JPS61221307A - Porous al sintered material - Google Patents

Porous al sintered material

Info

Publication number
JPS61221307A
JPS61221307A JP6309085A JP6309085A JPS61221307A JP S61221307 A JPS61221307 A JP S61221307A JP 6309085 A JP6309085 A JP 6309085A JP 6309085 A JP6309085 A JP 6309085A JP S61221307 A JPS61221307 A JP S61221307A
Authority
JP
Japan
Prior art keywords
porous
sintered
corrosion resistance
sintered material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6309085A
Other languages
Japanese (ja)
Other versions
JPH0210842B2 (en
Inventor
Kiyoshi Nakanishi
清 中西
Katsuhiro Kishida
岸田 勝弘
Hiroyoshi Kikuchi
菊地 宏佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP6309085A priority Critical patent/JPS61221307A/en
Publication of JPS61221307A publication Critical patent/JPS61221307A/en
Publication of JPH0210842B2 publication Critical patent/JPH0210842B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a porous Al sintered material having excellent strength, sound absorbing characteristic and corrosion resistance by subjecting a sintered body which is obtd. by sintering a powder mixture composed of Al added with Cu in a non-oxidizing atmosphere under no pressure to a soln. heat treatment. CONSTITUTION:The powder mixture which consists essentially of Al and contains Cu as an additive component is sintered in the non-oxidizing atmosphere under no pressure in a vessel consisting of graphite or the like which does not react with Al at the liquid phase generating temp. of Cu or above and the m.p. of Al or below, by which the porous sintered body having 30-60% porosity is obtd. the sintered body is then subjected to the soln. heat treatment. The CuAl2 phase is thoroughly diffused into the base by such treatment and the porous Al sintered material having the excellent mechanical strength, sound absorbing characteristic and corrosion resistance is obtd.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は多孔質Al系焼結材料に係り、詳しくは、騒音
、雑音等の吸音特性に優れ、かつ、耐蝕性に優れた多孔
質Al系焼結材料に係る。
[Detailed Description of the Invention] <Object of the Invention> Industrial Field of Application The present invention relates to a porous Al-based sintered material, and more specifically, it relates to a porous Al-based sintered material, which has excellent sound absorption characteristics such as noise and noise, and excellent corrosion resistance. It concerns a porous Al-based sintered material.

従  来  の  技  術 多孔質At系焼結材料はCuあるいはFe系の多孔質焼
結材料と比較して、 (1)比重が軽い。
Conventional technology Porous At-based sintered materials have (1) lower specific gravity than Cu- or Fe-based porous sintered materials;

(2)展延性が良好であるため、曲げ加工が比較的容易
である。
(2) Since it has good malleability, bending is relatively easy.

(3)焼結温度が低く、比較的廉価で製造できる。(3) The sintering temperature is low and it can be manufactured at relatively low cost.

等の利点を有するため積極的に開発が進められてきた。Since it has the following advantages, its development has been actively promoted.

しかし、初期においては特公昭43−20884号、4
5−24206号、45−24007号、47−321
63@の各公報に示されているように、主として機械部
品の含油軸受を目的として開発が進められたため、多孔
質焼結材料の強度が要求され、必然的に焼結成分として
焼結性が良く、強度が得られ易いCuを含有する焼結材
料が多く、また、技術的には焼結を阻害する表面酸化皮
膜を押圧して破り焼結を進行させる方法が一般的方法で
あったため、得られる焼結材料の多孔率はせいぜい10
〜20%であった。
However, in the early days, Tokuko No. 43-20884, 4
No. 5-24206, No. 45-24007, No. 47-321
As shown in the publications of 63@, since the development was mainly aimed at oil-impregnated bearings for mechanical parts, the strength of porous sintered materials was required, and sinterability was inevitably required as a sintered component. Many sintered materials contain Cu, which is easy to obtain good strength, and technically speaking, the common method was to press the surface oxide film that inhibits sintering to break it and allow sintering to proceed. The porosity of the resulting sintered material is at most 10
It was ~20%.

その復、特公昭5G−11373号公報によって無加圧
、非酸化性雰囲気下で焼結し、多孔率40〜50%の多
孔質Al系焼結材料を得る方法が開発され、吸音材、埴
過材等に広く応用されるようになったが、機械的強度、
耐候性および吸音特性の点でAl−Cu系の焼結材料が
主に用いられてきた。
Then, in Japanese Patent Publication No. 5G-11373, a method was developed to obtain a porous Al-based sintered material with a porosity of 40 to 50% by sintering in a non-pressure and non-oxidizing atmosphere. It has come to be widely applied to overfill materials, etc., but the mechanical strength,
Al--Cu based sintered materials have been mainly used from the viewpoint of weather resistance and sound absorption properties.

しかし、従来のCuを含有する多孔質AJ系焼結材料は
、耐蝕性を要求される用途、場所には、その使用が限定
される欠点があり、耐蝕性が要求される用途における使
用は問題があった。
However, conventional porous AJ-based sintered materials containing Cu have the disadvantage that their use is limited in applications and locations that require corrosion resistance, and their use in applications that require corrosion resistance is problematic. was there.

発明が解決しようとする問題点 本発明はこれらの問題点の解決を目的とし、具体的には
、耐蝕性に冨む多孔質Al系焼結材料を提供することを
目的とする。
Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically aims to provide a porous Al-based sintered material that is highly corrosion resistant.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明は、Alを主成分とし、添加成分としてCuを含
有する混合粉末をAlと反応しない容器中で無加圧、非
酸化性雰囲気下で焼結した多孔率30〜60%の焼結体
を溶層化処理することを特徴とする。
<Structure of the Invention> Means for Solving the Problems and Their Effects The present invention provides a non-pressurized, non-oxidizing method for preparing a mixed powder containing Al as a main component and Cu as an additive component in a container that does not react with Al. It is characterized in that a sintered body having a porosity of 30 to 60% is sintered in an atmosphere and subjected to a solution stratification treatment.

以下、図面によって本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明による多孔質Al系焼結材料を製造する
製造工程の一例の説明図であり、また、第2図はAl−
Cu系状態図である。
FIG. 1 is an explanatory diagram of an example of a manufacturing process for manufacturing a porous Al-based sintered material according to the present invention, and FIG.
It is a Cu system phase diagram.

第1図においてAlを主成分とする原料粉末1はホッパ
ー2からAlと反応しない容器3(例えば、グラファイ
ト容器)中に所定厚みに均一に散布される。この時の散
布厚みは容器の深さによって調整される。原料粉末が自
然充填された容器3は段積みされ、NH3分解ガスやN
2ガス雰囲気に保たれた焼結炉4中で焼結され、冷却ゾ
ーン6で冷却された後、容器3から外すことによって多
孔質Al系焼結材料7が得られる。
In FIG. 1, a raw material powder 1 containing Al as a main component is uniformly spread to a predetermined thickness from a hopper 2 into a container 3 (for example, a graphite container) that does not react with Al. The thickness of the spray at this time is adjusted depending on the depth of the container. Containers 3 naturally filled with raw material powder are stacked in layers, and NH3 decomposition gas and N
After being sintered in a sintering furnace 4 maintained in a two-gas atmosphere and cooled in a cooling zone 6, the porous Al-based sintered material 7 is obtained by removing it from the container 3.

以上のように本発明においては容器3中のAlを主成分
とする原料粉末1は自然充填された状態にあり、通常の
焼結方法においては焼結を阻害する表面酸化皮膜を押圧
によって破壊するのに対し、焼結時のAl粉末粒子の内
部と酸化皮膜との熱膨張率の差によって破壊され、この
破壊部分を通して焼結が進行する。この際に、破壊され
露出したメタリックな部分および生成した液相部分は酸
化され易いので焼結炉の雰囲気は酸素の分圧を低く制御
する必要があり、露点が一30℃以下の雰囲気で焼結さ
れる。また、焼結温度は添加成分粉末の液相発生温度以
上で、しかも、Alの融点以下の温度で焼結される。
As described above, in the present invention, the raw material powder 1 containing Al as a main component in the container 3 is in a naturally filled state, and the surface oxide film that inhibits sintering in a normal sintering method is destroyed by pressing. On the other hand, during sintering, the aluminum powder particles are destroyed due to the difference in thermal expansion coefficient between the inside of the particles and the oxide film, and sintering progresses through this destroyed portion. At this time, the destroyed and exposed metallic parts and the generated liquid phase parts are easily oxidized, so the atmosphere in the sintering furnace must be controlled to have a low partial pressure of oxygen, and the sintering furnace must be sintered in an atmosphere with a dew point of 130°C or less. tied. Further, the sintering temperature is higher than the liquid phase generation temperature of the additive component powder and lower than the melting point of Al.

得られる多孔質Al系焼結材料の多孔率は粒度の細かい
粉末を使用し、添加成分の液相量を小さく制御すると多
孔率60%以上の焼結材を得ることができるが、この焼
結材は強度的に弱く、また、未焼結になり易いので実用
的でない。
The resulting porous Al-based sintered material can have a porosity of 60% or more by using fine-grained powder and controlling the liquid phase amount of the additive components to a small value. The material is not practical because it has low strength and tends to become unsintered.

また、焼結温度と添加成分員の制御によって多孔率30
%以下の焼結材も得ることができるが、多孔率30%以
下になると部分的に独立気孔が増加すると共に温度制御
の限界を越えてメタリックな焼結となり易い。従って、
多孔率は30〜60%が好ましい。
In addition, by controlling the sintering temperature and additive components, the porosity can be reduced to 30.
It is possible to obtain a sintered material with a porosity of 30% or less, but when the porosity is 30% or less, independent pores increase locally and the temperature control limit is exceeded, which tends to result in metallic sintering. Therefore,
The porosity is preferably 30 to 60%.

一般に、2相あるいはそれ以上の異相よりなる合金は異
相間の電気化学的作用により1相の合金より腐蝕を受は
易いのが普通であるが、特に、多孔質金属材料において
は通常の金属材料と比較して表面積が格段に大きく、ま
た、強度は小さいので腐蝕の影響は非常に大きく耐蝕性
の向上は重要な課題である。耐蝕性を目的とする場合の
重要な因子となるのは電極電位であり、添加成分として
Alとの固溶体あるいは金属間化合物の電極電位が純A
lの電橋電位に近いものを選択する必要がある。
In general, alloys consisting of two or more different phases are more susceptible to corrosion than single-phase alloys due to the electrochemical action between the different phases. Since the surface area is much larger and the strength is lower, the influence of corrosion is very large, and improving corrosion resistance is an important issue. An important factor when aiming for corrosion resistance is the electrode potential, and the electrode potential of the solid solution or intermetallic compound with Al as an additive component is
It is necessary to select one close to the electric bridge potential of l.

第1表は各種金属の八!との固溶体および金属間化合物
の電橋電位を示したものである。
Table 1 shows 8 types of metals! This figure shows the bridge potential of solid solutions with and intermetallic compounds.

第1表 但し、11溶液中にNaCJ :53g及びH2O2:
3(lを含む水溶液中で測定前述の通り、1−Cu系多
孔質焼結材料は機械的強度及び吸音特性の点で優れてい
るが、耐食性に劣り、耐食性を要求される用途、場所に
おける使用は制約されるので、Al −Cu系多孔質焼
結材料の耐食性向上は大きな課題である。
Table 1: However, NaCJ: 53g and H2O2 in 11 solutions:
Measurement in an aqueous solution containing 3(l) As mentioned above, 1-Cu-based porous sintered materials have excellent mechanical strength and sound absorption properties, but they have poor corrosion resistance, making them difficult to use in applications and places where corrosion resistance is required. Since its use is restricted, improving the corrosion resistance of Al-Cu based porous sintered materials is a major challenge.

耐食性不良の原因を電極電位から考察すると、第1表に
示すようにAi−cu固溶体の電極電位−〇、69vハ
、1i14Allf7)−0,85Vト比較シテ大キナ
差ではない。しがし、その金属間化合物であるCuAl
2の電wA電位は−0,53Vとかなり大きく異なる。
Considering the cause of poor corrosion resistance from the electrode potential, as shown in Table 1, the electrode potential of the Ai-cu solid solution -〇, 69V, 1i14Allf7) -0,85V is not a large difference. However, its intermetallic compound CuAl
The electric potential wA of No. 2 is quite significantly different from -0.53V.

従って、Cuの添加量が少」で固溶限度内であれば有害
とはならないが、固溶限を越え、CuAl2相析出する
ようになると、有害に働き、耐食性を大巾に低下させる
ことが分る。そこで、At−Cu系多孔質焼結材料の耐
食性を向上させるには、CuAl2の析出を防止するこ
とが重要であるとの知見から本発明が生れた。
Therefore, if the amount of Cu added is small and within the solid solubility limit, it will not be harmful, but if it exceeds the solid solubility limit and CuAl2 phase precipitates, it will be harmful and the corrosion resistance will be significantly reduced. I understand. Therefore, the present invention was born from the knowledge that it is important to prevent the precipitation of CuAl2 in order to improve the corrosion resistance of At-Cu based porous sintered materials.

すなわち、高力At合金において採用されている溶層化
処理を多孔’RAl系焼結材料に導入することにより、
耐食性の向上に成功したもので、具体的には、前述のよ
うにして得られたAl−CIJ系多孔質焼結材料を第2
図に示すAl−Cu系状態図のα相まて昇温(例えば5
00℃)した後、急冷することにより耐食性の向上が達
成される。このように処理した後の組織を顕微鏡的に観
察すると、粒界のCuAl2相は完全に消失し、生地中
に拡散されていることが分る。
That is, by introducing the solution stratification treatment adopted in high-strength At alloys to porous 'RA1-based sintered materials,
The material was successfully improved in corrosion resistance, and specifically, the Al-CIJ porous sintered material obtained as described above was
The α phase of the Al-Cu system phase diagram shown in the figure is heated up (for example, 5
00° C.) and then rapidly cooled to improve corrosion resistance. Microscopic observation of the structure after this treatment shows that the CuAl2 phase at the grain boundaries has completely disappeared and has been diffused into the fabric.

実施例 以下、実施例について更に説明する。Example Examples will be further described below.

実施例1゜ A13%Cuの多孔質焼結板を温度580℃で1時間保
持し、水温18°Cの水中で急冷後、処理前後の顕微鏡
組織と引張強さを測定した結果、処理した組織の粒界の
CuAl2相は完全に消失していた。又、引張強さは処
理前の平均1.95kG/CI2に対し処理する事によ
って平均2.85klJ/CI2に増加した。
Example 1 A porous sintered plate of 13% Cu was held at a temperature of 580°C for 1 hour, and after being rapidly cooled in water with a water temperature of 18°C, the microscopic structure and tensile strength before and after the treatment were measured. The CuAl2 phase at the grain boundaries had completely disappeared. Moreover, the tensile strength increased from an average of 1.95 kG/CI2 before treatment to an average of 2.85 klJ/CI2 by treatment.

〈発明の効果〉 以上説明したように、本発明は多孔率30〜60%のA
t −Cu系多孔質焼結材料を溶態化処理することによ
って従来Al −Cu系多孔質焼結材料の欠点であった
耐食性を向上することに成功し、機械的強度、吸音特性
及び耐食性に儂れた多孔質Al系焼結材料が得られ、耐
食性を必要とする用途、場所にも十分に使用することが
できるようになった。
<Effects of the Invention> As explained above, the present invention has a porosity of 30 to 60%.
By solution treatment of t-Cu based porous sintered material, we succeeded in improving the corrosion resistance, which was a drawback of conventional Al-Cu based porous sintered material, and improved mechanical strength, sound absorption properties and corrosion resistance. A new porous Al-based sintered material has been obtained, which can now be used satisfactorily in applications and places that require corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多孔質At系焼結材料の製造工程
の一例の説明図、第2図はAl−Cu系状態図である。 符号1・・・・・・原料粉末   2・・・・・・ホッ
パー3・・・・・・容器     4・・・・・・焼結
炉5・・・・・・焼結ゾーン  G・・・・・・冷却ゾ
ーン7・・・・・・多孔質Al系焼結材料 特許出願人 工ヌデーシー株式会社 代  理  人  弁理士  松  下  義  勝弁
護士 01  島 文 雄
FIG. 1 is an explanatory diagram of an example of the manufacturing process of a porous At-based sintered material according to the present invention, and FIG. 2 is an Al-Cu-based phase diagram. Code 1... Raw material powder 2... Hopper 3... Container 4... Sintering furnace 5... Sintering zone G... ... Cooling zone 7 ... Porous Al-based sintered material patent applicant KonuDC Co., Ltd. Representative Patent attorney Yoshikatsu Matsushita Attorney 01 Fumi Yu Shima

Claims (1)

【特許請求の範囲】[Claims] Alを主成分とし、添加成分としてCuを含有する混合
粉末をAlと反応しない容器中で無加圧、非酸化性雰囲
気下で焼結した多孔率30〜60%の焼結体を溶態化処
理してなる多孔質Al系焼結材料。
A sintered body with a porosity of 30 to 60% is made by sintering a mixed powder containing Al as the main component and Cu as an additive component in a container that does not react with Al without pressure and in a non-oxidizing atmosphere. Porous Al-based sintered material made by processing.
JP6309085A 1985-03-26 1985-03-26 Porous al sintered material Granted JPS61221307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309085A JPS61221307A (en) 1985-03-26 1985-03-26 Porous al sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309085A JPS61221307A (en) 1985-03-26 1985-03-26 Porous al sintered material

Publications (2)

Publication Number Publication Date
JPS61221307A true JPS61221307A (en) 1986-10-01
JPH0210842B2 JPH0210842B2 (en) 1990-03-09

Family

ID=13219269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309085A Granted JPS61221307A (en) 1985-03-26 1985-03-26 Porous al sintered material

Country Status (1)

Country Link
JP (1) JPS61221307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103043A1 (en) * 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
CN110578080A (en) * 2019-09-27 2019-12-17 西安近代化学研究所 Cu/Al composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677301A (en) * 1979-11-27 1981-06-25 N D C Kk Sintering method of al or its alloy powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677301A (en) * 1979-11-27 1981-06-25 N D C Kk Sintering method of al or its alloy powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103043A1 (en) * 2012-01-06 2013-07-11 古河スカイ株式会社 Method for manufacturing porous aluminum
CN104023879A (en) * 2012-01-06 2014-09-03 株式会社Uacj Method for manufacturing porous aluminum
CN104023879B (en) * 2012-01-06 2016-03-09 株式会社Uacj The manufacture method of porous aluminum
CN110578080A (en) * 2019-09-27 2019-12-17 西安近代化学研究所 Cu/Al composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0210842B2 (en) 1990-03-09

Similar Documents

Publication Publication Date Title
KR830007874A (en) Dispersion reinforced copper alloy
US3323880A (en) Beryllium-aluminum-magnesium composite
US2200743A (en) Method of making a composition of phosphorus and metal
JPS61221307A (en) Porous al sintered material
JPS6148566B2 (en)
US3214262A (en) Process for producing dense iron powders from sponge iron
US2573229A (en) Producing aluminum coated metal articles
US2228600A (en) Powder metallurgy
US3894678A (en) Method of bonding sintered iron articles
Shibli et al. Effect of oxidation on sintering characteristics of Al powder and effect of some minor metallic additions
US4122220A (en) Method for reducing the gas permeability of a sintered porous silicon nitride body
US3378356A (en) Composites of beryllium-coppermagnesium
JPH0219406A (en) Manufacture of iron porous body
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JPS5934230B2 (en) Metal surface treatment method
CN107160053B (en) It is a kind of for aluminium and the solder stick of aluminum alloy soft soldering and preparation method thereof
US3684479A (en) Method for the inactivation of pulverulent ferrosilicon
JPS5528378A (en) Heat resistant composite alloy material
JPS6150121B2 (en)
JPS591519B2 (en) Manufacturing method of ultra-low hydrogen coated arc welding rod
JP3195497B2 (en) Surface treatment method for tungsten heavy alloy and weight treated with the method
JPS61581A (en) Corrosion resistant beryllium substrate
JPS61174353A (en) Porous al-type sintered material
SU1073330A1 (en) Composition for chrome-titanium plating of steel
GB2088414A (en) Sintering Stainless Steel Powder