JPS6224392B2 - - Google Patents

Info

Publication number
JPS6224392B2
JPS6224392B2 JP13593681A JP13593681A JPS6224392B2 JP S6224392 B2 JPS6224392 B2 JP S6224392B2 JP 13593681 A JP13593681 A JP 13593681A JP 13593681 A JP13593681 A JP 13593681A JP S6224392 B2 JPS6224392 B2 JP S6224392B2
Authority
JP
Japan
Prior art keywords
powder
cermet
sintered body
sintered
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13593681A
Other languages
Japanese (ja)
Other versions
JPS5849670A (en
Inventor
Juji Fujinaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13593681A priority Critical patent/JPS5849670A/en
Publication of JPS5849670A publication Critical patent/JPS5849670A/en
Publication of JPS6224392B2 publication Critical patent/JPS6224392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は概して金属化面を有する窒化珪素(以
下Si3N4を示す)焼結体を得る方法、更に詳しく
は、Si3N4焼結体の被メタライズ相当部位にSi3N4
焼結体と化学的結合力が高くしかもそれ自体良好
な電気伝導性を具備してメタライズを有効になし
得るサーメツト層を形成させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to a method for obtaining a silicon nitride (hereinafter referred to as Si 3 N 4 ) sintered body having a metallized surface, and more specifically, a method for obtaining a silicon nitride (hereinafter referred to as Si 3 N 4 ) sintered body having a metallized surface, and more specifically, to Si 3 N 4
The present invention relates to a method for forming a cermet layer that has a high chemical bonding strength with a sintered body and also has good electrical conductivity and can be effectively metalized.

ホツトプレス成形したSi3N4焼結体は表面気孔
率が小さく化学的にも極めて安定であるためメタ
ライズすることは困難である。このメタライズに
当つて最重要となるものはSi3N4に対するメタル
の漏れ及びメタルの熱膨張係数がSi3N4のそれに
近いことであるが、残念ながらこの2つの性質を
同時充足させ得るものはない。
Hot-pressed Si 3 N 4 sintered bodies have low surface porosity and are chemically extremely stable, making it difficult to metalize them. The most important things in this metallization are the leakage of the metal to Si 3 N 4 and the thermal expansion coefficient of the metal being close to that of Si 3 N 4 , but unfortunately there is no way to satisfy these two properties at the same time. There isn't.

Si3N4焼結体のメタライズ方法として現在適用
されているものとしては、(イ)金属塩水溶液を焼結
体表面に塗布した後、還元性雰囲気下で焼成して
金属を析出させ金属化面を得、その上にメタライ
ズするもの、(ロ)Mo―Mn系もしくはMo―W系ペ
ーストを焼結体表面に焼付けて金属化面を得その
上にメタライズするもの…が挙げられるが、
Si3N4は一旦焼結されたものは前述の如く表面気
孔率が小さく化学的にも安定しているために、上
記(イ)(ロ)いづれの手法によつてもメタライズ層と焼
結体との化学的結合力は極めて小でこのメタライ
ズ層上に金属リードをろう着した場合、該リード
に剥離方向の外力が与えられるとこのメタライズ
層は母体である焼結体より容易に剥脱してしまう
と云う致命的欠陥を露呈する。
The currently applied methods for metallizing Si 3 N 4 sintered bodies include (a) applying an aqueous metal salt solution to the surface of the sintered body and then firing it in a reducing atmosphere to precipitate the metal and metallize it; (b) A method in which a Mo-Mn or Mo-W paste is baked onto the surface of a sintered body to obtain a metallized surface and metallization is performed on the surface.
Once sintered, Si 3 N 4 has a small surface porosity and is chemically stable as described above, so it cannot be sintered with the metallized layer by either of the methods (a) and (b) above. The chemical bonding force with the body is extremely small, and when a metal lead is brazed onto this metallized layer, if an external force is applied to the lead in the direction of peeling, the metallized layer will peel off more easily than the sintered body that is the base body. It exposes the fatal flaw that it is.

本発明はこのような欠陥のない金属化面を有す
るSi3N4焼結体を得る法に関し、概略的解決手法
は、Si3N4を焼結してしまつた后に金属化面を形
成させると云うこれ迄の考えと異なり、金属化面
を形成させるための特殊なサーメツト粉末と、母
体となるSi3N4粉末とをホツトプレスによつて焼
結一体となすことによつてサーメツト層並びに母
体のSi3N4焼結体相互に高い化学的結合力を得併
せてサーメツト自体に良好な電気導伝性を付備せ
しめる点にある。
The present invention relates to a method for obtaining a Si 3 N 4 sintered body with such a defect-free metallized surface, and the general solution is to form the metallized surface after sintering the Si 3 N 4 . Unlike the previous idea that the metallized surface is formed by sintering the special cermet powder for forming the metallized surface and the base Si 3 N 4 powder by hot pressing, the cermet layer and the cermet layer are formed. The main point is that the Si 3 N 4 sintered body has a high chemical bonding strength with each other, and the cermet itself has good electrical conductivity.

以下に本発明を更に詳述する。 The present invention will be explained in further detail below.

本発明は次の4つの工程よりなる。()サー
メツト粉末を得る工程、()Si3N4粉末を所望の
形状に加圧(プレス)成形する工程、()サー
メツト粉末を()のSi3N4成形体上に加圧積層
するかもしくはサーメツト粉末をペースト状とな
して該Si3N4成形体上に積層する工程、()全体
をホツトプレスによつて焼結一体とする工程。
The present invention consists of the following four steps. () Step of obtaining cermet powder, () Step of pressing (pressing) Si 3 N 4 powder into a desired shape, () Pressing and laminating the cermet powder on the Si 3 N 4 molded body of () Alternatively, a step of forming a paste of cermet powder and layering it on the Si 3 N 4 molded body, and () a step of sintering the whole into a single piece by hot pressing.

本発明に於て最重要工程となるサーメツト粉末
を得る工程()は、Si3N4粉末50〜80%(重
量、以下同じ)とWc粉末+Co粉末50〜20%とか
らなるSi3N4―Wc―Co系のサーメツト粉末を混
合によつて得る工程である。サーメツト粉末のう
ち金属粉末としてはSi3N4との化学的親和性があ
り(漏れがあり)それ自体の焼結性がよく電解メ
ツキがつき易く且つろう付金属とのなじみのよい
ものが理想条件であり、この線に沿えると思われ
る種々の金属化合物、例えばTiC―Ni―Mo系、
Cr―Al2O3系、TiC―TiN―Ni―Mo系等を本発明
に先がけてSi3N4粉末と組合せて焼結(ホツトプ
レス焼結)してみたが、TiC―Ni―Mo系のもの
はプレス型であるカーボン型からの離型性が悪い
上にそれ自体の焼結性が不良で多数の気孔や亀裂
を発生しており、Cr―Al2O3系では同じく離型性
が不良である上にSi3N4焼結体との化学的結合が
殆んど得られず、TiC―TiN―Ni―Mo系に於て
は、Si3N4焼結体との結合が不在な上にカーボン
型に焼付いてしまう…等々の欠点のあることが知
見された。このような失敗の中でWc―Co系のも
のはSi3N4と組合つて前記の限定範囲内に於て
は、合目的な材料であることが判明したのであ
る。すなわち、本発明に於けるサーメツト粉末の
うち、Si3N4粉末が50%未満の場合はサーメツト
層の熱膨張が大きくなり過ぎて母体であるSi3N4
焼結体及びサーメツト層にクラツクが這入り易く
なり、80%を超えるとサーメツト層の金属性(金
属的性質)が失なわれNiメツキやろう接等に支
障が現われる。
The most important step in the present invention is the step () of obtaining cermet powder, which consists of Si 3 N 4 powder 50-80% (by weight, the same hereinafter) and Wc powder + Co powder 50-20%. - This is the process of obtaining Wc-Co based cermet powder by mixing. Among cermet powders, as metal powders, it is ideal that they have a chemical affinity with Si 3 N 4 (there is leakage), have good sinterability on their own, are easy to electrolytically plate, and are compatible with brazing metals. conditions, and various metal compounds that seem to meet this line, such as TiC-Ni-Mo system,
Prior to the present invention, Cr-Al 2 O 3 system, TiC-TiN-Ni-Mo system, etc. were combined with Si 3 N 4 powder and sintered (hot press sintering), but TiC-Ni-Mo system was In addition to poor mold releasability from the press mold, which is a carbon mold, the mold itself has poor sintering properties, resulting in numerous pores and cracks . In addition to being defective, there is almost no chemical bonding with the Si 3 N 4 sintered body, and in the TiC-TiN-Ni-Mo system, there is no bonding with the Si 3 N 4 sintered body. Moreover, it was found that there were drawbacks such as burning into the carbon mold. Despite these failures, it was discovered that the Wc--Co system is a suitable material in combination with Si 3 N 4 within the above-mentioned limited range. That is, if the Si 3 N 4 powder in the cermet powder in the present invention is less than 50%, the thermal expansion of the cermet layer will be too large and the base Si 3 N 4
Cracks tend to creep into the sintered body and the cermet layer, and if it exceeds 80%, the cermet layer loses its metallic properties, causing problems in Ni plating, brazing, etc.

従つて上記組成範囲は目的達成上必要である。 Therefore, the above composition range is necessary to achieve the purpose.

更にこの場合、Co粉末のWc粉末+Co粉末に対
する含有量(重量%)が1〜10%であることは次
の理由で更に望ましい。即ちCo含有量が1%よ
り小さい時はサーメツト層の焼結性に多少の悪影
響を与え、10%を超えるとサーメツト層よりCo
が滲出してくる傾向が夫々あるからである。
Furthermore, in this case, it is more desirable that the content (wt%) of the Co powder to the Wc powder+Co powder is 1 to 10% for the following reason. That is, when the Co content is less than 1%, it has a somewhat negative effect on the sinterability of the cermet layer, and when it exceeds 10%, the Co content is less than the cermet layer.
This is because they each have a tendency to ooze out.

サーメツト粉末の混合は適当な混合手段、例え
ば乳鉢混合,湿式振動ミル等で行なうが、Wc,
Coの夫々の粉末とSi3N4粉末とをMeOH中にて混
合した后MeOHを除去し、四塩化炭素CCl4中で
結合剤としての固形パラフインを約4%程加えて
その后CCl4を除去し40メツシユパスの篩別にか
けて最終的なサーメツト粉末とする混合方法を一
例として適用した。
The cermet powder is mixed using an appropriate mixing means, such as a mortar mixer or a wet vibrating mill.
After mixing Co powder and Si 3 N 4 powder in MeOH, MeOH was removed, and about 4% solid paraffin was added as a binder in carbon tetrachloride CCl 4 . A mixing method in which the cermet powder is removed and sieved through 40 mesh passes to form the final cermet powder was applied as an example.

工程()はSi3N4を粉末を冷間で比較的低圧
にて所望の形状に成形する工程で、Si3N4が80%
以上含まれているSi3N4焼結用組成物を400〜500
Kg/cm2で軽く押し固めて所望の形状に成形する。
Process () is a process in which powdered Si 3 N 4 is formed into the desired shape under relatively low pressure in cold conditions, and Si 3 N 4 is 80%
Si 3 N 4 sintering composition containing more than 400~500
Lightly press with Kg/cm 2 and form into desired shape.

工程()は工程()で得たサーメツト粉末
を工程()で得たSi3N4成形体上に粉末のまゝ
適当な厚みに加圧積層するか或は粉末を練料と共
にペースト状としたものを積層するかのいづれか
であるが、前者の場合固形パラフインの如き結合
剤を少量添加することは成形性を良くする意味で
望まれる。母体であるSi3N4焼結体との接合性を
考慮する時または厚みの大なるサーメツト層を得
るためには前者が好適であり、複雑な形状のサー
メツト層を得るには後者が望ましい。なお上記粉
末の積層はプレス成形によつて得たサーメツト成
形品をSi3N4成形体上に載置することも含む。
In step (), the cermet powder obtained in step () is laminated under pressure to an appropriate thickness on the Si 3 N 4 molded body obtained in step (), or the powder is made into a paste with a paste. In the former case, it is desirable to add a small amount of a binder such as solid paraffin to improve moldability. The former is preferable when considering the bondability with the Si 3 N 4 sintered body that is the matrix or to obtain a cermet layer with a large thickness, and the latter is preferable to obtain a cermet layer with a complicated shape. Note that the above-mentioned layering of the powder also includes placing a cermet molded product obtained by press molding on the Si 3 N 4 molded body.

工程()は工程()で得た全体をホツトプ
レスによつて焼結一体とする工程であり、通常の
カーボン型内でホツトプレスを行なう。ホツトプ
レス条件はSi3N4のホツトプレス条件と実質的に
同一でよく殊更特異なものは不要である。
Step () is a step in which the whole obtained in step () is sintered into one piece by hot pressing, and the hot pressing is carried out in an ordinary carbon mold. The hot pressing conditions may be substantially the same as those for Si 3 N 4 and no special conditions are required.

次に上記工程()乃至()を経て得られた
金属化面を有する焼結体について説明するに、第
1図はその概略斜視図、第2図は第1図のSi3N4
焼結体(母体)とサーメツト層との接合境界を示
す図面代用写真(×250)であるが、第1図の如
くSi3N4焼結体1の上面にSi3N4―Wc―Co系サー
メツト層2が焼結一体とされて本発明の焼結体が
得らる。このサーメツト層2と焼結体1との境界
線に垂直な方向からXMA線分析した写真(×
2.0K)が第3図であるが、第2図より焼結体1
とサーメツト層2とは完全に接合しており、第3
図よりサーメツト層2自体も気孔のないほぼ完全
な焼結がなされていることが判る。そしてサーメ
ツト層2よりCo及びWが焼結体1内に拡散して
強固な結合をなしていることも明らかである。
Next, to explain the sintered body having the metallized surface obtained through the above steps () to (), FIG. 1 is a schematic perspective view thereof, and FIG. 2 is the Si 3 N 4 of FIG. 1.
This is a photograph (×250) showing the bonding boundary between the sintered body (base body) and the cermet layer. As shown in Figure 1, Si 3 N 4 -Wc -Co The cermet layer 2 is integrally sintered to obtain the sintered body of the present invention. A photograph (x
2.0K) is shown in Figure 3, but from Figure 2, the sintered body 1
and cermet layer 2 are completely bonded, and the third
It can be seen from the figure that the cermet layer 2 itself is almost completely sintered without any pores. It is also clear that Co and W diffuse into the sintered body 1 from the cermet layer 2 and form a strong bond.

またサーメツト層2自体はセラミツク
(Si3N4)粒子間にWc,Co粒子を充填して焼結さ
れているため金属的な性質が強く残つているので
その電気導伝性は良好に保たれている。
Furthermore, since the cermet layer 2 itself is sintered with Wc and Co particles filled between ceramic (Si 3 N 4 ) particles, it retains strong metallic properties and maintains good electrical conductivity. ing.

こうして得られたサーメツト及びセラミツク複
合焼結体1のサーメツト層2上には電解Niメツ
キ層がよくのるので、このメツキ層上にろう材を
流して金属リードを接合したものは、従来の
Si3N4焼結体に行なつたメタライズ手法では得ら
れない程強固な接合強度をもつたリード導出構造
が得られ、例えば強度測定のため上記金属リード
としてコバー金具(Co系合金)を用いろう材と
してAgろうを使用して該コバー金具を剥離方向
に引張つた所130Kg/cm2以上の値が得られ、この
場合メタライズ面での剥離はなくSi3N4焼結体1
の内部からのクラツク発生によつて剥がれる位で
あつた。以下に本発明の実施例を挙げる。
Since the electrolytic Ni plating layer is often placed on the cermet layer 2 of the cermet and ceramic composite sintered body 1 obtained in this way, the metal lead is bonded by pouring a brazing material on this plating layer, which is different from the conventional method.
A lead lead-out structure with a bonding strength so strong that cannot be obtained with the metallization method applied to Si 3 N 4 sintered bodies can be obtained. Using Ag solder as the brazing material, when the Cobar metal fitting was pulled in the peeling direction, a value of 130 Kg/cm2 or more was obtained, and in this case, there was no peeling on the metallized surface and the Si 3 N 4 sintered body 1
It was on the verge of peeling off due to cracks occurring from within. Examples of the present invention are listed below.

(実施例 1) 工程():Wc粉末49%(9.8g)とCo粉末1%
(0.2g)からなる混合粉末の50%(10g)に対
しSi3N4粉末(既述の「SN220」)を50%(10
g)を用意し両者を乳鉢混合してサーメツト粉
末を得た。この粉末中に少量の固形パラフイン
を加えた。
(Example 1) Process (): 49% Wc powder (9.8g) and 1% Co powder
Si 3 N 4 powder (already mentioned "SN220") was added to 50% (10 g) of mixed powder (0.2 g).
g) was prepared and mixed in a mortar to obtain a cermet powder. A small amount of solid paraffin was added to this powder.

工程():同じくSi3N4(SN220)のみをを型
内に入れて圧力445Kg/cm2にて軽く押し固めて
第1図のような成形体を得た。
Step (): Similarly, only Si 3 N 4 (SN220) was placed in a mold and lightly pressed under a pressure of 445 kg/cm 2 to obtain a molded body as shown in FIG.

工程():工程()のパラフイン含有のサー
メツト粉末を厚み約4mm程度となるよう上記
Si3N4成形体上に加圧積層(1335Kg/cm2)し
た。
Step (): Pour the paraffin-containing cermet powder from Step () above to a thickness of about 4 mm.
It was laminated under pressure (1335 Kg/cm 2 ) onto a Si 3 N 4 molded body.

工程():工程()の成形体をBN離型剤と
共にカーボン型内に充填して1660℃,430Kg/
cm2の温度と圧力にて2時間ホツトプレス焼成し
た。
Step (): The molded product from Step () is filled into a carbon mold with a BN mold release agent and heated at 1660℃, 430Kg/
Hot press firing was carried out for 2 hours at a temperature and pressure of cm 2 .

メタライズとリード導出:工程()で焼結一
体としたサーメツト層上に電解Niメツキを厚み
1μに亘つて施しその上にAgロウを溶融しなが
らコバー金具をほヾ水平にろう着した。
Metallization and lead derivation: Electrolytic Ni plating was applied to a thickness of 1μ on the cermet layer that had been sintered and integrated in step (), and a cover metal fitting was brazed thereon almost horizontally while melting Ag solder.

剥離テスト:上記コバー金具を水平方向に剥離
した所130Kg/cm2の剥離強度を得た。
Peeling test: When the above-mentioned cover metal fitting was peeled off in the horizontal direction, a peel strength of 130 kg/cm 2 was obtained.

(実施例 2) 工程():Wc粉末49%とCo粉末1%からなる
混合粉末の20%に対しSi3N4粉末(既述の
「SN220」)を80%を用意し両者を乳鉢混合して
サーメツト粉末を得た。この粉末中に少量の固
形パラフインを加えた。
(Example 2) Process (): For 20% of a mixed powder consisting of 49% Wc powder and 1% Co powder, prepare 80% Si 3 N 4 powder ("SN220" as described above) and mix both in a mortar. A cermet powder was obtained. A small amount of solid paraffin was added to this powder.

工程():同じくSi3N4(SN220)を圧力445
Kg/cm2にて軽く押し固めて第1図のような成形
体を得た。
Process (): Si 3 N 4 (SN220) at a pressure of 445
The mixture was lightly compacted at a pressure of Kg/cm 2 to obtain a molded product as shown in FIG.

工程():工程()のパラフイン含有のサー
メツト粉末にメタノールを加えてペースト状に
し厚み約5mm程度となるよう上記Si3N4成形体
上に加圧積層(1335Kg/cm2)した。
Step (): Methanol was added to the paraffin-containing cermet powder of Step () to form a paste, which was then laminated under pressure (1335 Kg/cm 2 ) on the Si 3 N 4 molded body to a thickness of approximately 5 mm.

工程():工程()の成形体をBN離型剤と
共にカーボン型内に充填して1660℃,430Kg/
cm2の温度と圧力にて2時間ホツトプレス焼成し
た。
Step (): The molded product from Step () is filled into a carbon mold with a BN mold release agent and heated at 1660℃, 430Kg/
Hot press firing was carried out for 2 hours at a temperature and pressure of cm 2 .

メタライズとリード導出:工程()で焼結一
体としたサーメツト層上に電解Niメツキを厚み
1μに亘つて施しその上にAgロウを溶融しなが
らコバー金具をほぼ水平にろう着した。
Metallization and lead derivation: Electrolytic Ni plating was applied to a thickness of 1μ on the cermet layer that had been sintered and integrated in step (), and a cover metal fitting was soldered almost horizontally on top of it while melting Ag solder.

剥離テスト:上記コバー金具を水平方向に剥離
した所100Kg/cm2の剥離強度を得た。
Peeling test: When the above-mentioned cover metal fitting was peeled off in the horizontal direction, a peel strength of 100 kg/cm 2 was obtained.

叙述より既に理解されたように、本発明に於て
は、Si3N4―Wc―Co系サーメツト層と母材であ
るSi3N4焼結体とをホツトプレスにて焼結一体と
することによつて、サーメツト層がSi3N4焼結体
に化学的に強固に結合が可能となり同時にこのサ
ーメツト層の電気導伝性が良好となるため、従来
公知のメタライズ手法では得られなかつた優れた
剥離強度をもつて金属材の接合が可能となると共
に製造工程的にもホツトプレスによつて焼結一体
となし得るのでその生産性も高い…等本発明の効
果は著しいものがある。
As already understood from the description, in the present invention, the Si 3 N 4 -Wc-Co based cermet layer and the Si 3 N 4 sintered body as the base material are sintered into one piece by hot pressing. This enables the cermet layer to be chemically strongly bonded to the Si 3 N 4 sintered body, and at the same time improves the electrical conductivity of this cermet layer, which provides advantages that could not be obtained with conventional metallization methods. The effects of the present invention are remarkable, such as making it possible to join metal materials with a high peel strength, and also increasing productivity as it can be sintered into one piece by hot pressing in the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によつて得た焼結体の一実施例
を示す斜視図、第2図は第1図に於けるサーメツ
ト層と焼結体との接合境界の状態を示す図面に代
る顕微鏡写真(×250)、第3図は同接合境界の
XMA線分析写真(×2.0K)である。 符号の説明、1……Si3N4焼結体、2……サー
メツト層。
FIG. 1 is a perspective view showing one embodiment of a sintered body obtained by the present invention, and FIG. 2 is a substitute drawing showing the state of the bonding boundary between the cermet layer and the sintered body in FIG. 1. Micrograph (×250), Figure 3 shows the junction boundary.
This is an XMA ray analysis photograph (×2.0K). Explanation of symbols: 1...Si 3 N 4 sintered body, 2... Cermet layer.

Claims (1)

【特許請求の範囲】 1 Si3N4粉末50〜80%(重量)、WC粉末及びCo
粉末の合計が50〜20%(重量)よりなるサーメツ
ト粉末を得る工程()と、Si3N4粉末を所望の
形状に加圧成形する工程()と、この工程
()によつて得られたSi3N4成形体上に上記サー
メツト粉末を加圧積層するかもしくは該サーメツ
ト粉末をペースト状にしたものを該Si3N4成形体
上に成層する工程()と、全体をホツトプレス
にて成形一体とする工程()と、より成る金属
化面を有する窒化珪素焼結体の製造法。 2 上記Co粉末の(WC+Co)粉末に対する含
有量が1〜10%(重量)である特許請求の範囲第
1項記載の製造法。
[Claims] 1 Si 3 N 4 powder 50-80% (by weight), WC powder and Co
The process () of obtaining a cermet powder with a total powder content of 50 to 20% (by weight), the process () of pressure-molding the Si 3 N 4 powder into a desired shape, and the process () obtained by this process () The above cermet powder is laminated under pressure on the Si 3 N 4 molded body, or the cermet powder is made into a paste and layered on the Si 3 N 4 molded body (), and the whole is hot pressed. A method for manufacturing a silicon nitride sintered body having a metallized surface, comprising a step of integrally molding (). 2. The manufacturing method according to claim 1, wherein the content of the Co powder based on the (WC+Co) powder is 1 to 10% (by weight).
JP13593681A 1981-08-28 1981-08-28 Manufacture of silicon nitride sintered body having metallized surface Granted JPS5849670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13593681A JPS5849670A (en) 1981-08-28 1981-08-28 Manufacture of silicon nitride sintered body having metallized surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13593681A JPS5849670A (en) 1981-08-28 1981-08-28 Manufacture of silicon nitride sintered body having metallized surface

Publications (2)

Publication Number Publication Date
JPS5849670A JPS5849670A (en) 1983-03-23
JPS6224392B2 true JPS6224392B2 (en) 1987-05-28

Family

ID=15163299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13593681A Granted JPS5849670A (en) 1981-08-28 1981-08-28 Manufacture of silicon nitride sintered body having metallized surface

Country Status (1)

Country Link
JP (1) JPS5849670A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082005U (en) * 1983-11-14 1985-06-06 旭化成株式会社 wall panel mounting device
JPH0490549U (en) * 1990-12-21 1992-08-06
JP4808852B2 (en) * 2001-01-17 2011-11-02 日本特殊陶業株式会社 Silicon nitride / tungsten carbide composite sintered body

Also Published As

Publication number Publication date
JPS5849670A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
KR100432075B1 (en) A method of coating a non-wetting fluid material on a substrate, a method of manufacturing a ceramic metal structure, a method of bonding a plurality of ceramic bodies, and a layered structure formed by such a method
US20060130998A1 (en) Heat sink having a high thermal conductivity
EP0122522B1 (en) Method of manufacturing sintered ceramic body
WO2010116679A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
CN101925999A (en) Heat sink and method for producing heat sink
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
JP2001339022A (en) Heat sink material and its manufacturing method
JP4113971B2 (en) Low expansion material and manufacturing method thereof
JPS6224392B2 (en)
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
JPH0475876B2 (en)
JP4017135B2 (en) Electromagnetic cooking container and method for manufacturing the same
EP0593591B1 (en) Boron carbide-copper cermets and method for making same
US6143421A (en) Electronic components incorporating ceramic-metal composites
CN1277743C (en) Method for producing molybdenum disilicide electric heating element or high temperature resistance structural element
JPH03103369A (en) Production of cemented body of ceramic-metal
JP2004131318A (en) Joined body of silicon carbide-based member and method of manufacturing the same
JPS60149702A (en) Manufacture of sintered material for vacuum switch contact part
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
JP2508157B2 (en) Method for joining silicon carbide ceramics
JPH046163A (en) Production of carrier consisting of aluminium nitride
TW201249565A (en) Metal-carbon composite and method for manufacturing the same
JPS59141393A (en) Brazing filler material
JPS5864270A (en) Silicon nitride sintered body
JPS6228067A (en) Joining method for ceramics