記零相変流器Z CTo
が介挿された電路の小容量発電装置2側と大地の間には
コンデンサC3が接続されている。このコンデンサCI
の容量は系統側地絡時に地絡過電流リレー51Gが動作
するのに充分な零相電流が流れるような値に設定する。
G. Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same parts as in FIG. 4 are shown with the same reference numerals, and the explanation thereof will be omitted. The zero-phase current transformer Z CTo
A capacitor C3 is connected between the small-capacity power generation device 2 side of the electric circuit in which the power supply is inserted and the ground. This capacitor CI
The capacity is set to a value such that a sufficient zero-sequence current flows to operate the ground fault overcurrent relay 51G in the event of a ground fault on the system side.

前記零相変流ATOが介挿された電路の遮断器CBI側
と大地の間にはコンデンサC1が接続されている。この
コンデンサC2は、地絡事故時にフィーダF80対地容
量を通して流れる零相電流が地絡過電流リレー51Gを
動作させるに不充分な場合に必要となるコンデンサでお
る。地絡過電流リレー51Gの動作値は、系統側地絡時
にコンデンサCIを通して流れる零相電流に充分応動で
きる値に設定するとともに、発電装置側地絡時にフィー
ダF、側から流入する零相電流(フィーダF、の対地容
量とコンデンサC8の容量和によって決定される)に充
分応動できる値に設定する。地絡過電流リレー51Gの
動作時間は、第2図の特性図に示すように地絡方向リレ
ー67G、〜67 Gnの動作時間より遅く、且つ微地
絡選択リレー10Gの動作時間より速く設定しておく。
A capacitor C1 is connected between the circuit breaker CBI side of the circuit in which the zero-phase transformation ATO is inserted and the ground. This capacitor C2 is a capacitor that becomes necessary when the zero-sequence current flowing through the ground capacitance of the feeder F80 is insufficient to operate the ground fault overcurrent relay 51G in the event of a ground fault accident. The operating value of the ground fault overcurrent relay 51G is set to a value that can sufficiently respond to the zero-sequence current flowing through the capacitor CI in the event of a ground fault on the system side, and also to a value that can sufficiently respond to the zero-sequence current flowing from the feeder F side (feeder (determined by the sum of the ground capacitance of F and the capacitance of capacitor C8). The operating time of the ground fault overcurrent relay 51G is set to be slower than the operating time of the ground fault direction relays 67G to 67Gn and faster than the operating time of the slight ground fault selection relay 10G, as shown in the characteristic diagram of FIG. put.

79Iは、前記遮断器CBIが遮断されてから所定の設
定時間経過後に、前記配電系統電圧と小容量発電装置の
出力電圧とのベクトル差が設定値以下であるとき、遮断
器C1lに投入指令を与える自動再閉路リレーである。
79I issues a closing command to the circuit breaker C1l when the vector difference between the distribution system voltage and the output voltage of the small-capacity power generation device is less than or equal to a set value after a predetermined set time has elapsed since the circuit breaker CBI was shut off. It is an automatic reclosing relay.

この自動再閉路リレー79Iは、例えば第3図に示すよ
うに系統電圧と発電装置側電圧のベクトル差が所定の設
定値以下であるとき出力信号を発するベクトル差電圧確
認部11と、遮断器CBIが遮断されてから所定の設定
時間経過後に出力信号を発するタイマー12と、これら
ベクトル差電圧確認部11およびタイマー12の出力信
号のアンド条件成立時に遮断器CBIに投入指令を発す
るアンド回路13とで構成されている。前記タイマー1
2の設定時間は、配電系統側に設けられ几再閉路リレー
79F8〜79Fn01周期時間より大きく設定してお
く。
This automatic reclosing relay 79I includes, for example, as shown in FIG. A timer 12 that issues an output signal after a predetermined set time has elapsed since the circuit breaker CBI is cut off, and an AND circuit 13 that issues a closing command to the circuit breaker CBI when the AND condition of the output signals of the vector difference voltage confirmation unit 11 and the timer 12 is satisfied. It is configured. Said timer 1
The set time 2 is set to be larger than the cycle time of the reclose relays 79F8 to 79Fn01 provided on the power distribution system side.

次に上記のように構成された装置の動作を述べる。Next, the operation of the apparatus configured as described above will be described.

(1)A点で地絡事故が発生した場合、第2図の動作時
間特性図から明らかなようにまず最初に地絡方向リレー
67G8が動作して遮断器CB、が遮断される。次に零
相変流器ZCT、にはコンデンサC1を通して充分大き
な零相電流が流れるので地絡過電流リレー51Gは確実
に動作する。これによりて遮断器CBIが遮断されるの
で、再閉路リレー79F1によって遮断器CB、が再閉
路されたときに電力系統と小容量発電装置2の間で過大
な電流は流れない。遮断器CB、の再閉路が成功した場
合は、再閉路リレー79F1の1周期時間以上経過し、
且つ系統電圧と小容量発電装置2の出力電圧のベクトル
差が設定値以下であることを条件に遮断WacBIが再
投入されて、回路は元の状態にもどる。
(1) When a ground fault occurs at point A, as is clear from the operating time characteristic diagram in FIG. 2, first the ground fault direction relay 67G8 operates and the circuit breaker CB is shut off. Next, since a sufficiently large zero-sequence current flows through the zero-sequence current transformer ZCT through the capacitor C1, the ground fault overcurrent relay 51G operates reliably. Since the circuit breaker CBI is thereby disconnected, an excessive current does not flow between the power system and the small capacity power generation device 2 when the circuit breaker CB is reclosed by the reclose relay 79F1. If the re-closing of the circuit breaker CB is successful, one cycle time or more of the re-closing relay 79F1 has elapsed;
In addition, on the condition that the vector difference between the system voltage and the output voltage of the small-capacity power generation device 2 is less than or equal to the set value, the cutoff WacBI is turned on again, and the circuit returns to its original state.

(2)8点で地絡事故が発生した場合、地絡方向リレー
67G1は不動作て微地絡選択リレー10Gが動作する
が、その前にコンデンサC1を通して流れる零相電流に
より地絡過電流リレー51Gが先に動作する。この為遮
断器CBIが真先に遮断され、次に遮断器CB、が遮断
されるのでフィーダF、は無電圧となる。この為自動再
閉路リレー79Iの動作条件は満たされなくなシ、これ
によって遮断器CBIは再閉路されず、配電系統は悪影
響を受けない。
(2) When a ground fault occurs at 8 points, the ground fault direction relay 67G1 is inoperative and the slight ground fault selection relay 10G is activated, but before that, the ground fault overcurrent relay 51G is caused by the zero-sequence current flowing through the capacitor C1. operates first. Therefore, the circuit breaker CBI is cut off first, and then the circuit breaker CB is cut off, so that the feeder F becomes voltageless. Therefore, the operating conditions for automatic reclose relay 79I are no longer met, so that circuit breaker CBI is not reclosed and the power distribution system is not adversely affected.

(3)0点で地絡事故が発生した場合、地絡方向リレー
67G、が真先に動作するので、遮断器CB、が遮断さ
れる。この時点で地絡過電流リレー51Gが復帰するの
で、遮断器CBIは遮断されることはない。この為フィ
ーダF、に接続された小容量発電装置2は、フィーダF
8側で発生した地絡事故の影響を受けて不要に切離され
ることはない。
(3) When a ground fault occurs at the 0 point, the ground fault direction relay 67G operates first, so the circuit breaker CB is cut off. At this point, the ground fault overcurrent relay 51G is restored, so the circuit breaker CBI is not cut off. For this reason, the small capacity power generation device 2 connected to the feeder F is
It will not be unnecessarily disconnected due to the effects of a ground fault that occurred on the 8th side.

(4)0点で地絡事故が発生した場合、まず最初に地絡
方向リレー67G、が動作して遮断器CB、が遮断され
て小容量発電装置2の単独運転となる。しかしフィーダ
Flの対地容量とコンデンサC2の和による零相電流が
零相変流器ZCT0に流れるので、地絡過電流リレー5
1Gが動作して遮断器CBIも遮断される。
(4) When a ground fault occurs at the 0 point, first the ground fault direction relay 67G is operated, the circuit breaker CB is cut off, and the small capacity power generation device 2 is operated independently. However, since the zero-sequence current due to the sum of the ground capacity of the feeder Fl and the capacitor C2 flows to the zero-sequence current transformer ZCT0, the ground fault overcurrent relay 5
1G is activated and circuit breaker CBI is also shut off.

H6発明の効果 以上のように本発明によれば次のような効果が得られる
。すなわち、 (1)既設の配電系統の設備を変更すること無く小容量
発電装置と既設の配電系統とを連系することができる。
H6 Effects of the Invention As described above, according to the present invention, the following effects can be obtained. That is, (1) a small-capacity power generation device and an existing power distribution system can be interconnected without changing the equipment of the existing power distribution system.

(2)配電系統の交流母線や小容量発電装置が接続され
た配電線路で地絡事故が発生した場合、連系用の遮断器
を確実に遮断することができる。しかも前記遮断器の再
投入は、系統電圧と小容量発電装置の出力電圧のベクト
ル差が設定値以下であることが確認されてから行なわれ
るので、電力系統と小容量発電装置間で過大な電流は流
れない。この為電力系統や小容量発電装置の各設備に悪
影響を与えることは無い。
(2) If a ground fault occurs on an AC bus in a power distribution system or on a distribution line to which a small-capacity power generation device is connected, the interconnection circuit breaker can be shut off reliably. Moreover, the circuit breaker is reclosed only after it is confirmed that the vector difference between the grid voltage and the output voltage of the small-capacity generator is less than the set value. does not flow. Therefore, there is no adverse effect on the electric power system or the equipment of the small-capacity power generation device.

(3〕  小容量発電装置と連系接続され次配電線路以
外の配電線路で地絡事故が発生しても、連系用の遮断器
は遮断されることは無い。この為小容量発電装置は前記
地絡事故の影響を受けて不要に切離されることは無い。
(3) Even if a ground fault occurs on a distribution line other than the secondary distribution line that is interconnected with a small-capacity power generation device, the interconnection circuit breaker will not be tripped.For this reason, the small-capacity power generation device It will not be unnecessarily disconnected due to the influence of the ground fault.

(4)小容量発電装置と連系接続された配電線路の遮断
器が再閉路に成功した場合、自動再閉路継電器の動作に
よって連系用の遮断器が自動的に再投入される。この為
入手による煩しい再投入操作が不要となシ、小容量発電
装置の稼働率が向上する。
(4) If the circuit breaker of the distribution line connected to the small-capacity power generation device is successfully reclosed, the operation of the automatic reclosing relay automatically closes the circuit breaker for the distribution line again. Therefore, there is no need for the troublesome re-powering operation after obtaining the power, and the operating rate of the small-capacity power generation device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は本発
明の詳細な説明するためのリレーの動作時間特性図、第
3図は本発明の要部を示すブロック図、第4図は従来の
小容量発電システムの連系装置の一例を示す回路図であ
る。 C1* C@ ・・・コンデンサ、Z CTo −Z 
CTn=零相変流器、CB I 、 CBo=CBn 
・・・jl断器、67G1〜67Gn・・・地絡方向リ
レー、51G・・・地絡過電流リレー、10G・・・微
地絡選択リレー、2・・・小容量発電装置、F、〜Fn
・・・フィーダ、79I・・・自動再閉路リレー。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a relay operating time characteristic diagram for explaining the present invention in detail, FIG. 3 is a block diagram showing the main parts of the present invention, and FIG. FIG. 4 is a circuit diagram showing an example of a conventional interconnection device for a small-capacity power generation system. C1* C@ ... Capacitor, Z CTo -Z
CTn=zero phase current transformer, CB I, CBo=CBn
...jl disconnector, 67G1-67Gn...ground fault direction relay, 51G...ground fault overcurrent relay, 10G...slight ground fault selection relay, 2...small capacity power generator, F, ~Fn
...Feeder, 79I...Automatic reclosing relay.

Claims (1)

【特許請求の範囲】[Claims] 小容量発電装置と配電系統を連系させて負荷に電力を供
給するように構成された小容量発電システムの連系装置
において、前記配電系統の配電線路と小容量発電装置を
結ぶ電路に介挿された遮断器と、この遮断器と前記小容
量発電装置を結ぶ電路に介挿された零相変流器と、動作
時間が前記配電系統の配電線路に設けられた地絡方向継
電器の動作時間より遅く且つ前記配電系統に設けられた
微地絡選択継電器の動作時間より速く整定されていると
ともに、前記零相変流器の出力によって応動して前記遮
断器に遮断指令を与える地絡過電流継電器と、前記遮断
器が遮断されてから所定の設定時間経過後に、前記配電
系統電圧と小容量発電装置の出力電圧とのベクトル差が
設定値以下であるとき前記遮断器に投入指令を与える自
動再閉路継電器と、前記零相変流器および小容量発電装
置を結ぶ電路と大地間に接続されたコンデンサとを備え
たことを特徴とする小容量発電システムの連系装置。
In a interconnection device for a small-capacity power generation system configured to interconnect a small-capacity power generation device and a distribution system to supply power to a load, the power generation device is inserted into an electric line connecting the distribution line of the distribution system and the small-capacity power generation device. a zero-phase current transformer inserted in the electrical circuit connecting the circuit breaker and the small-capacity power generation device, and an operating time of a ground-fault directional relay installed on the distribution line of the distribution system. an earth fault overcurrent relay that is set slower and faster than the operation time of a micro-earth fault selection relay provided in the distribution system, and that responds to the output of the zero-phase current transformer to issue a disconnection command to the circuit breaker; and an automatic restart that issues a closing command to the circuit breaker when the vector difference between the distribution system voltage and the output voltage of the small-capacity power generation device is less than or equal to a set value after a predetermined set time has elapsed since the circuit breaker was disconnected. A interconnection device for a small-capacity power generation system, comprising a closing relay, and a capacitor connected between the earth and an electric line connecting the zero-phase current transformer and the small-capacity power generation device.
JP6019285A 1985-03-25 1985-03-25 Apparatus for linking small-capacity generation system Granted JPS61221524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019285A JPS61221524A (en) 1985-03-25 1985-03-25 Apparatus for linking small-capacity generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019285A JPS61221524A (en) 1985-03-25 1985-03-25 Apparatus for linking small-capacity generation system

Publications (2)

Publication Number Publication Date
JPS61221524A true JPS61221524A (en) 1986-10-01
JPH0550209B2 JPH0550209B2 (en) 1993-07-28

Family

ID=13135045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019285A Granted JPS61221524A (en) 1985-03-25 1985-03-25 Apparatus for linking small-capacity generation system

Country Status (1)

Country Link
JP (1) JPS61221524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390887A (en) * 2013-08-07 2013-11-13 孙鸣 Method for isolating faults of power distribution system with micro-grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390887A (en) * 2013-08-07 2013-11-13 孙鸣 Method for isolating faults of power distribution system with micro-grid
CN103390887B (en) * 2013-08-07 2015-11-25 孙鸣 Containing the distribution system failure separation method of micro-capacitance sensor

Also Published As

Publication number Publication date
JPH0550209B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
Zamani et al. A communication-assisted protection strategy for inverter-based medium-voltage microgrids
CN106410766B (en) Based on the high containment guard method of DG interconnected electric power systems
CN103825363B (en) A kind of wind-light storage low pressure micro-capacitance sensor group protection coordination controller
CN107317308A (en) The adaptive locking prepared auto restart guard method of sectionalized single busbar connection 110kV bus differential protections
CN109980615A (en) Eliminate section switch and busbar breaker dead-zone fault relay protecting method
JPH08126210A (en) Parallel off control device for commercial power supply linkage private generator
JP2007037354A (en) Independent operation preventing device
JPS61221524A (en) Apparatus for linking small-capacity generation system
JP5317797B2 (en) Distributed power shutoff system and supervisory control device
CN107086552B (en) Protection circuit of extended cell wiring system
JPH0652973B2 (en) Interconnection device for small-capacity power generation system
JPH0548053B2 (en)
JPS59162729A (en) Protecting circuit of power system with solar battery generating system
CN100448132C (en) Integrated protection system based on electric current principle
JPS61221523A (en) Apparatus for linking small-capacity generation system
JP2799065B2 (en) Reclosing method of current differential protection relay
JP2005094984A (en) Protective system for distribution system
Chen et al. Analysis of the Impact of MW-level Grid-connected Photovoltaic Power Station on Backup Automatic Switch in Distribution Network
CN115249982B (en) Power grid safety control system for load control of gas turbine generator set
JP2581553B2 (en) Distribution system protection system
CN220964323U (en) Charging protection circuit of manual relay
Tsimtsios et al. Investigating adaptation of line protection means to low-voltage-ride-through requirements in low-voltage distribution feeders with photovoltaic generators
Ding et al. An Innovative Protection Method for Power Collector Lines in Wind Farms
Mattison Protective relaying for the cogeneration intertie revisited
KR200200543Y1 (en) The protection system for a short distance transmission line