JPS61220788A - Method for controlling extremely pure water generator - Google Patents

Method for controlling extremely pure water generator

Info

Publication number
JPS61220788A
JPS61220788A JP60060649A JP6064985A JPS61220788A JP S61220788 A JPS61220788 A JP S61220788A JP 60060649 A JP60060649 A JP 60060649A JP 6064985 A JP6064985 A JP 6064985A JP S61220788 A JPS61220788 A JP S61220788A
Authority
JP
Japan
Prior art keywords
water
flow rate
pure water
osmosis membrane
extremely pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060649A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoda
裕明 依田
Etsushi Ito
悦嗣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP60060649A priority Critical patent/JPS61220788A/en
Publication of JPS61220788A publication Critical patent/JPS61220788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To perform a resource-saving and energy-saving operation at low cost when the amt. of water to be used at a use point is lower than the specified amt. by detecting the flow rate in a return pipeline from the use point and controlling the number of revolutions of a booster pump to control the flow rate in the return pipeline. CONSTITUTION:The extremely pure water generator consists of a reverse- osmosis membrane 4, ion-exchange resin towers 5 and 6, a UV sterilizer 7, a filter 8, etc. Water is passed by a booster pump 3 arranged at the preceding stage of the reverse-osmosis membrane 4 to produce extremely pure water and a return pipeline for circulating and returning the extremely pure water which is not used at a use point 9 to the suction side of the booster pump 3 is provided. The flow rate in the return pipeline is detected by a flow switch 12, the number of revolutions of the booster pump 3 is controlled by a control panel 10 and the flow rate in the pipeline is controlled. Namely, a resource- saving and energy-saving operation can be performed at comparatively low cost, when the amt. of water to be used at the use point is less than the specified amt.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、逆浸透膜等を用いて、水道水、井水等から超
純水を製造する超純水製造装置の運転制御方法に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for controlling the operation of an ultrapure water production device that produces ultrapure water from tap water, well water, etc. using a reverse osmosis membrane or the like. be.

〔発明の背景〕[Background of the invention]

従来の超純水製造装置の代表的なフローを第1図に示す
、水道水等の原水は、活性炭フィルター1で、水道水中
に含まれる遊離塩素、微粒子等が除去され、プレフィル
タ−2に通水される。プレフィルタ−2では、原水中の
微粒子の他、活性炭フィルター1から流出する微粒子等
が除去される。
A typical flow of a conventional ultrapure water production device is shown in Figure 1. Raw water such as tap water is passed through an activated carbon filter 1 to remove free chlorine, fine particles, etc. contained in the tap water, and then passed through a pre-filter 2. Water is passed through. In the pre-filter 2, in addition to the fine particles in the raw water, fine particles flowing out from the activated carbon filter 1 are removed.

次に、原水は加圧ポンプ3で10〜30kg/cdGに
加圧され、逆浸透膜4に通水され、ここで、イオン類の
90%以上、微粒子、生菌等のほとんどが除去される。
Next, the raw water is pressurized to 10 to 30 kg/cdG by the pressure pump 3 and passed through the reverse osmosis membrane 4, where more than 90% of the ions, particulates, viable bacteria, etc. are removed. .

有機物についても約70〜80%が除去される。逆浸透
膜は原水の約30〜70%が濃縮排液として装置外へ排
水され、残りの約70〜30%が膜透過水として後段へ
、送水される。
Approximately 70-80% of organic matter is also removed. Approximately 30 to 70% of the raw water in the reverse osmosis membrane is drained out of the device as a concentrated waste liquid, and the remaining approximately 70 to 30% is sent to a subsequent stage as membrane permeated water.

ポリラシャA5は陽イオンおよび陰イオン交換樹脂を混
合したもので、ここでイオン類の約99%以上が除去さ
れ、水質の純度は比抵抗約1〜10MΩ・1以上が得ら
れる。さらに、ポリラシャ5と同構成のポリラシャ6で
、イオン類が除去され、比抵抗値は17〜18NΩ・備
と理論純水(HIO)に近い水質レベルに引き上げられ
る0次に、紫外線殺菌器7で、逆浸透膜4後段の配管、
ボリツシャA、B等から流出する生菌を紫外線殺菌する
・最後にファイナルフィルター8で、ポリラシャ5,6
から流出する微粒子、および死菌を濾過し、超純水が得
られる。超純水は、ユースポイント9を循環して、その
一部が加圧ポンプ3の吸込側に戻される。通常、本超純
水製造装置は。
Polyrasha A5 is a mixture of cation and anion exchange resins, which removes about 99% or more of ions and provides water purity with a specific resistance of about 1 to 10 MΩ·1 or more. Furthermore, ions are removed by Polyrasha 6, which has the same configuration as Polyrasha 5, and the specific resistance value is raised to a water quality level close to theoretically pure water (HIO) of 17 to 18 NΩ. , piping after the reverse osmosis membrane 4,
Sterilize the living bacteria flowing out from Bolitsha A, B, etc. with UV rays.Finally, use the final filter 8 to
Ultrapure water is obtained by filtering out fine particles and dead bacteria. The ultrapure water circulates through the use point 9 and a portion of it is returned to the suction side of the pressure pump 3. Usually, this ultrapure water production equipment.

死水滞留による生菌の増殖を防ぐために、装置を止めず
に運転され、水質指持がはかられる。
In order to prevent the growth of living bacteria due to dead water retention, the equipment is operated without stopping and water quality is monitored.

このような超純水製造装置において、ユースポイントで
の使用水量が規定水量以下の場合、逆浸透膜4での回収
率(=膜透過水量/(膜透過水量+膜濃縮排水量))が
前述のように100%未満のため超純水を一部排水する
結果となり、イオン交換樹脂再生費、原水費、加圧ポン
プ動力費が無駄となる欠点がある。
In such ultrapure water production equipment, if the amount of water used at the point of use is less than the specified water amount, the recovery rate at the reverse osmosis membrane 4 (= membrane permeated water amount / (membrane permeated water amount + membrane concentrated wastewater amount)) will be the same as described above. Since it is less than 100%, some of the ultrapure water is drained, which has the drawback of wasting ion exchange resin regeneration costs, raw water costs, and pressure pump power costs.

尚、上記技術に関連する先行技術として特開昭57−1
174189号がある。
In addition, as a prior art related to the above technology, Japanese Patent Application Laid-Open No. 57-1
There is No. 174189.

〔発明の目的〕[Purpose of the invention]

本発明はユースポイントでの使用水量が規定水量以下の
場合において、省資源省エネルギー運転を提供すること
を目的とする。
An object of the present invention is to provide resource-saving and energy-saving operation when the amount of water used at a point of use is less than a specified amount of water.

〔発明の概要〕[Summary of the invention]

逆浸透膜の透過水量Q2は加圧ポンプ吐出圧力Pとする
と、Q、=AXP (Aは比例定数)が成立する。一方
、濃縮水量QI、は、濃縮水量コントロールバルブでの
水頭損失によってほぼ決定され、QI、=85(Bは濃
縮水量コントロールバルブの抵抗係数)で与えられる。
Assuming that the amount of water permeated through the reverse osmosis membrane Q2 is the pressure pump discharge pressure P, then Q,=AXP (A is a constant of proportionality) holds true. On the other hand, the concentrated water amount QI is approximately determined by the water head loss at the concentrated water amount control valve, and is given by QI = 85 (B is the resistance coefficient of the concentrated water amount control valve).

したがって、濃縮水量コントロールバルブ開度を一定に
して、加圧ポンプ吐出圧を変化させた場合、上記2式か
ら明らかなように、QゎはQ、に比べて変化量が少なく
Therefore, when the opening degree of the concentrated water amount control valve is kept constant and the pressurizing pump discharge pressure is changed, as is clear from the above two equations, the amount of change in Q is smaller than in Q.

膜の濃度水側の膜面汚染防止に不可欠な流速保持が行な
われる傾向を示す6本発明はこの逆浸透膜モジュールの
流体性能を利用して、加圧ポンプを回転数制御し、省資
源省エネルギー運転をはかる。
This shows a tendency to maintain the flow rate, which is essential for preventing membrane surface contamination on the concentrated water side of the membrane.6 The present invention utilizes the fluid performance of this reverse osmosis membrane module to control the rotation speed of the pressure pump, thereby saving resources and energy. Measure your driving.

ユースポイントでの使用水量は、ユースポイント循環戻
り配管の流量の増減で間接的に検出されるので、戻り流
量を検知して、加圧ポンプの回転数制御を行なう方式と
する。
The amount of water used at the use point is indirectly detected by the increase or decrease in the flow rate of the use point circulation return piping, so the method is to detect the return flow rate and control the rotation speed of the pressurizing pump.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図、第3図について説明す
る。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、加圧ポンプのモータ極数変換による回
転数制御の実施例を示す、超純水製造装置のフローは第
1図において説明したものと同一である。ユースポイン
ト戻り配管に戻り流量を検出するフロースイッチ12(
2接点、大流量Q、l、小流量QL)を設置する6本実
施例ではユースポイントでの使用水量が零および定格流
量の二通りの場合の運転を説明するものとする。大流量
Q。
In FIG. 2, the flow of the ultrapure water production apparatus is the same as that described in FIG. 1, showing an example of controlling the rotation speed by changing the number of motor poles of a pressurizing pump. A flow switch 12 (
2 contacts, large flow rates Q, 1, and small flow rates QL) are installed. In this embodiment, operation will be explained in two cases where the amount of water used at the point of use is zero and the rated flow rate. Large flow rate Q.

は定格流量を若干下まわる値に、また、小流量Q4は戻
り配管ミニマム流量を若干下まわる値に設定する。制御
盤10でフロースイッチ12からの電気信号をリレーで
増幅し、加圧ポンプ3の極数変換を行なう。その際のイ
ンターブロック線図を第3図に示す。ユースポイントか
ら戻り−t Q、がQ。
is set to a value slightly below the rated flow rate, and the small flow rate Q4 is set to a value slightly below the return piping minimum flow rate. In the control panel 10, the electrical signal from the flow switch 12 is amplified by a relay, and the number of poles of the pressure pump 3 is changed. An interblock diagram at that time is shown in FIG. Returning from point of use -t Q, is Q.

を越えると、モータの極数はN極に変換されて運転され
る。ここでユースポイントでの使用水量が増加すると、
Q、はQ、以下となるため、モータの極数はM極に変換
されて、増速され、生産水量を増加させる。このように
して、装置はユースポイントでの使用水量に対応した運
転制御がなされる0本実施例では、ユースポイントでの
使用水量が2段階の場合であるが、使用水量が連続的に
変化する場合は、サイリスタインバータにより戻り水量
一定制御も実施可能であり、種々の制御運転をなし得る
When the value exceeds 1, the number of poles of the motor is converted to N pole and the motor is operated. If the amount of water used at the use point increases,
Since Q is less than or equal to Q, the number of poles of the motor is converted to M poles, the speed is increased, and the amount of water produced is increased. In this way, the operation of the device is controlled according to the amount of water used at the point of use.In this example, the amount of water used at the point of use is in two stages, but the amount of water used changes continuously. In this case, it is possible to control the amount of return water to be constant using a thyristor inverter, and various control operations can be performed.

〔発明の効果〕〔Effect of the invention〕

本発明により超純水製造装置の省資源、省エネルギー運
転が比較的安価に達成され、超純水製造装置の経済性の
向上に寄与するところ極めて大では本発明の超純水装置
のフロー図、第3図は第2図のインターブロック線図で
ある。
The present invention achieves resource-saving and energy-saving operation of an ultrapure water production device at a relatively low cost, and contributes to improving the economic efficiency of the ultrapure water production device. FIG. 3 is an interblock diagram of FIG. 2.

1・・・活性炭フィルター、2・・・プレフィルタ−1
3・・・加圧ポンプ、4・・・逆浸透膜モジュール、5
・・・ポリラシャ、6・・・ポリラシャ、7・・・紫外
線殺菌器、8・・・ファイナルフィルター、9・・・ユ
ースポイント、10・・・制御盤、11・・・濃縮水コ
ントロールバルブ、12・・・フロースイッチ。
1...Activated carbon filter, 2...Pre-filter-1
3... Pressure pump, 4... Reverse osmosis membrane module, 5
...Polyrasha, 6...Polyrasha, 7...Ultraviolet sterilizer, 8...Final filter, 9...Use point, 10...Control panel, 11...Concentrated water control valve, 12 ...Flow switch.

冨  1   図Tomi 1 Diagram

Claims (1)

【特許請求の範囲】[Claims] 逆浸透膜、イオン交換樹脂塔、紫外線殺菌器、フィルタ
ー等により構成され、これらに逆浸透膜前段に配置され
た加圧ポンプで通水し超純水を製造するとともに、ユー
スポイントでの未使用の超純水を上記加圧ポンプの吸込
側に戻すユースポイント循環配管を有する超純水製造装
置において、前記ユースポイント戻り配管の流量を検知
して、前記加圧ポンプの回転数制御し、戻り配管の流量
を制御することを特徴とする超純水製造装置の運転制御
方法。
It consists of a reverse osmosis membrane, an ion exchange resin tower, an ultraviolet sterilizer, a filter, etc. A pressurized pump placed before the reverse osmosis membrane passes water through these to produce ultrapure water, and unused water is stored at the point of use. In an ultrapure water production apparatus having a point of use circulation piping that returns ultrapure water to the suction side of the pressure pump, the flow rate of the point of use return piping is detected, the rotation speed of the pressure pump is controlled, and the return A method for controlling the operation of an ultrapure water production device, the method comprising controlling the flow rate of piping.
JP60060649A 1985-03-27 1985-03-27 Method for controlling extremely pure water generator Pending JPS61220788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060649A JPS61220788A (en) 1985-03-27 1985-03-27 Method for controlling extremely pure water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060649A JPS61220788A (en) 1985-03-27 1985-03-27 Method for controlling extremely pure water generator

Publications (1)

Publication Number Publication Date
JPS61220788A true JPS61220788A (en) 1986-10-01

Family

ID=13148389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060649A Pending JPS61220788A (en) 1985-03-27 1985-03-27 Method for controlling extremely pure water generator

Country Status (1)

Country Link
JP (1) JPS61220788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990899A (en) * 1982-11-15 1984-05-25 三菱電機株式会社 Voice synthesizer
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
EP0432265A1 (en) * 1988-06-29 1991-06-19 OHMI, Tadahiro Ultra-pure water supply piping arrangement apparatus
EP2008974A1 (en) * 2007-06-29 2008-12-31 AB Grundstenen 115144 Cleaning water purification system
JP2014184410A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990899A (en) * 1982-11-15 1984-05-25 三菱電機株式会社 Voice synthesizer
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
EP0432265A1 (en) * 1988-06-29 1991-06-19 OHMI, Tadahiro Ultra-pure water supply piping arrangement apparatus
US5160429A (en) * 1988-06-29 1992-11-03 Tadahiro Ohmi Piping system for supplying ultra-pure water
EP2008974A1 (en) * 2007-06-29 2008-12-31 AB Grundstenen 115144 Cleaning water purification system
JP2014184410A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
JP5357836B2 (en) Purified water production equipment and its use
CN105540953A (en) Electrolysis-electrodialysis composite water treatment device
JPS61220788A (en) Method for controlling extremely pure water generator
CN211972026U (en) Ultrapure water preparation system for laboratory
CN101085681A (en) Process for preparing industrial high purity water
CN2344399Y (en) Multi-stage water-purifying device
JP2001259644A (en) Pure water producer and pure water production method using the same
JP2001170630A (en) Pure water production device
JPH09253638A (en) Ultrapure water making apparatus
JPS60190298A (en) Preparation of ultra-pure water
JP4505965B2 (en) Pure water production method
CN210974236U (en) Water treatment system
CN205241388U (en) Energy -conserving little dense water reverse osmosis unit
CN203668181U (en) Sewage treatment equipment
CN201850185U (en) Domestic water treating device
CN214735101U (en) Can improve novel box pure water equipment of desalination
JP2001179262A (en) Pure water making apparatus
JPH11244854A (en) Production of pure water
CN206126987U (en) RO reverse osmosis water purifier's intelligent water saving fixtures
JP3304412B2 (en) Pure water production method
CN219384857U (en) Integrated ultrapure water preparation system
CN208700788U (en) A kind of electric demineralizer for ship boiler water
CN216336744U (en) CFRO reverse-flow reverse osmosis device for high-concentration of high-salinity wastewater