JP2005094984A - Protective system for distribution system - Google Patents

Protective system for distribution system Download PDF

Info

Publication number
JP2005094984A
JP2005094984A JP2003329227A JP2003329227A JP2005094984A JP 2005094984 A JP2005094984 A JP 2005094984A JP 2003329227 A JP2003329227 A JP 2003329227A JP 2003329227 A JP2003329227 A JP 2003329227A JP 2005094984 A JP2005094984 A JP 2005094984A
Authority
JP
Japan
Prior art keywords
distributed power
area
feeder
failure
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003329227A
Other languages
Japanese (ja)
Other versions
JP4046674B2 (en
Inventor
Yasuo Suzuoki
保雄 鈴置
Takeyoshi Kato
丈佳 加藤
Kenji Okuyama
賢治 奥山
Toshihisa Funahashi
俊久 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003329227A priority Critical patent/JP4046674B2/en
Publication of JP2005094984A publication Critical patent/JP2005094984A/en
Application granted granted Critical
Publication of JP4046674B2 publication Critical patent/JP4046674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable appropriate and high-speed protection by eliminating alliance between relays at short circuiting in a distribution system. <P>SOLUTION: The relay R<SB>2</SB>disposed at a receiving portion of a site, including a dispersion type power supply decides on a short zone based on current i<SB>2</SB>flowing to a Feeder A, current i<SB>A</SB>at a feeder transfer edge, an actual point, direction and absolute value of current i<SB>4</SB>flowing from the other sites to the feeder. A receiving point breaker is released, when the short zone is inside the feeder or the site including the distributed type power supply. The relay R<SB>A</SB>disposed at a substation secondary side bus line decides the short zone based on current i<SB>B</SB>flowing in and out of the bus line, the actual point, direction, and absolute value of the current i<SB>A</SB>flowing to the feeder to release the receiving point breaker, when the short zone is at the feeder or the substation secondary side bus line. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放射状に敷設された配電系統の保護システムに係り、特に、分散型電源が導入された配電系統の短絡保護に関する。   The present invention relates to a protection system for a distribution system laid radially, and more particularly to short-circuit protection for a distribution system in which a distributed power source is introduced.

電気事業における規制緩和、小型発電機の性能向上・低価格化などの様々な理由により、太陽光発電、燃料電池およびマイクロガスタービン等の分散型電源の導入拡大が予想される。従来の大規模な電源が需要家から離れた遠隔地に導入されるのに対し、分散型電源は小規模であり、需要家近傍に設置される。このため、従来の配電系統では配電変電所の下位には電源が接続されていなかったのに対し、分散型電源が導入された配電系統においては、配電変電所の下位にも分散型電源が連系されることになる。   Due to various reasons such as deregulation in the electric power industry, performance improvement and price reduction of small generators, the introduction of distributed power sources such as solar power generation, fuel cells and micro gas turbines is expected to expand. A conventional large-scale power supply is installed in a remote place away from the consumer, whereas a distributed power supply is small-scale and installed near the consumer. For this reason, in the conventional distribution system, no power source is connected to the lower level of the distribution substation, whereas in the distribution system in which the distributed power source is introduced, the distributed power source is also connected to the lower level of the distribution substation. Will be lined up.

現状の保護システムでは、分散型電源の導入が小規模であることを前提に、配電系統内の各リレーは基本的にその設置点のみの情報を用いて動作の判断を行っている。各リレーは動作すべき故障点であるかを明確に判定できないため、分散型電源を不要に解列しないようにするためには配電系統内のリレー間で十分に協調をとる必要がある。分散型電源が非常に多数導入されると予測される将来の配電系統では、多数の分散型電源を考慮してリレー間の協調をとる必要があり、配電系統の計画・運用が複雑化することが予想される。そのため、分散型電源の大規模導入に柔軟に対応できる新しい保護システムの導入が必要となり、この種の保護システムの検討やガイドラインも示されている(例えば、非特許文献1、非特許文献2参照)。
井上、嶋野、伊藤、戸津、中山:「Ethernetによる分散型保護リレーシステムの検討」、電気学会論文誌B、Vol.120,No.8/9,pp.1161-1168 資源エネルギー庁:「解説電力系統連系技術要件ガイドライン'98」、電力新報社、1998
In the current protection system, on the assumption that the introduction of the distributed power supply is small, each relay in the power distribution system basically determines the operation using information on only the installation point. Since each relay cannot clearly determine whether it is a failure point to operate, it is necessary to sufficiently cooperate between relays in the distribution system in order not to disconnect the distributed power source unnecessarily. In future power distribution systems where a large number of distributed power sources are expected to be introduced, it is necessary to coordinate between relays considering a number of distributed power sources, which complicates the planning and operation of the distribution system Is expected. Therefore, it is necessary to introduce a new protection system that can flexibly cope with a large-scale introduction of a distributed power source, and examination and guidelines for this kind of protection system are also shown (for example, see Non-Patent Document 1 and Non-Patent Document 2). ).
Inoue, Shimano, Ito, Totsu, Nakayama: “Discussion of distributed protection relay system using Ethernet”, IEEJ Transactions B, Vol.120, No.8 / 9, pp.1161-1168 Agency for Natural Resources and Energy: “Guidelines for Power System Interconnection Technical Requirements '98”, Electric Power Shinposha, 1998

現状の保護システムでは、以下の問題がある。   The current protection system has the following problems.

(1)配電系統内のリレー間の協調が必要であり、将来の分散型電源の大規模導入に対応することが困難である。   (1) Cooperation between relays in the distribution system is necessary, and it is difficult to cope with future large-scale introduction of distributed power sources.

(2)分散型電源の新規導入・廃止および配電系統のループ化などに伴う保護システムの再構成に対して柔軟に対応することが困難である。   (2) It is difficult to flexibly cope with the reconfiguration of the protection system due to the introduction and abolition of distributed power sources and the looping of the distribution system.

本発明は、Ethernet(登録商標)等の通信技術を利用し、各リレーが他の複数のリレー設置点の情報を活用することにより、上記の問題点を克服できる保護システムを提案するものである。   The present invention proposes a protection system that can overcome the above-mentioned problems by using communication technology such as Ethernet (registered trademark) and each relay utilizing information on a plurality of other relay installation points. .

非特許文献1では、保護システムに情報ネットワークを活用する構想が提案されている。しかしながら、現状の技術の通信速度がリレーに適応できるかということは検討されているものの、実際にどのような情報をリレーに用い、その情報がどのような条件となった場合にリレーを動作させるのかという点については検討されていない。   Non-Patent Document 1 proposes a concept of utilizing an information network for a protection system. However, although it has been studied whether the communication speed of the current technology can be applied to the relay, what information is actually used for the relay and the relay is operated when the information is in what condition It is not considered whether this is the case.

ここでは、まずガイドライン(非特許文献2)に示されている現状の保護システムのシーケンスを図27のモデル系統を用いて整理する。同図のモデル系統は、配電用変電所の二次側母線(Area−1)からフィーダ(Area−A、Area−B)に分岐され、これらフィーダから分岐されたサイト(Area−2,4,5,7)に分散型電源が導入されている。この系統構成において、分散型電源DG2が導入されたサイトの受電点のリレーR2およびその連系フィーダ送端のリレーRAの動作判定に着目し、現状の保護システムでの時限協調の役割について整理し、分散型電源の大規模導入時における現状の保護システムの問題点を説明する。 Here, first, the sequence of the current protection system shown in the guideline (Non-Patent Document 2) is organized using the model system of FIG. The model system in the figure branches from the secondary bus (Area-1) of the distribution substation to the feeders (Area-A, Area-B), and the sites (Area-2, 4, 4) branched from these feeders. 5 and 7), a distributed power source is introduced. In this system configuration, paying attention to the operation judgment of the relay R 2 at the receiving point of the site where the distributed power source DG2 is introduced and the relay R A at the feeder of the interconnection feeder, focusing on the role of timed coordination in the current protection system Organize and explain the problems of the current protection system at the time of large-scale introduction of distributed power supply.

(1)リレー間協調の役割
図28〜図30に現在の保護システムにおける各リレーの動作シーケンスを示す。短絡故障に対応するフィーダ送端のリレーRAおよびRBでは過電流リレーが用いられ、分散型電源の受電点のリレーR2〜R7では短絡方向リレーが用いられている。
(1) Role of inter-relay cooperation FIGS. 28 to 30 show an operation sequence of each relay in the current protection system. Overcurrent relays are used in the relays R A and R B at the feeder sending end corresponding to the short-circuit failure, and short-circuit direction relays are used in the relays R 2 to R 7 at the receiving points of the distributed power source.

同図において、R2,R4、RAおよびRBの動作電流値をI2s,I4s,ILsおよびILsとし、動作時限をTDG,TDG,TLおよびTLとする。分散型電源DG2の受電点のリレーR2は、Area−1,Area−2およびArea−Aにおける故障時に動作し、その他の区間の故障時に動作しないことが求められる。しかし、Area−Aにおける故障時にR2を流れる電流^i2の大きさおよび位相は、Area−4およびArea−Bにおける故障時とほぼ同じであり、R2はこれらの故障点を判別することができない。そこで図28および図29から、R2がArea−AとArea−Bとを判別するために、フィーダ送端のRBをR2よりも早く動作するように時限協調をとる。他フィーダ上(Area−B)で故障が生じた場合には、RBが先に動作し、DG2と故障点とを解列するため、R2は動作せず、#2は不要に解列されない。 In the figure, the operating current values of R 2 , R 4 , R A and R B are I 2s , I 4s , I Ls and I Ls , and the operating time periods are TDG, TDG, TL and TL. The relay R 2 at the power receiving point of the distributed power source DG2 is required to operate when a failure occurs in Area-1, Area-2, and Area-A, and does not operate when a failure occurs in other sections. However, the magnitude and phase current ^ i 2 flowing through R 2 in the event of a fault in the Area-A is substantially the same as the time of failure in the Area-4 and Area-B, R 2 is to determine these fault point I can't. So from FIGS. 28 and 29, for which R 2 determines the Area-A and Area-B, the R B of the feeder feed edge taking timed coordination to work earlier than R 2. When the fault on another feeder (Area-B) occurs, R B operates earlier, for disconnection and failure point and DG2, R 2 does not operate, # 2 unnecessary Kairetsu Not.

一方、分散型電源が小容量であれば、Area−4で故障が生じた場合にDG2から流れる故障電流は小さいため、R2に流れる電流はArea−2で故障が生じた場合よりも小さい。そのため、R2は反限時特性を用いることにより、故障電流が大きい自母線(Area−2)内の故障に対しては速やかに動作して同じフィーダ内の他の分散型電源DG4の不要な解列を防ぎ、故障電流が小さいArea−4での故障に対しては動作を遅くしてDG2の不要な解列を防いでいる。 On the other hand, if the dispersed type power supply is small capacity, since the fault current flowing from DG2 when a failure in Area-4 occurs is small, the current flowing in R 2 is less than if a fault occurs in Area-2. Therefore, R 2 uses an inverse time characteristic, so that it operates quickly against a fault in its own bus (Area-2) where the fault current is large, and an unnecessary solution of the other distributed power source DG4 in the same feeder. The row is prevented, and the operation is slowed down for a failure in Area-4 where the failure current is small, thereby preventing unnecessary separation of DG2.

フィーダ送端のリレーRAは、フィーダ(Area−A)内の故障に対して動作し、他のフィーダにおける故障に対しでは動作しないことが求められる。Area−Bで生じた故障の場合、RAに流れる電流^iAはフィーダ内の分散型電源(DG2およびDG4)から供給される。フィーダ内の分散型電源が小容量であれば、この電流はArea−A内における故障時に流れる電流と比較して小さいと考えられ、動作電流値の設定によって、Area−A内の故障に対してのみRAを動作させることができる。 Relay R A feeder transmission terminal operates on the failure in the feeder (Area-A), it is required to do work in respect faults in other feeders. In the case of a failure occurring in Area-B, the current ^ i A flowing in R A is supplied from the distributed power sources (DG2 and DG4) in the feeder. If the distributed power source in the feeder has a small capacity, this current is considered to be small compared to the current that flows at the time of failure in Area-A. Only RA can be operated.

また、図30から、このようにRAの動作電流値を設定すると、配電変電所母線(Area−1)内の故障に対してもRAは動作しないことになるが、分散型電源受電点のリレーR2およびR4が動作し、分散型電源は故障点から確実に解列される。また、フィーダ内の母線(Area−2およびArea−4)内の故障の場合には、これらの母線の受電点のリレー(R2およびR4)に非常に大きな電流が流れることになるため、これらのリレーを瞬時動作するように設定することでRAは動作しない。 Further, from FIG. 30, in this manner to set the operating current value of R A, R A against faults in distribution substation bus (Area-1) is will not work, the distributed power receiving point Relays R 2 and R 4 operate, and the distributed power source is reliably disconnected from the point of failure. In addition, in the case of a failure in the buses (Area-2 and Area-4) in the feeder, a very large current flows through the relays (R 2 and R 4 ) at the power receiving points of these buses. By setting these relays to operate instantaneously, RA does not operate.

(2)分散型電源大規模導入時の問題点
上述の例においては、分散型電源は各フィーダに2台ずつ分散型電源が導入されているだけであるので、リレー間の協調をとることは容易である。しかし、非常に多数の分散型電源が導入された場合、多数のリレーを考慮して協調をとらなければならない。また、将来、配電系統がループ化された場合には、さらに配電系統の保護が複雑となることが予想される。そのため、協調をとることが困難となる可能性がある。
(2) Problems when large-scale distributed power supply is introduced In the above example, only two distributed power supplies are installed in each feeder. Easy. However, when a very large number of distributed power sources are introduced, a large number of relays must be considered and coordinated. In the future, when the distribution system is looped, it is expected that the protection of the distribution system will become more complicated. This can make it difficult to coordinate.

また、協調をとるために時間がかかることが予想され、分散型電源連系の手続きに時間がかかることが考えられる。また、分散型電源の導入が小容量である場合には、Area−Bでの故障時にRAを流れる故障電流はArea−Aでの故障時に流れる電流よりも小さいため、RAをArea−Aの故障時のみに動作するように動作電流値を決めることができた。しかし、分散型電源が大規模に導入されると、これらの電流の差が小さくなるため、限流リアクトル等の追加的な設備を導入しなければ、RAの動作電流値を決めることが困難になる。 In addition, it is expected that it will take time to cooperate, and it may take time for the procedure of the distributed power interconnection. In addition, when the introduction of the distributed power source is a small capacity, since the fault current flowing through R A at the time of failure at Area-B is smaller than the current flowing at the time of failure at Area-A, R A is replaced with Area-A. It was possible to determine the operating current value so that it would operate only when there was a failure. However, when a distributed power source is introduced on a large scale, the difference between these currents becomes small. Therefore, it is difficult to determine the operating current value of RA unless additional equipment such as a current limiting reactor is introduced. become.

以上のことから、本発明の目的は、分散型電源が大規模導入された配電系統の短絡故障に、リレー間の協調を不要にして、的確かつ高速保護ができる配電系統の保護システムを提供することにある。   In view of the above, an object of the present invention is to provide a distribution system protection system capable of accurate and high-speed protection without the need for coordination between relays in the event of a short circuit failure in a distribution system in which a distributed power source is introduced on a large scale. There is.

本発明は、前記の課題を解決するため、分散型電源を導入した配電系統の保護に、周辺のフィーダ、サイトで検知される電流の実部、方向、絶対値の情報を用いて故障区間の判定、遮断器の解列要否を判定するようにしたもので、以下の構成を特徴とする。   In order to solve the above-mentioned problems, the present invention uses the information of the real part, direction, and absolute value of the current detected at the peripheral feeders and the site to protect the distribution system with the distributed power supply. Judgment is made as to whether or not the circuit breaker needs to be disconnected, and it has the following configuration.

(1)フィーダから分岐されたサイトに分散型電源が導入された配電系統において、
分散型電源を含むサイトの受電点に設置され、当該サイトからフィーダへ流れる電流、フィーダ送端の電流、当該フィーダに接続される他の分散型電源を含むサイトからフィーダへ流れる電流を情報として取得し、これらの電流の実部、方向、絶対値を用いて短絡故障区間を判定し、短絡故障区間が当該フィーダまたは分散型電源を含むサイトの内部であった場合に当該分散型電源を含むサイトの受電点遮断器を解放する短絡保護シーケンスを備えたことを特徴とする配電系統の保護システム。
(1) In a power distribution system in which a distributed power source is introduced at a site branched from a feeder,
It is installed at the power receiving point of the site including the distributed power source, and obtains the current flowing from the site to the feeder, the current at the feeder sending end, and the current flowing from the site including other distributed power sources connected to the feeder to the feeder as information. The site including the distributed power source is determined when the short-circuit fault interval is determined using the real part, direction, and absolute value of these currents, and the short-circuit fault interval is inside the site including the feeder or the distributed power source. A distribution system protection system comprising a short-circuit protection sequence for releasing a power receiving point circuit breaker.

(2)フィーダから分岐されたサイトに分散型電源が導入された配電系統において、
配電用変電所に設置され、変電所二次側母線に流入あるいは流出する電流、当該フィーダに接続される分散型電源を含むサイトからフィーダへ流れる電流を情報として取得し、これらの電流の実部、方向、絶対値を用いて短絡故障区間を判定し、短絡故障区間が当該フィーダまたは変電所二次側母線であった場合に当該分散型電源を含むサイトの受電点遮断器を解放する短絡保護シーケンスを備えたことを特徴とする配電系統の保護システム。
(2) In a power distribution system in which a distributed power source is introduced at a site branched from a feeder,
Information obtained from the current flowing into and out of the substation secondary bus and from the site including the distributed power source connected to the feeder to the feeder is obtained as information, and the real part of these currents , Direction, absolute value is used to determine the short-circuit fault section, and when the short-circuit fault section is the feeder or substation secondary bus, the short-circuit protection that releases the receiving point breaker of the site including the distributed power source A distribution system protection system characterized by a sequence.

以上述べたとおり、本発明の保護システムによれば、分散型電源の受電点およびフィーダ送端のリレーに、それぞれのリレーで検知される電流の実部、方向、絶対値の情報を用いることで、リレ一間の協調を考慮しなくても故障区間に連系されるリレー設置点の遮断器にのみ、的確に動作指令を出すことができる。   As described above, according to the protection system of the present invention, the information on the real part, the direction, and the absolute value of the current detected by each relay is used for the receiving point of the distributed power source and the relay at the feeder transmission end. Even without considering cooperation between relays, it is possible to accurately issue an operation command only to the breaker at the relay installation point linked to the failure section.

また、本発明の保護システムでは、分散型電源の容量が変化しても各リレーの設定値を変えずに対応でき、従来の保護システムよりも故障区間の解列を高速に行うことができる。   In the protection system of the present invention, it is possible to cope with changes in the capacity of the distributed power supply without changing the set values of the respective relays, and the fault section can be disconnected faster than the conventional protection system.

また、情報ネツトワークを活用した本発明の保護システムでは、配電系統内の分散型電源容量の増加や減少に対して柔軟に対応でき、さらに従来の保護システムのようなリレー間の協調が不要となるため、分散型電源連系の手続き等を簡略化できる。   In addition, the protection system of the present invention utilizing the information network can flexibly cope with the increase or decrease of the distributed power supply capacity in the distribution system, and further eliminates the need for cooperation between relays as in the conventional protection system. Therefore, it is possible to simplify the procedure of the distributed power interconnection.

また、従来の保護システムは、分散型電源の導入が小容量であることを前提としていた。そのため、分散型電源が大規模に導入される場合には、限流リアクトル等の設備を追加する必要がある。しかし、本発明の保護システムでは、各リレーが動作判定を的確に行えるため、設備を追加しなくても短絡容量の制約の範囲内で分散型電源を大規模に導入できる。   The conventional protection system is based on the premise that the introduction of the distributed power source has a small capacity. Therefore, when a distributed power source is introduced on a large scale, it is necessary to add equipment such as a current limiting reactor. However, in the protection system of the present invention, since each relay can accurately determine the operation, a distributed power source can be introduced on a large scale within the scope of the short-circuit capacity constraint without adding equipment.

さらに、分散型電源の起動・停止は需要家の都合によって行われるため、その起動・停止によって配電系統の構成が頻繁に変化し、特に分散型電源から供給される故障電流の大きさが変化することが予想される。そのため、従来の保護システムでは、分散型電源の受電点リレーの動作判定に悪影響を及ぼす可能性が考えられる。しかし、本発明の保護システムでは、分散型電源の受電点情報のうち、リレー動作に用いているのは電流の方向の情報のみである。このため、本発明の保護システムにおいてはこのような分散型電源の起動・停止にも対応できる。   Furthermore, since the start / stop of the distributed power supply is performed at the convenience of the customer, the configuration of the power distribution system frequently changes due to the start / stop, especially the magnitude of the fault current supplied from the distributed power supply changes. It is expected that. Therefore, in the conventional protection system, there is a possibility that the operation determination of the power receiving point relay of the distributed power source may be adversely affected. However, in the protection system of the present invention, only the information on the direction of the current is used for the relay operation among the power receiving point information of the distributed power source. For this reason, the protection system of the present invention can cope with the start / stop of such a distributed power source.

また、系統モデルにおいて、Area−1の故障の場合には、負荷をある程度遮断すれば、分散型電源によってフィーダ内の電力供給を継続できる。しかし、従来の保護システムでは、Area‐1の故障に対してRAおよびRBてはなく、R2〜R7設置点の遮断器を動作させることで分数電源を故障点から解列する。そのため、分散型電源を導入していない需要家に電力供給を継続することは不可能である。一方、本発明の保護システムでは、Area−1の故障に対してRAおよびRB設置点の遮断器を動作させることにより、分散型電源を故障点から解列する。そのため、分散型電源に余力がある場合には、より多くの母線への電力供給を継続できる。 Further, in the case of an area-1 failure in the system model, if the load is interrupted to some extent, the power supply in the feeder can be continued by the distributed power source. However, in the conventional protection system, the fractional power source is disconnected from the failure point by operating the breakers at the installation points R 2 to R 7 instead of R A and R B for the failure of Area-1. Therefore, it is impossible to continue power supply to customers who have not introduced a distributed power source. On the other hand, in the protection system of the present invention, by operating the breaker R A and R B installation points for failure of Area-1, which paralleled a distributed power from the fault point. Therefore, when the distributed power source has a surplus capacity, power supply to more buses can be continued.

(実施形態)
本発明では、Ethernet等の通信技術を用いて各リレーが他の複数のリレー設置点の情報を活用することにより、・配電系統内のリレー間の協調が不要で将来の分散型電源の大規模導入に対応でき、・分散型電源の新規導入・廃止および配電系統のループ化などに伴う保護システムの再構成に対して柔軟に対応できる保護システムを提案する。
(Embodiment)
In the present invention, each relay uses the information of a plurality of other relay installation points using communication technology such as Ethernet. We propose a protection system that can respond to the introduction, and can flexibly cope with the reconfiguration of the protection system that accompanies the introduction and abolition of distributed power sources and the looping of the distribution system.

リレー間の協調を不要とするためには、各リレーが動作すべき故障点であるかを明確に判定できるようにする必要がある。その方法の一つとして、情報ネットワークを活用して他の複数のリレー設置点の情報をリレーに取り込むことを提案する。   In order to eliminate the need for cooperation between relays, it is necessary to be able to clearly determine whether each relay is a failure point to operate. As one of the methods, we propose to use the information network to capture the information of other relay installation points into the relay.

以下、各リレーが動作の判定に必要な情報およびその動作シーケンスを、図27を簡略化して示す図1のモデル系統を用いて説明する。図1は、図27の低圧配電系統および分散型電源のみにつながるリレーRDG2,RDG4,RDG5,RDG7を省略して示す
(1)情報の選定のための故障区間の分類
各リレーの動作判定に必要な情報を選定するため、上記のモデル系統において、#2に接続したDG2の受電点のリレーR2について解列が必要な故障区間を分類する。
Hereinafter, information necessary for determining the operation of each relay and its operation sequence will be described with reference to the model system of FIG. FIG. 1 shows the relays R DG2 , R DG4 , R DG5 , and R DG7 connected to only the low-voltage distribution system and the distributed power source in FIG. 27 (1) Classification of failure sections for information selection In order to select information necessary for operation determination, in the model system described above, a fault section that needs to be disconnected is classified for the relay R 2 at the power receiving point of DG2 connected to # 2.

まず、分散型電源導入母線内(Area−2)およびDG2が連系するフィーダ内(Area−A)で故障が発生した場合、故障を除去するためにはDG2を解列する必要がある。一方、DG2が連系するフィーダ内であっても、他の母線内(Area−4)の故障の場合は、該当母線を速やかに解列することができれば、DG2を解列する必要はない。同様に低圧配電線内(Area−8)の故障についても、柱上変圧器のヒューズを速やかに遮断すれば、DG2を解列する必要はない。DG2を解列しないフィーダ内(Area−B,Area−5,Area−7およびArea−9)の故障については、該当フィーダ全体を速やかに解列することができれば、DG2を解列する必要はない。最後に、配電変電所内(Area−1)の故障については、DG2が連系するフィーダ全体を解列できればDG2を解列する必要はない。   First, when a failure occurs in the distributed power supply introduction bus (Area-2) and the feeder (Area-A) connected to DG2, it is necessary to disconnect DG2 in order to eliminate the failure. On the other hand, even if the DG2 is connected to the feeder, in the case of a failure in another bus (Area-4), it is not necessary to disconnect the DG2 if the corresponding bus can be quickly disconnected. Similarly, for a fault in the low-voltage distribution line (Area-8), it is not necessary to disconnect DG2 if the fuse of the pole transformer is quickly cut off. For failures in feeders (Area-B, Area-5, Area-7, and Area-9) that do not disconnect DG2, it is not necessary to disconnect DG2 if the entire feeder can be quickly disconnected. . Finally, for a fault in the distribution substation (Area-1), it is not necessary to disconnect DG2 if the entire feeder connected to DG2 can be disconnected.

したがって、図1のモデル系統の場合、Area−2およびArea−Aの故障の場合にはDG2を解列し、それ以外の区間の故障の場合には、DG2を解列する必要はないと考えられる。以下では、三相短絡故障が発生した場合について、DG2の解列を判定するために必要な情報について検討する。   Therefore, in the case of the model system of FIG. 1, it is considered that it is not necessary to disconnect DG2 in the case of a failure in Area-2 and Area-A, and in the case of a failure in other sections, it is not necessary to disconnect DG2. It is done. Below, the information required in order to determine the disconnection of DG2 is examined about the case where a three-phase short circuit failure occurs.

(2)分散型電源を解列する故障区間
(2.1)Area−A
Area−Aで短絡故障が生じた場合における各リレーの動作を図2に示す。上記(1)での検討からArea−1およびArea−Bで故障が生じた場合、R2で検知される電流の位相および大きさはArea−Aで故障が生じた場合と同程度となる。このため、Area−Aでの故障とこれらの区間での故障とを判別するための情報が必要である。Area−Aでの故障の場合、RAで検知される電流の方向^iAはArea−Aに流れ込む方向となる。一方、Area−1およびArea−Bで短絡が生じた場合、その電流の方向は逆向きのArea−1に流れ込む方向となる。そのため、RAで検知される電流の方向の情報として、RAで検知される電圧を基準とした電流ベクトル^iAの実数部Re{^iA}の正負の情報をR2に用いることでこれらの故障区間を判別できる。
(2) Failure section where the distributed power source is disconnected (2.1) Area-A
FIG. 2 shows the operation of each relay when a short-circuit failure occurs in Area-A. From the investigation in (1) above, when a failure occurs in Area-1 and Area-B, the phase and magnitude of the current detected by R 2 is the same as when a failure occurs in Area-A. For this reason, the information for discriminating between the failure in Area-A and the failure in these sections is necessary. In the case of a failure at Area-A, the current direction i i A detected by R A is the direction that flows into Area-A. On the other hand, when a short circuit occurs in Area-1 and Area-B, the direction of the current flows in the opposite direction of Area-1. Therefore, as the direction information of the current detected by the R A, the use of positive and negative information of the real part of the current vector ^ i A relative to the voltage detected by the R A Re {^ i A} to R 2 With these, it is possible to determine these failure sections.

また、DG2を解列する必要のないArea−4で故障が生じた場合にも、R2で流れる電流の位相および大きさはArea−Aで故障が生じた場合と同程度となる。そのため、Area−AとArea−4との故障を区別するための情報が必要である。Area−Aで短絡が生じた場合、R4で検知される電流^i4の方向はArea−Aに流れ込む方向となるが、Area−4で短絡が生じた場合、逆のArea−4に流れ込む方向となる。そのため、R4で検知される電流の方向の情報として、Re{^i4}の正負の情報をR2に用いることでArea−AとArea−4との故障を判別できる。 Further, even when a failure occurs in Area-4 do not need to disconnection of DG2, phase and magnitude of the current flowing in R 2 is the same extent as if a failure occurs in Area-A. Therefore, information for distinguishing failures between Area-A and Area-4 is necessary. When a short circuit occurs in Area-A, the direction of the current i 4 detected by R 4 is the direction that flows into Area-A, but when a short circuit occurs in Area-4, it flows into the reverse Area-4. Direction. Therefore, the failure of Area-A and Area-4 can be discriminated by using the positive and negative information of Re {^ i 4 } as R2 as information on the direction of the current detected by R 4 .

さらに、分散型電源が逆潮流することを考慮すると、Area−Aでの故障に対して健全時と故障時とを判別する条件が必要となる。この判断を行うため、R2での電流の大きさ|^i2|を利用することが考えられる。しかし、分散型電源DG2が電流源である場合、故障時に|^i2|が増大しないと考えられる。また、分散型電源DG2が電圧源であっても、DG4の起動・停止によって故障時の|^i2|が大きく異なる可能性が考えられる。このことから、|^i2|は健全時と故障時との判断に利用しにくいと考えられる。そこで、Area−Aでの故障に対して健全時と故障時との判断にRAでの電流の大きさ|^iA|を利用する。 Furthermore, in consideration of the reverse flow of the distributed power source, a condition for discriminating between a healthy time and a failure time is necessary for a failure in Area-A. In order to make this determination, it is conceivable to use the current magnitude | ^ i 2 | at R 2 . However, when the distributed power source DG2 is a current source, it is considered that | ^ i 2 | does not increase at the time of failure. Further, even if the distributed power source DG2 is a voltage source, it is conceivable that | ^ i 2 | at the time of failure may vary greatly depending on activation / deactivation of DG4. From this, it is considered that | ^ i 2 | is difficult to use for determining whether the state is healthy or failure. Therefore, the current magnitude | ^ i A | at R A is used to determine whether the failure at Area-A is healthy or at failure.

なお、需給バランスによっては、Area−Aで永久事故が生じた場合でも#2の分散型電源によって#2の負荷へ無停電で電力供給を継続できる可能性がある。このことは、Area−Aで故障が生じた場合、R2の動作によって#2の分散型電源と故障点とは解列されているので、RDG2を動作させないことで実現できると考えられる。その際、Area−AとArea−2との故障では、RDG2の設置点に流れる電流の位相・大きさは同程度であるため、以下に示すようにArea−AとArea−2との故障を区別するための条件をRDG2に加えることによって、RDG2の動作をより確実なものにする。Area−Aで短絡が生じた場合、R2で検知される電流^i2の方向はArea−Aに流れ込む方向となる。一方、Area−2での故障の場合、その電流の方向は逆向きのArea−2に流れ込む方向となる。そのため、R2で検知される電流の方向の情報として、Re{^i2}の正負の情報を用いることでArea−Aでの故障の時にRDG2を動作させないようにすることが可能である。 Depending on the supply-demand balance, even if a permanent accident occurs in Area-A, there is a possibility that the power supply can be continued uninterrupted to the # 2 load by the distributed power supply # 2. This means that if a fault in Area-A occurs, since it is Kairetsu the distributed power supply and failure point # 2 by the operation of R 2, is considered to be achieved by not operating the R DG2. At that time, in the failure of Area-A and Area-2, the phase and magnitude of the current flowing through the installation point of R DG2 are approximately the same, so the failure of Area-A and Area-2 is as shown below. By adding a condition for distinguishing RDG2 to RDG2 , the operation of RDG2 is made more reliable. When a short circuit occurs in Area-A, the direction of the current i 2 detected by R 2 is the direction that flows into Area-A. On the other hand, in the case of a failure in Area-2, the direction of the current flows in the opposite direction of Area-2. Therefore, by using the positive / negative information of Re {^ i 2 } as the information on the direction of the current detected by R 2 , it is possible to prevent R DG2 from operating when there is a failure in Area-A. .

(2.2)Area−2
Area−2で短絡故障が生じた場合における各リレーの動作を図3に示す。Area−2で故障が生じた場合、R2とRDG2とは相互の情報交換によって自母線内で故障が発生したことを判断でき、Area−2およびDG2を配電系統から解列させる。同じフィーダー内の他のDG(DG4)のリレーRDG4では、Re{^i2}によって同じフィーダ内の他母線で故障が発生したことを検知でき、分散型電源の不要な解列を防ぐことができる。
(2.2) Area-2
The operation of each relay when a short circuit failure occurs in Area-2 is shown in FIG. When a failure occurs in Area-2, R 2 and R DG2 can determine that a failure has occurred in their own bus by mutual information exchange, and disconnect Area-2 and DG2 from the distribution system. In the relay R DG4 other DG (DG4) in the same feeder, it can detect that the fault in the other bus in the same feeder by Re {^ i 2} occurs, to prevent unwanted disconnection of the distributed power sources Can do.

ただし、RDG2の分散型電源側で故障が生じた場合、配電系統から#2の負荷へ電力供給を継続するためには、R2は解列の指令を出さないようにしなければならない。この両者の場合では、R2の設置点を流れる電流はほぼ同位相で同じ大きさと考えられる。そのため、R2にこの両者を判別するための情報を取り込む必要がある。 However, if a failure occurs on the distributed power source side of R DG2 , R 2 must not issue a disconnection command in order to continue power supply from the distribution system to the # 2 load. In both cases, the currents flowing through the installation point of R 2 are considered to be substantially the same phase and the same magnitude. Therefore, it is necessary to take the information to determine the both the R 2.

Area−2で故障が生じた場合、RDG2で検知される電流^iDG2はArea−2に流れ込む方向となるが、RDG2の分散型電源側で故障が生じた場合には、^iDG2の方向がその逆となると考えられる。そのため、RDG2で検知される電流^iDG2の方向の情報として、Re{^iDG2}の正負の情報をR2に用いることでArea−2とRDG2の分散型電源側との故障を判別することができる。 When a failure occurs in Area-2, the current ^ i DG2 detected by R DG2 flows into Area-2, but when a failure occurs on the distributed power source side of R DG2 , ^ i DG2 The direction of is considered to be the opposite. Therefore, by using the positive and negative information of Re {^ i DG2 } as R 2 as the information of the direction of the current ^ i DG2 detected by R DG2 , the failure between Area-2 and the distributed power source side of R DG2 can be avoided. Can be determined.

また、#2の負荷が大きい場合、健全時でもR2およびRDG2で検知される電流の方向はArea−2での故障時と同様となることが予想される。そのため、健全時と故障時とを判別するための条件が必要と考えられる。分散型電源の導入によって故障電流の供給源からArea−2の故障点までの電気的距離が近くなるため、故障時においてR2で検出される電流の大きさ|^i2|は分散型電源の導入位置によらず十分増大すると考えられる。そのため、|^i2|の大きさを判定条件に加えれば、健全時と故障時とを判別できる。 Further, when the load of # 2 is large, it is expected that the direction of the current detected by R 2 and R DG2 is the same as that at the time of failure in Area-2 even when the load is healthy. Therefore, it is considered that a condition for discriminating between a healthy time and a failure time is necessary. Since the electrical distance from the failure current supply source to the failure point of Area-2 is reduced by the introduction of the distributed power source, the magnitude of current detected by R 2 at the time of failure | ^ i 2 | It is thought that it will increase sufficiently regardless of the position of introduction. Therefore, if the magnitude of | ^ i 2 | is added to the determination condition, it is possible to determine whether the state is healthy or failure.

(3)分散型電源を解列しない故障区間
(3.1)Area−1
Area−1で短絡故障が生じた場合における各リレーの動作を図4に示す。健全時においてArea−1に流れ込む電流ベクトルの合計(^is−^iA−^iB)=^0となる。そのため、(^is−^iA−^iB)=^0となった時に、Rs、RAおよびRBを動作させればArea−1の故障点を除去できると考えられる。このArea−1での故障除去シーケンスは、分散型電源の有無に関わらず、あらゆる構成の配電系統で利用できる。
(3) Failure section in which distributed power source is not disconnected (3.1) Area-1
FIG. 4 shows the operation of each relay when a short circuit failure occurs in Area-1. The sum of current vectors flowing into Area-1 in the healthy state (^ i s- ^ i A- ^ i B ) = ^ 0. Therefore, when (^ i s − ^ i A − ^ i B ) = ^ 0, it is considered that the failure point of Area-1 can be removed by operating Rs, R A and R B. This failure removal sequence in Area-1 can be used in the distribution system of any configuration regardless of the presence or absence of the distributed power source.

一方、単独系統内の負荷に分散型電源によって電力供給を継続することを考慮した場合、Area−1での故障において分散型電源DG2を解列しないようにしたい。この場合には、R2に^iAの方向の情報を取り込むことで、分散型電源DG2を解列しないように設定できる。 On the other hand, when considering that the power supply to the load in the single system is continued by the distributed power supply, it is desired not to disconnect the distributed power supply DG2 in the case of a failure in Area-1. In this case, by taking the direction of the information in the R 2 ^ i A, it can be set not Resshi solutions of distributed power DG2.

(3.2)Area−4
Area−4で短絡故障が生じた場合における各リレーの動作を図5に示す。Area−2と同様に、^i4およびiDG4がArea−4に向かう方向となり、|^i4|が大きな値となったときにR4およびRDG4を動作させることでArea−4での故障をすべての電源から解列できる。この判断から遮断器の動作までを速やかに行えるのであれば、DG2は解列しなくともよい。前記のように、Area−AとArea−4との故障では、^i4の方向が異なる。そのため、R2に^i4の方向の情報を取り込むことでDG2を解列しないように設定することができる。
(3.2) Area-4
FIG. 5 shows the operation of each relay when a short-circuit failure occurs in Area-4. Similar to the Area-2, ^ i 4 and i DG4 is the direction towards the Area-4, | ^ i 4 | is in Area-4 by operating the R 4 and R DG4 when a large value Faults can be disconnected from all power sources. DG2 does not need to be disconnected if the determination to the operation of the circuit breaker can be performed quickly. As described above, the direction of i 4 is different in the failure between Area-A and Area-4. Therefore, it is possible to set not Resshi solution to DG2 by capturing direction information of R 2 to ^ i 4.

(3.3)Area−8
Area−8で短絡故障が生じた場合における各リレーおよびヒューズの動作を図6に示す。Area−8で短絡が生じた場合には、Area−2での故障時のR2における電流と同様に、分散型電源の導入位置によらずArea−8の上位の柱上変圧器に設置されたヒューズF2−1に過大な電流が流れる。そのため、ヒューズの溶断を他のリレーの動作よりも早くすることで、短絡区間のみを解列できる。一般に、遮断器は機械的機構を持つため、リレーと遮断器を組み合わせた保護装置の動作速度よりもヒューズの動作速度が速い。そのため、このような保護シーケンスは十分可能である。
(3.3) Area-8
FIG. 6 shows the operation of each relay and fuse when a short circuit failure occurs in Area-8. When the short-circuit Area-8 occurs, like the current in R 2 of the failure in the Area-2, is installed in the distributed Area-8 upper pole transformer in regardless of the position of the introduction of power An excessive current flows through the fuse F2-1. Therefore, only the short-circuit section can be disconnected by making the fuse blow earlier than the operation of other relays. Generally, since the circuit breaker has a mechanical mechanism, the operation speed of the fuse is faster than the operation speed of the protective device combining the relay and the circuit breaker. Therefore, such a protection sequence is sufficiently possible.

以上に示したように、各リレーの動作判定に複数の情報を用いることで、リレー間の協調をとらなくても故障区間に連系された分散型電源のみを確実に解列できる。   As described above, by using a plurality of pieces of information for determining the operation of each relay, it is possible to reliably disconnect only the distributed power sources linked to the failure section without cooperation between the relays.

以上の保護動作を得るためのリレーの基本構成例を従来方式と対比させて、図7と図8に示す。図7は分散型電源受電点のリレーR2の基本構成図であり、図8はフィーダ送端のリレーRAの基本構成図である。これら両図において、従来方式では当該リレーR2,RAでの電流i2,iAの絶対値による比較のみになるのに対して、本実施形態では他のリレーの電流i2,i4,iAを情報を取り込み、これら情報と電流iDG2,iB,iSを取り込み、これら電流情報から前記の図2〜図6による動作条件を基にしてリレーR2,RAの動作判定を得る。 An example of the basic configuration of a relay for obtaining the above protection operation is shown in FIGS. 7 and 8 in comparison with the conventional system. Figure 7 is a basic configuration diagram of a relay R 2 for dispersed power receiving point, FIG 8 is a diagram showing the basic configuration of a relay R A feeder sending end. In both of these figures, in the conventional system, only comparisons based on absolute values of the currents i 2 and i A in the relays R 2 and R A are made, whereas in the present embodiment, currents i 2 and i 4 of other relays are used. the i a captures information, these information and the current i DG2, i B, captures the i S, and from these current information based on operating conditions of FIGS. 2-6 of the operation determination of the relay R 2, R a Get.

(シミュレーション結果)
本発明の保護システムを検証するために、シミュレーションを実施した。これを現状の保護システムと対比させて以下に説明する。
(simulation result)
Simulations were performed to verify the protection system of the present invention. This will be explained below in comparison with the current protection system.

(A)計算条件
図1に示すモデル系統において、Feeder−A内の各母線間は2kmの6.6KV配電線で接続されている。#2〜#4の負荷はそれぞれ700kW、♯5は2100kWであり、Feeder−AおよびBでの負荷の合計は等しいとする。なお、力率はすべて0.9であるとする。
(A) Calculation conditions In the model system shown in FIG. 1, the buses in Feeder-A are connected by a 2 km 6.6 KV distribution line. The loads of # 2 to # 4 are 700 kW and # 5 are 2100 kW, respectively, and the sum of the loads in Feeder-A and B is equal. All power factors are assumed to be 0.9.

分散型電源は#2、♯4および#5に導入されている。分散型電源の導入容量が増加する場合を想定して、DG2およびDG4の容量が350kWおよび2000kWの場合について検討した。分散型電源の容量が増加する場合には、遮断器の遮断容量が問題となる可能性があるが、ここでは本発明の保護システムの柔軟性を示す極端な一例として計算した。なお、DG5の容量は700kWである。これらの分散型電源はすべてCGS(コージェネレーションシステム)で用いられる同期発電機とした。各分散型電源の機器定数表を図9に、制御系を図10に示す。各分散型電源の機器定数および制御系はすべて同じとした。   Distributed power supplies are introduced at # 2, # 4 and # 5. Assuming the case where the installed capacity of the distributed power source is increased, the case where the capacity of DG2 and DG4 is 350 kW and 2000 kW was examined. When the capacity of the distributed power source increases, the breaking capacity of the circuit breaker may become a problem, but here, it is calculated as an extreme example showing the flexibility of the protection system of the present invention. The capacity of DG5 is 700 kW. All of these distributed power sources were synchronous generators used in CGS (Cogeneration System). FIG. 9 shows a device constant table of each distributed power source, and FIG. 10 shows a control system. The device constants and control system of each distributed power source were all the same.

このモデル系統のI点〜VI点で三相短絡故障が生じた場合について数値計算プログラム(Matlab/Simulink)を用いてシミュレーションを行った。   A simulation was performed using a numerical calculation program (Matlab / Simlink) when a three-phase short-circuit failure occurred at points I to VI of this model system.

(B)現状の保護システムへの影響
I点で故障が生じ、その故障点を解列しない場合について各リレーでの故障電流を算定した。各リレー設置点のA相に流れる電流を図11および図12に示す。同図(a)から分散型電源が350kWの時、R2を流れる故障電流は130A〜200Aである。一方、分散型電源が2000kWの時には、R2を流れる電流は健全時でも150A程度である。そのため、現状の保護システムにおいて、分散型電源が350kWから2000kWに増加した時には、R2が健全時にも動作してしまうため、R2の設定値を変えなければならない。
(B) Impact on the current protection system When a failure occurred at point I and the failure point was not disconnected, the failure current at each relay was calculated. The electric current which flows into the A phase of each relay installation point is shown in FIG. 11 and FIG. From FIG. 5A, when the distributed power source is 350 kW, the fault current flowing through R 2 is 130A to 200A. On the other hand, when the distributed power source is 2000 kW, the current flowing through R 2 is about 150 A even when sound. Therefore, in the current protection system, when the distributed power source is increased from 350 kW to 2000 kW, R 2 operates even when it is healthy, so the set value of R 2 must be changed.

(C)本発明の保護システムでの各リレーの動作
ここでは、本発明の保護システムでは分散型電源の容量が増加した際に、各リレーの設定値を変化させなくても故障区間のみを的確に解列できることを示す。実施形態に示すリレーシーケンス(図2〜図6)をもとに、配電系統内の各点の故障に対して動作すべきかを判定できる各リレーの制御ブロックを図13〜図21に示す。図13〜16は分散型電源受電点のリレーR2、図17〜21はフィーダ送一端のリレーRAのブロック図を示している。この制御ブロックを用いて、I〜VI点で三相短絡故障が生じた場合の提案保護システムにおける各リレーの動作信号を算定した。
(C) Operation of each relay in the protection system of the present invention Here, in the protection system of the present invention, when the capacity of the distributed power source is increased, only the failure section is accurately determined without changing the set value of each relay. Indicates that it can be disconnected. Based on the relay sequence (FIGS. 2 to 6) shown in the embodiment, the control blocks of each relay that can determine whether or not to operate for each point in the distribution system are shown in FIGS. FIGS. 13 to 16 are block diagrams of a relay R 2 at a distributed power receiving point, and FIGS. 17 to 21 are block diagrams of a relay RA at one end of feeder feeding. Using this control block, the operation signal of each relay in the proposed protection system when a three-phase short-circuit failure occurred at points I to VI was calculated.

IおよびII点で故障が生じた場合のリレーR2およびRBの動作信号の変化を図22〜図25に示す。同図で動作信号が1の場合、リレーが動作し、遮断器に遮断の指令を送ることを意味する。同図より、各リレーが的確に動作していることが分かる。なお、I点およびII点の故障においては、RAおよびR4の動作信号は、R2の動作信号と同様に変化することを確認している。 The change of the relay R 2 and operation signals of the R B in the case of failure in I and II points occurs shown in FIGS. 22 to 25. In the figure, when the operation signal is 1, it means that the relay operates and sends a break command to the breaker. From the figure, it can be seen that each relay operates properly. In the fault point I and II points, operation signals of R A and R 4 have confirmed that the changes in the same manner as the operation signal R 2.

一方、分散型電源の容量が増加しても、各リレーは的確に動作する。R2、R4およびRAは、Feeder−Aが健全か故障かを判別をするために、RAでの電流の大きさ|^iA|を利用している。II点の故障の際には、分散型電源の容量の増加に伴って|^iA|も増加することになるが、^iAの方向の情報からFeeder−A外部の故障であると判断できるため、R2は動作しない。一方、I点の故障の時には,|^iA|は分散型電源の容量に依存せず大きくなると考えられ、R2は動作する。このことから、故障区間に連系された分散型電源のみを選択的に解列できると考えられる。 On the other hand, even if the capacity of the distributed power source increases, each relay operates properly. R 2 , R 4, and R A use the current magnitude | ^ i A | at R A to determine whether Feeder-A is healthy or faulty. In the case of a failure at point II, | ^ i A | increases as the capacity of the distributed power source increases, but it is determined from the information in the direction of ^ i A that the failure is outside of Feeder-A. R 2 does not work because it can. On the other hand, at the time of failure at point I, | ^ i A | is considered to increase without depending on the capacity of the distributed power source, and R 2 operates. From this, it is considered that only the distributed power source linked to the failure section can be selectively disconnected.

また、III〜VI点での故障についても、前記のシーケンスをもとに、リレーの設定値を上記の検討と同様として、各リレーの動作信号を算定した。その結果、分散型電源の容量が350kWから2000kWに増加しても、リレーの設定値を変更することなしに、故障区間のリレーのみを選択的に動作させられることを確認した。   In addition, regarding the failures at points III to VI, the operation signals of the respective relays were calculated based on the above sequence, with the relay set values being the same as in the above examination. As a result, it was confirmed that even if the capacity of the distributed power source was increased from 350 kW to 2000 kW, only the relay in the failure section could be selectively operated without changing the set value of the relay.

なお、図13〜図21において、リレーの出力には「過渡的な誤動作を防ぐために必要に応じて時間遅れを設けるのが好ましい。   13 to 21, it is preferable to provide a time delay as necessary to prevent a transient malfunction in the relay output.

以上のことから、提案保護システムでは、分散型電源の容量が大幅に増加したとしてもリレーの設定値を変更せずに対応できることが確認できた。   From the above, it was confirmed that the proposed protection system can cope with a large increase in the capacity of the distributed power source without changing the set value of the relay.

(D)動作判定の高速化
現状の保護システムにおいて、各リレーは他リレーとの協調によって定められた動作時限に従って遮断器を動作させる。そのため、故障区間の解列に数百msec程度を要する。この故障区間解列の遅れのために、故降区間の解列後、故障区間外の分散型電源の動揺が長時間継続する可能性がある。一方、本発明の保護システムでは、他地点の情報を用いることにより、故障発生後20msec程度で各リレーが遮断器を動作させるべき故障点であるかを明確に判断できるため、動揺の継続時間を短くすることができる。
(D) Speeding up of operation determination In the current protection system, each relay operates the circuit breaker according to an operation time period determined by cooperation with other relays. For this reason, it takes about several hundreds of milliseconds for the failure section to be disconnected. Due to the delay of the failure section disconnection, the distributed power supply outside the failure section may continue for a long time after the termination of the descending section. On the other hand, in the protection system of the present invention, by using the information of other points, it is possible to clearly determine whether each relay is a failure point that should operate the circuit breaker in about 20 msec after the failure occurs. Can be shortened.

このことを確認するため、図1のモデル系統を用いて、規状の保護システムおよび本発明の保護システムで故障点を解列する場合における故障区間外にある分散型電源の動揺の大きさを検村した。なお、DG2およびDG4の容量は2000kWとした。II点で三相短絡故障を発生させ、RB設置点の遮断器を動作させることによって故障点を解列した。現状の保護システムで解列した場合として、この遮断器を故障発生後200msecで動作させた。また、前記の検討から、本発明の保護システムにおいては各リレーによる遮断器の動作判定は故障発生後20msec程度で可能であるが、通信遅れ時間や遮断器の動作遅れ時間等などを考慮すると、実際の故障点の遮断までにはさらに数十msec程度の時間が必要となると考えられる。そこで、本発明の保護システムで解列した場合として、RB設置点の遮断器を50msecで動作させることとした。 In order to confirm this, by using the model system of FIG. 1, the magnitude of the fluctuation of the distributed power source outside the fault section when the fault point is disconnected in the normal protection system and the protection system of the present invention is determined. I went to the village. The capacity of DG2 and DG4 was 2000 kW. To generate a three-phase short circuit fault in II point was Kairetsu the fault point by operating the breaker R B installation point. As a case where the current protection system was disconnected, this circuit breaker was operated 200 msec after the failure occurred. Further, from the above examination, in the protection system of the present invention, the operation determination of the circuit breaker by each relay is possible in about 20 msec after the occurrence of the failure, but considering the communication delay time, the operation delay time of the circuit breaker, etc. It is considered that an additional time of about several tens of milliseconds is required until the actual failure point is cut off. Therefore, a case where the disconnection with protection system of the present invention, it was decided to operate the breaker R B installation point 50 msec.

故降区間外の分散型電源DG4の内部位相角の変化を図26に示す。同図から、故障区間を早く解列することにより、故障による分散型電源の回転子の加速を抑制することができるため、故障区間外の分散型電源の動揺を抑制できることが確認できた。   FIG. 26 shows changes in the internal phase angle of the distributed power supply DG4 outside the descending section. From this figure, it can be confirmed that the failure of the distributed power supply outside the failure section can be suppressed because the acceleration of the rotor of the distributed power supply due to the failure can be suppressed by disconnecting the failure section early.

以上のことから、本発明の保護システムを用いて故障区間を早く解列することにより、故降区間外の分散型電源の動揺を小さくできることが確認できた。   From the above, it was confirmed that the fluctuation of the distributed power source outside the descending section can be reduced by quickly disconnecting the fault section using the protection system of the present invention.

簡略化した系統モデル図。Simplified system model diagram. Area−Aで短絡が生じた場合の各リレーの動作(実施形態)。Operation of each relay when a short circuit occurs in Area-A (embodiment). Area−2で短絡が生じた場合の各リレーの動作(実施形態)。Operation of each relay when a short circuit occurs in Area-2 (embodiment). Area−1で短絡が生じた場合の各リレーの動作(実施形態)。The operation of each relay when a short circuit occurs in Area-1 (embodiment). Area−4で短絡が生じた場合の各リレーの動作(実施形態)。Operation of each relay when a short circuit occurs in Area-4 (embodiment). Area−8で短絡が生じた場合の各リレーの動作(実施形態)。The operation of each relay when a short circuit occurs in Area-8 (embodiment). 従来方式と実施形態のリレーR2の基本構成例。The basic configuration example of the relay R 2 in conventional manner as the embodiment. 従来方式と実施形態のリレーRAの基本構成例。The example of basic composition of relay RA of a conventional system and an embodiment. シミュレーションに使用した分散型電源の機器定数表。Equipment constant table of distributed power source used for simulation. シミュレーションに使用した分散型電源の制御系構成図。The control system block diagram of the distributed power supply used for simulation. シミュレーションにおけるI点での故障時に各リレーに流れる電流波形。Current waveform that flows through each relay when a failure occurs at point I in the simulation. シミュレーションにおけるI点での故障時に各リレーに流れる電流波形。Current waveform that flows through each relay when a failure occurs at point I in the simulation. 実施形態におけるリレーR2の制御ブロック図(Area−Aでの故障時)。A control block diagram of the relay R 2 in the embodiment (at the time of failure in the Area-A). 実施形態におけるリレーR2の制御ブロック図(Area−2での故障時)。A control block diagram of the relay R 2 in the embodiment (at the time of failure in the Area-2). 実施形態におけるリレーR2の制御ブロック図(Area−4での故障時)。A control block diagram of the relay R 2 in the embodiment (at the time of failure in the Area-4). 実施形態におけるリレーR2の制御ブロック図(Area−1、Area−Bでの故障時)。A control block diagram of the relay R 2 in the embodiment (at the time of failure in Area-1, Area-B) . 実施形態におけるリレーRAの制御ブロック図(Area−Aでの故障時)。The control block diagram of relay RA in embodiment (at the time of a failure in Area-A). 実施形態におけるリレーRAの制御ブロック図(Area−1での故障時)。The control block diagram of relay RA in embodiment (at the time of a failure in Area-1). 実施形態におけるリレーRAの制御ブロック図(Area−Bでの故障時)。The control block diagram of relay RA in embodiment (at the time of a failure in Area-B). 実施形態におけるリレーRAの制御ブロック図(Area−2での故障時)。The control block diagram of relay RA in embodiment (at the time of a failure in Area-2). 実施形態におけるリレーRAの制御ブロック図(Area−4での故障時)。The control block diagram of relay RA in embodiment (at the time of a failure in Area-4). シミュレーションにおけるI点での故障時の各リレーの動作信号(分散型電源350kW)。Operation signal of each relay at the time of failure at point I in the simulation (distributed power supply 350 kW). シミュレーションにおけるII点での故障時の各リレーの動作信号(分散型電源350kW)。Operation signal of each relay at the time of failure at point II in the simulation (distributed power supply 350 kW). シミュレーションにおけるI点での故障時の各リレーの動作信号(分散型電源2000kW)。The operation signal of each relay at the time of a failure at point I in the simulation (distributed power supply 2000 kW). シミュレーションにおけるII点での故障時の各リレーの動作信号(分散型電源2000kW)。The operation signal of each relay at the time of failure at point II in the simulation (distributed power supply 2000 kW). シミュレーションにおけるII点での故障時の各リレーの動作信号(分散型電源2000kW)。The operation signal of each relay at the time of failure at point II in the simulation (distributed power supply 2000 kW). 故障区間の分類を説明する系統モデル図。The system | strain model figure explaining the classification | category of a failure area. Area−Aで短絡が生じた場合の各リレーの動作(従来)。Operation of each relay when a short circuit occurs in Area-A (conventional). Area−Bで短絡が生じた場合の各リレーの動作(従来)。Operation of each relay when a short circuit occurs in Area-B (conventional). Area−1で短絡が生じた場合の各リレーの動作(従来)。Operation of each relay when a short circuit occurs in Area-1 (conventional).

符号の説明Explanation of symbols

A,RB,R2,R4,R5,R7 リレー
DG2,DG4,DG5,DG7 分散型電源
R A , R B , R 2 , R 4 , R 5 , R 7 relays DG2, DG4, DG5, DG7 Distributed power supply

Claims (2)

フィーダから分岐されたサイトに分散型電源が導入された配電系統において、
分散型電源を含むサイトの受電点に設置され、当該サイトからフィーダへ流れる電流、フィーダ送端の電流、当該フィーダに接続される他の分散型電源を含むサイトからフィーダへ流れる電流を情報として取得し、これらの電流の実部、方向、絶対値を用いて短絡故障区間を判定し、短絡故障区間が当該フィーダまたは分散型電源を含むサイトの内部であった場合に当該分散型電源を含むサイトの受電点遮断器を解放する短絡保護シーケンスを備えたことを特徴とする配電系統の保護システム。
In a power distribution system where a distributed power source is installed at a site branched from a feeder,
It is installed at the power receiving point of the site including the distributed power source, and obtains the current flowing from the site to the feeder, the current at the feeder sending end, and the current flowing from the site including other distributed power sources connected to the feeder to the feeder as information. The site including the distributed power source is determined when the short-circuit fault interval is determined using the real part, direction, and absolute value of these currents, and the short-circuit fault interval is inside the site including the feeder or the distributed power source. A distribution system protection system comprising a short-circuit protection sequence for releasing a power receiving point circuit breaker.
フィーダから分岐されたサイトに分散型電源が導入された配電系統において、
配電用変電所に設置され、変電所二次側母線に流入あるいは流出する電流、当該フィーダに接続される分散型電源を含むサイトからフィーダへ流れる電流を情報として取得し、これらの電流の実部、方向、絶対値を用いて短絡故障区間を判定し、短絡故障区間が当該フィーダまたは変電所二次側母線であった場合に当該分散型電源を含むサイトの受電点遮断器を解放する短絡保護シーケンスを備えたことを特徴とする配電系統の保護システム。
In a power distribution system where a distributed power source is installed at a site branched from a feeder,
Information obtained from the current flowing into and out of the substation secondary bus and from the site including the distributed power source connected to the feeder to the feeder is obtained as information, and the real part of these currents , Direction, absolute value is used to determine the short-circuit fault section, and when the short-circuit fault section is the feeder or substation secondary bus, the short-circuit protection that releases the receiving point breaker of the site including the distributed power source A distribution system protection system characterized by a sequence.
JP2003329227A 2003-09-22 2003-09-22 Distribution system protection system Expired - Fee Related JP4046674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329227A JP4046674B2 (en) 2003-09-22 2003-09-22 Distribution system protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329227A JP4046674B2 (en) 2003-09-22 2003-09-22 Distribution system protection system

Publications (2)

Publication Number Publication Date
JP2005094984A true JP2005094984A (en) 2005-04-07
JP4046674B2 JP4046674B2 (en) 2008-02-13

Family

ID=34458529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329227A Expired - Fee Related JP4046674B2 (en) 2003-09-22 2003-09-22 Distribution system protection system

Country Status (1)

Country Link
JP (1) JP4046674B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131858B1 (en) * 2010-05-31 2012-04-24 가천대학교 산학협력단 Voltage Stabilizing Method of Distribution Line Interconnected with Distributed Generation
CN110137899A (en) * 2019-04-29 2019-08-16 南京南瑞继保电气有限公司 A kind of induced current quick release device switch failure control method and device
JP2020020729A (en) * 2018-08-03 2020-02-06 オムロン株式会社 Weight measurement system and vehicle separation method
CN112531661A (en) * 2020-12-18 2021-03-19 南方电网科学研究院有限责任公司 Station domain failure protection method and system based on switching value signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736256B1 (en) 2015-09-25 2017-05-16 한국전력공사 Apparatus and method for calculating contribution ratio of fault current

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131858B1 (en) * 2010-05-31 2012-04-24 가천대학교 산학협력단 Voltage Stabilizing Method of Distribution Line Interconnected with Distributed Generation
JP2020020729A (en) * 2018-08-03 2020-02-06 オムロン株式会社 Weight measurement system and vehicle separation method
CN110137899A (en) * 2019-04-29 2019-08-16 南京南瑞继保电气有限公司 A kind of induced current quick release device switch failure control method and device
CN110137899B (en) * 2019-04-29 2021-02-09 南京南瑞继保电气有限公司 Method and device for controlling switching-on failure of induced current quick release device
CN112531661A (en) * 2020-12-18 2021-03-19 南方电网科学研究院有限责任公司 Station domain failure protection method and system based on switching value signals
CN112531661B (en) * 2020-12-18 2022-10-14 南方电网科学研究院有限责任公司 Station domain failure protection method and system based on switching value signals

Also Published As

Publication number Publication date
JP4046674B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
Oudalov et al. Adaptive network protection in microgrids
Yuan et al. Protection strategies for medium-voltage direct-current microgrid at a remote area mine site
Che et al. Adaptive protection system for microgrids: Protection practices of a functional microgrid system
Zamani et al. A communication-assisted protection strategy for inverter-based medium-voltage microgrids
Lai et al. Comprehensive protection strategy for an islanded microgrid using intelligent relays
EP3605776B1 (en) Method for locating phase faults in a microgrid
Haj-ahmed et al. Investigation of protection schemes for flexible distribution of energy and storage resources in an industrial microgrid
CN108957245A (en) A kind of flexible direct current power distribution network monopole fault identification method based on total failure electric current
CN104300580A (en) Reclosure method involving distributed generation power distribution network based on wide area information
Voima et al. Novel protection approach for MV microgrid
Khademlahashy et al. A review on protection issues in micro-grids embedded with distribution generations
JP4613652B2 (en) Distribution system protection system
CN110401178A (en) Micro-capacitance sensor overcurrent protective device
JP4046674B2 (en) Distribution system protection system
Papaspiliotopoulos et al. Hardware-in-the-loop simulation for protection blinding and sympathetic tripping in distribution grids with high penetration of distributed generation
Papaspiliotopoulos et al. Adverse impact of distributed generation on protection of the Hellenic MV network–recommendations for protection scheme upgrade
Friedl et al. Safety and reliability for smart-, micro-and islanded grids
Bari et al. Smart and adaptive protection scheme for distribution network with distributed generation: A scoping review
Vijitha et al. Short circuit analysis and adaptive zonal protection of distribution system with distributed generators
CN108418193A (en) The failure service restoration method and system that reclosing is combined with low voltage crossing
Enacheanu et al. New control strategies to prevent blackouts: Intentional islanding operation in distribution networks
Comech et al. Protection in distributed generation
Chen et al. A coordinated strategy of protection and control based on wide-area information for distribution network with the DG
Kazerooni et al. Technical requirements and challenges for grid applications of Smart Transformers
Rezaei et al. State-of-the-Art microgrid power protective relaying and coordination techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees