JPS61220809A - Mold - Google Patents

Mold

Info

Publication number
JPS61220809A
JPS61220809A JP6266685A JP6266685A JPS61220809A JP S61220809 A JPS61220809 A JP S61220809A JP 6266685 A JP6266685 A JP 6266685A JP 6266685 A JP6266685 A JP 6266685A JP S61220809 A JPS61220809 A JP S61220809A
Authority
JP
Japan
Prior art keywords
layer
powder
mold
metal
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6266685A
Other languages
Japanese (ja)
Other versions
JPH0260495B2 (en
Inventor
Hiroya Yamamoto
山本 博也
Shigeo Motohashi
本橋 滋夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munekata Co Ltd
Original Assignee
Munekata Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munekata Co Ltd filed Critical Munekata Co Ltd
Priority to JP6266685A priority Critical patent/JPS61220809A/en
Publication of JPS61220809A publication Critical patent/JPS61220809A/en
Publication of JPH0260495B2 publication Critical patent/JPH0260495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To permit to make the mold, high in the hardness thereof, simply by a method wherein the mold is provided with a base body, made by pressurized powder body consisting of metallic powder, ceramics powder and inorganic binding agent, a water absorbing metallic porous layer provided on the surface of the base body and a flat surface metal layer provided on the surface of the metallic porous layer. CONSTITUTION:The principal constituents of the binding agent, constituting the base body 1, are silicates, amorphous silica and colloidal silica and they are bonded through the medium of water. The porous layer 2 is consisting of rough metallic powder having the grain size of 100-200 mesh and the binding agent substantially equal to the metallic powder and is provided with numberless of air holes therein. The surface metal layer 3 is the electro-deposit layer of metal individual or the metal containing ceramic powder in order to increase the headness of the surface of is an electroless plating layer of the same. The thickness of the surface metal layer 3 is preferable to be 0.5-3mm. The surface metal layer 3 is applied on the surface of a matrix 6 formed with a protection film 7. A frame body 4 is filled with the material for forming the porous layer 2 and is filled further with a paste type base body 1 forming material. The frame body is heated and pressurized gradually by a punch to obtain the mold.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、プラスチック、ゴム等の成形用金型に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a mold for molding plastics, rubber, etc.

≦梼JIZM仕zt 欧米諸国では、焼入れ硬化した材質を金型に使用してい
るが、故障を起さず耐久性のある金型をつくるには、型
彫後焼入れ硬化するか、焼入れ硬化済みの材料を型彫す
るかして行われている。
≦JIZM specifications In Western countries, quench-hardened materials are used for molds, but in order to create durable molds that do not cause failure, it is necessary to quench-harden them after die carving or to use quench-hardened materials. This is done by mold engraving the material.

しかし、これだと硬い材質だけに型彫するのに時間がか
かり、後処理にしても歪の問題、加工費の上昇などがあ
るため我国ではプラスチック用金型などの90%近くが
焼入れしない材質を使用しており、必要に応じて焼入れ
した材質のものを使用しているにすぎない、また、一般
の金型加工についてはキャビティの相違によるが、製造
に長時間を要し高度な技術を必要とするので、必然的に
高価なものとなるが、最近金型の量産化、すなわち迅速
加工によって加工費を低減し、高速度に金型を得る方法
が開発され、実用化されている0例えば、コールドボビ
ングと呼ばれる冷間加工、シコープロセス法、放電加工
、電鋳法、さらに人手を要しない全自動ならいフライス
盤、全自動ボール盤等が開発され、経済性の向上を図っ
ている。
However, with this, it takes time to carve only hard materials, and post-processing causes problems with distortion and increases in processing costs, so in Japan, nearly 90% of molds for plastics are made of materials that are not hardened. We only use materials that have been hardened when necessary.Also, general mold processing depends on the differences in the cavity, but manufacturing takes a long time and requires advanced technology. However, recently a method has been developed and put into practical use to reduce processing costs and obtain molds at high speed through mass production of molds, that is, rapid processing. For example, cold working called cold bobbing, the Shico process method, electrical discharge machining, electroforming, fully automatic profile milling machines that do not require human labor, fully automatic drilling machines, etc. have been developed to improve economic efficiency.

Lかしながら、金型加工法の変遷はこれを利用する金型
鋼材の変化を伴ない、コールドボビング法では低炭素合
金鋼が用いられ、放電加工法ではその型鋼が境入れ焼戻
し済みの高硬度であってもよく超硬合金の加工も可能で
ある。また簡易な鋳造法による材質としては亜鉛合金(
ZAS)、あるいはベリリウム銅が用いられ、金型の一
部に利用されている。
However, changes in mold machining methods have been accompanied by changes in the mold steel materials used, with the cold bobbing method using low-carbon alloy steel, and the electrical discharge machining method using pre-tempered high-grade steel. It is also possible to process cemented carbide, regardless of its hardness. In addition, zinc alloy (
ZAS) or beryllium copper is used in some of the molds.

一方、セラミックスと金属とからなる複合材料であるサ
ーメットは、一般にセラミック粉末と金属粉末とを混合
し、圧縮成形したのち、これを焼結して製造される。か
かるサーメットはセラミックスの有する硬さ、耐摩耗性
、耐食性、耐熱性と・金属の有する強度とが組み合され
た長所を有する。
On the other hand, cermet, which is a composite material made of ceramics and metal, is generally manufactured by mixing ceramic powder and metal powder, compression molding the mixture, and then sintering the mixture. Such cermets have the advantage of combining the hardness, wear resistance, corrosion resistance, and heat resistance of ceramics with the strength of metals.

このようなサーメットを金型に使用すれば、従来のよう
に金属を焼入れして硬度を高める必要がなくなり、金型
前ニーが簡易化される。
If such a cermet is used in a mold, there is no need to harden the metal to increase its hardness as in the past, and the mold front knee is simplified.

発明が解決しようとする問題点 かかるサーメットを用いて金型を製作する場合には、型
とりに使用する母型の材質によっては数100℃の温度
あるいはそれ以下の温度で熱変形をおこすことがあるた
めに、通常の焼結方法をとることができないという問題
があった。
Problems to be Solved by the Invention When making a mold using such cermet, thermal deformation may occur at temperatures of several hundred degrees Celsius or lower depending on the material of the mother mold used for making the mold. Therefore, there was a problem that normal sintering methods could not be used.

問題点を解決するための手段 前記問題点を解決するために、この発明が講じた技術的
手段(発明の構成)は、つぎのとおりである。
Means for Solving the Problems The technical means (structure of the invention) taken by the present invention to solve the above-mentioned problems are as follows.

すなわち、この発明の金型は、金属粉末、セラミック粉
末および無機結合剤からなる圧粉体を用いた基体と、こ
の基体表面に設けた吸水性の金属多孔質層と、この金属
多孔質層表面に設けた平滑な表面金属層とを備えたもの
である。
That is, the mold of the present invention includes a base using a green compact made of metal powder, ceramic powder, and an inorganic binder, a water-absorbing metal porous layer provided on the surface of the base, and a surface of the metal porous layer. It is equipped with a smooth surface metal layer provided on the surface.

作用 この発明によれば、金型基体が金属粉末、セラミ−tり
粉末および無機結合剤からなる圧粉体で構成されるので
、約400℃以下の低温度で加熱加圧して金属光沢をも
つ金型基体を簡単につくることができる。また、セラミ
ックスの有する欠点である脆さに対して、前記金属粉末
を用いるとともに、基体表面を金属多孔質層および表面
金属層で順次包み込む構造とし、セラミックスの脆さを
補強している。また、前記多孔質層は基体の加熱加圧時
に基体から滲出する水等の液体を吸収する作用がある。
According to this invention, since the mold base is composed of a green compact made of metal powder, ceramic powder, and an inorganic binder, it can be heated and pressed at a low temperature of about 400°C or less to give it a metallic luster. The mold base can be easily made. Furthermore, in order to counter the brittleness which is a drawback of ceramics, the metal powder is used and the surface of the base body is sequentially wrapped in a porous metal layer and a surface metal layer, thereby reinforcing the brittleness of ceramics. Further, the porous layer has the function of absorbing liquid such as water that exudes from the substrate when the substrate is heated and pressurized.

また、前記表面金属層は金型面を構成するもので、多数
の気孔がある多孔質層表面を覆って表面を平滑にする作
用がある。
Further, the surface metal layer constitutes the mold surface, and has the effect of covering the surface of the porous layer having a large number of pores and smoothing the surface.

実施例 この発明の一実施例を第1図および第2図に基づいて説
明する。第1)!lにおいて、1は金型基体であり、こ
の基体1は、金属粉末とセラミック粉末と無機結合剤と
を混合し加熱加圧した複合材で構成される。また、基体
1表面には吸水性の金属多孔質層2および平滑な表面金
属層3がこの順に設けられて金型面を形成する。4は鋼
材の枠体である。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 and 2. 1st)! 1, 1 is a mold base, and this base 1 is made of a composite material made by mixing metal powder, ceramic powder, and an inorganic binder and heating and pressing the mixture. Further, a water-absorbing metal porous layer 2 and a smooth surface metal layer 3 are provided in this order on the surface of the base 1 to form a mold surface. 4 is a frame made of steel.

前記基体1を構成する結合剤はケイ酸塩類、アモルファ
スシリカおよびコロイダルシリカを主成分としたもので
、水を媒介として接着作用をなしている。かかる結合剤
は、たとえば特公昭55−18673号公報および特公
昭56−51)508A\[Iy D W ’r 4Q
 f L% Lまた、多孔質層2は、100〜200メ
ンシエ(A S TM)の粒度の粗い金属粉末と前記と
ほぼ同じ結合剤とからなるもので、内部に無数の気孔を
存する。この多孔質層2の厚さは20〜30鶴の範囲で
あるのが好ましく、それより大なるときは基体lと多孔
質層2との境界部分での基体lの圧縮が不充分となり、
またそれより小さいときは基体1の加熱加圧時に基体l
から滲出する水を十分に吸収することができなくなり、
残存した水によって部分的に圧縮不充分な箇所ができ、
くぼみができることとなる。
The binder constituting the substrate 1 is mainly composed of silicates, amorphous silica, and colloidal silica, and has an adhesive effect using water as a medium. Such binders are described, for example, in Japanese Patent Publication No. 55-18673 and Japanese Patent Publication No. 56-51) 508A\[Iy D W 'r 4Q
f L% L Furthermore, the porous layer 2 is made of coarse metal powder of 100 to 200 mensier (ASTM) and a binder almost the same as described above, and has numerous pores inside. The thickness of this porous layer 2 is preferably in the range of 20 to 30 mm; if it is larger than that, the compression of the substrate 1 at the boundary between the substrate 1 and the porous layer 2 will be insufficient;
In addition, if it is smaller than that, the base l when heating and pressurizing the base 1
It becomes unable to absorb enough water exuding from the
The remaining water may cause some areas to be insufficiently compressed.
This will create a depression.

前記表面金属層3は金属単独または表面の硬度を高める
ためにセラミック粉末を含んだ金属の電着層または無電
解メッキ層である。表面金属層3の厚さは0.5〜3f
iであるのが好ましく、それより大なるときは経済的で
なく、またそれより小なるときは基体lを圧縮するとき
の加熱加圧に耐えられなくなり容易に変形する。
The surface metal layer 3 is an electrodeposition layer or an electroless plating layer of a metal alone or a metal containing ceramic powder to increase the hardness of the surface. The thickness of the surface metal layer 3 is 0.5 to 3 f.
i is preferable; if it is larger than this, it is not economical; if it is smaller than that, it will not be able to withstand the heat and pressure applied when compressing the base 1, and it will easily deform.

第2図はこの実施例における金型の製造状態を示す断面
図である。すなわち、同図に示すように、母型5の周囲
支持台6上に鋼材(SK3)を用いた枠体4を立設する
。また、母型5の表面はあらかじめ保護IIl!I7で
被覆しておく、保護1)17は、母型5が耐熱性である
が非電導性の材料のときは金属還元膜やグラファイトの
塗膜等であり、金属でつくった電導性母型ではペイント
、ラッカー、グラファイト等の剥離塗膜または金属酸化
物、硫化物等の剥離皮膜である。このようにして、保護
膜7を形成した母型6表面へ表面金属層3を施す。
FIG. 2 is a sectional view showing the manufacturing state of the mold in this embodiment. That is, as shown in the figure, a frame body 4 made of steel (SK3) is erected on a support base 6 around the mother mold 5. Also, the surface of the mother mold 5 is protected in advance! Protection by covering with I7 1) When the matrix 5 is made of a heat-resistant but non-conductive material, it is a metal reduction film or graphite coating, and the conductive matrix made of metal is coated with I7. These include release coatings such as paint, lacquer, and graphite, or release coatings such as metal oxides and sulfides. In this way, the surface metal layer 3 is applied to the surface of the master mold 6 on which the protective film 7 has been formed.

しかるのち、前記枠体4内に多孔質層2形成材料を所定
厚みだけ充填し、さらにその上にペースト状の基体1形
成材料を充填する。ついで、この上からパンチで徐々に
加熱加圧する。加熱温度は常温以上の温度でよく、結合
剤からみて1000℃以上でも可能であるが、母型5の
熱変形を防止するうえから450℃以下の低温域で加熱
加圧するのが好ましい、かくして、第1図に示すような
金型を得ることができる。
Thereafter, the frame 4 is filled with a porous layer 2 forming material to a predetermined thickness, and a paste-like base 1 forming material is further filled thereon. Then, gradually heat and pressurize it using a punch. The heating temperature may be at room temperature or higher, and from the viewpoint of the binder, it is possible to heat it at 1000°C or higher, but in order to prevent thermal deformation of the matrix 5, it is preferable to heat and press in a low temperature range of 450°C or lower. A mold as shown in FIG. 1 can be obtained.

次に、基体および多孔質層の作成方法を例をあげて詳細
に説明する。
Next, a method for producing the substrate and the porous layer will be explained in detail by giving an example.

例1 (基体の作成):炭化ケイ素(平均粒子径0.7
um、A−2タイプ、昭和電工■製)250゜と亜鉛粉
末(350メツシユ、ASTM)250gとを混合し、
ボールミルで約5日間の長時間にわたって混合した。こ
れから260gをとり、さらに300メツシユの亜鉛粉
末740gと混合し1 kgとした。この混合粉末は充
分に混合した。一方、結合剤として、3号ケイ酸ソーダ
120g、2号ケイ酸ソーダ50g、ケイ酸カリウム1
0g、アモルファスシリカ120gおよびコロイダルシ
リカ35gの混合液を調製した。これを約12時間自然
放置し、上層液と下層液とに分離させた。ついで、上層
液と下層液とを3:1の割合で混合した。この配合した
結合剤170gに結合調整液として水35cc、グリコ
ール15g、油15gと約2.5重量%の硬化剤(ケイ
フッ化ソーダ)を添加した。これを上記粉末と混線し混
線物を枠体内に充填して加熱加圧し成形体をつくった。
Example 1 (Preparation of substrate): Silicon carbide (average particle size 0.7
um, A-2 type, manufactured by Showa Denko ■) 250° and zinc powder (350 mesh, ASTM) 250g,
The mixture was mixed in a ball mill for an extended period of about 5 days. From this, 260 g was taken and mixed with 740 g of 300 mesh zinc powder to make 1 kg. This mixed powder was thoroughly mixed. On the other hand, as a binder, 120 g of No. 3 sodium silicate, 50 g of No. 2 sodium silicate, 1 potassium silicate,
A mixed solution of 0g of colloidal silica, 120g of amorphous silica, and 35g of colloidal silica was prepared. This was allowed to stand for about 12 hours to separate into an upper layer liquid and a lower layer liquid. Then, the upper layer liquid and the lower layer liquid were mixed at a ratio of 3:1. To 170 g of the blended binder, 35 cc of water, 15 g of glycol, 15 g of oil, and about 2.5% by weight of a hardening agent (sodium fluorosilicide) were added as a bond adjusting liquid. This was mixed with the above powder, the mixed material was filled into a frame, and heated and pressed to produce a molded body.

この作用中に発する水分は急激に除去するのではなく、
徐々に除きながら結合効果をあげるため、とくに母型の
形状が第2図のように凹型のとき、充填材が圧縮される
と凹部に水分がたまる傾向にあるので金属層と充填材の
間に多孔質層を設けて水の逃げ道とした。ただし、母型
が凸型の場合は水の外部への逃げ道はできているので、
水の逃げ道としての多孔質層はとくに必要でない。
The water released during this action is not removed suddenly, but
In order to increase the bonding effect by gradually removing the material, it is necessary to remove the moisture between the metal layer and the filler, especially when the shape of the matrix is concave as shown in Figure 2, since moisture tends to accumulate in the concave part when the filler is compressed. A porous layer was provided to provide an escape route for water. However, if the matrix is convex, there is a way for water to escape to the outside, so
A porous layer as an escape route for water is not particularly required.

例2(多孔質層の作成) :ニッケル粉末(200メン
シエ)と鉄粉(200メツシユ)とをl:1の割合で混
合した混粉70gを用意した。一方、例1と同じ結合液
10gに硬化剤(ケイフン化ソーダ)2.5重量%を添
加した混液に水2ccを添加し、これに用意した混粉7
0gを徐々に混合した・この後、水分をとばし、固めて
多孔質層を得た。
Example 2 (Creation of porous layer): 70 g of a mixed powder of nickel powder (200 mesh) and iron powder (200 mesh) mixed at a ratio of 1:1 was prepared. On the other hand, 2 cc of water was added to a mixture of 10 g of the same binding solution as in Example 1 and 2.5% by weight of a curing agent (sodium silica), and mixed powder 7 was prepared.
0 g was gradually mixed. After that, the water was evaporated and the mixture was solidified to obtain a porous layer.

発明の効果 この発明によれば、セラミックスを用いることによる脆
さの欠点が金属粉末、多孔質層および表面金属層によっ
て補なわれ、硬度の高い金型を簡単につくることができ
るという効果がある。
Effects of the Invention According to this invention, the disadvantage of brittleness due to the use of ceramics is compensated for by the metal powder, porous layer, and surface metal layer, and a mold with high hardness can be easily produced. .

【図面の簡単な説明】[Brief explanation of drawings]

値 1 胃FI L+ 、w  のgき■日出−申招飄
ノ窮1^蟇Rイ画  像 つ 四へばその製造状態を示
す断面図である。 1・・・基体、2・・・金属多孔質層、3・・・表面金
属層、5・・・母型
Value 1 Stomach FI L+ , w G ■ Sunrise - Invitation Airflow 1 ^蟇R ii Image Image 1 It is a cross-sectional view showing the manufacturing state of the stomach FI L+ ,w. DESCRIPTION OF SYMBOLS 1... Base body, 2... Metal porous layer, 3... Surface metal layer, 5... Matrix

Claims (3)

【特許請求の範囲】[Claims] (1)金属粉末、セラミック粉末および無機結合剤から
なる圧粉体を用いた基体と、この基体表面に設けた吸水
性の金属多孔質層と、この金属多孔質層表面に設けた平
滑な表面金属層とを備えた金型。
(1) A base using a green compact made of metal powder, ceramic powder, and inorganic binder, a water-absorbing metal porous layer provided on the surface of this base, and a smooth surface provided on the surface of this metal porous layer. A mold with a metal layer.
(2)前記金属多孔質層が粒度の大きい金属粉末と無機
結合剤との圧粉体である特許請求の範囲第(1)項記載
の金型。
(2) The mold according to claim (1), wherein the metal porous layer is a green compact of metal powder with large particle size and an inorganic binder.
(3)前記表面金属層が金属単独またはセラミック粉末
を含んだ金属の電着層または無電解メッキ層である特許
請求の範囲第(1)項記載の金型。
(3) The mold according to claim (1), wherein the surface metal layer is an electrodeposition layer or an electroless plating layer of a metal alone or a metal containing ceramic powder.
JP6266685A 1985-03-27 1985-03-27 Mold Granted JPS61220809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266685A JPS61220809A (en) 1985-03-27 1985-03-27 Mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266685A JPS61220809A (en) 1985-03-27 1985-03-27 Mold

Publications (2)

Publication Number Publication Date
JPS61220809A true JPS61220809A (en) 1986-10-01
JPH0260495B2 JPH0260495B2 (en) 1990-12-17

Family

ID=13206842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266685A Granted JPS61220809A (en) 1985-03-27 1985-03-27 Mold

Country Status (1)

Country Link
JP (1) JPS61220809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317718A (en) * 1988-06-18 1989-12-22 Kuniaki Itou Mold for plastic and manufacture thereof
WO1994003313A1 (en) * 1992-07-31 1994-02-17 Willi Roth Mould for the production of mouldings containing liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317718A (en) * 1988-06-18 1989-12-22 Kuniaki Itou Mold for plastic and manufacture thereof
WO1994003313A1 (en) * 1992-07-31 1994-02-17 Willi Roth Mould for the production of mouldings containing liquid

Also Published As

Publication number Publication date
JPH0260495B2 (en) 1990-12-17

Similar Documents

Publication Publication Date Title
CN107353008B (en) Preparation method of layered metal-ceramic composite material part
US20100047557A1 (en) Ceramic and/or powder-metallurgical composite shaped body and method for the production thereof
CN101178102A (en) Wet-type copper based powder metallurgy friction wafer and manufacturing method
JPS6324043B2 (en)
CA1158404A (en) Water soluble cores and method for manufacturing cast rotor provided with ventilation ducts utilizing the core
JPS61220809A (en) Mold
CN1060981C (en) Manufacture of precise cop latch
CN112893809B (en) Metal ceramic wear-resistant part and preparation method thereof
JP2002530220A (en) Low pressure injection molding of metals and ceramics using flexible molds
CN114540101A (en) Mold release agent for processing high-precision resin grinding wheel and use method thereof
JPH0757858B2 (en) Water-dispersible heat-resistant composition and use thereof
JP3135086B2 (en) Resin bond wheel manufacturing method
CN1439471A (en) Copper and copper alloy surface casting and penetrating process
JPS6246332B2 (en)
JPS605807A (en) Sintering method of metallic powder molding
CN115806444B (en) Gradient porous ceramic-metal composite connecting piece and preparation method thereof
JPH0432527A (en) Manufacture of foamed body of ti-al series intermetallic compound and product thereby
JP3090873B2 (en) Mold and its manufacturing method
JPS6224392B2 (en)
JPS58215240A (en) Production of pattern for casting mold
JPH02141545A (en) Manufacture of sintered compact of light metal
JPS63206409A (en) Production of metal laminated structure
CN117700229A (en) Manufacturing method of reaction sintering silicon carbide composite ceramic structure and ceramic structure
JP3327604B2 (en) Manufacturing method of metal products and core material used for the same
JPH0314539B2 (en)