JPS61220126A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61220126A
JPS61220126A JP60062312A JP6231285A JPS61220126A JP S61220126 A JPS61220126 A JP S61220126A JP 60062312 A JP60062312 A JP 60062312A JP 6231285 A JP6231285 A JP 6231285A JP S61220126 A JPS61220126 A JP S61220126A
Authority
JP
Japan
Prior art keywords
particles
magnetic
ferromagnetic particles
recording medium
hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60062312A
Other languages
Japanese (ja)
Other versions
JPH0513326B2 (en
Inventor
Toshihiko Oguchi
小口 寿彦
Koki Yokoyama
横山 弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60062312A priority Critical patent/JPS61220126A/en
Publication of JPS61220126A publication Critical patent/JPS61220126A/en
Publication of JPH0513326B2 publication Critical patent/JPH0513326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To stabilize the dispersion of magnetic particles and to improve the packing density of the particles by allowing hexagonal ferromagnetic particles to be present in the magnetic layer as a unit aggregate obtained by laminating the particles in the direction of an axis easy for magnetization. CONSTITUTION:Hexagonal ferromagnetic particles 11 are washed with water and a surfactant and a dispersant are added to the particles. Then the hexagonal ferromagnetic particles 11 are laminated in the direction of the axis 12 easy for magnetization by mixing and gioing impact to form a unit aggregate 13. The aggregate 13 is then specifically treated and blended into a paint, which is coated on a film in 1-5mum thickness to form a magnetic recording medium. The dispersibility of the ferromagnetic particles is stabilized by the presence of the unit aggregate 13 obtained by laminating the particles in the direction of the axis easy for magnetization the packing density is increased, hence the coercive force is increased by 20-40% and a recording medium having excellent recording and reproducing outputs can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録媒体の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in magnetic recording media.

〔発明の技術的背景〕[Technical background of the invention]

磁気記録媒体は、例えばポリエステルフィルムのような
支持体上に強磁性粒子とバインダ樹脂及び必要に応じて
各種添加剤と混合してなる磁性塗料を塗布し、磁場下で
配向し、乾燥硬化して磁性層を形成することにより製造
される。
A magnetic recording medium is produced by coating a support such as a polyester film with a magnetic coating consisting of a mixture of ferromagnetic particles, a binder resin, and optionally various additives, orienting it under a magnetic field, and drying and curing it. It is manufactured by forming a magnetic layer.

ところで、従来、強磁性粒子としては針状のγ−フェラ
イト粒子、CO変変成−フェライト粒子や鉄粉又は窒化
鉄フェライト粒子、バリウムフェライト粒子に代表され
る六方晶フェライト粒子が使用されているが、いずれの
粒子を用いる場合も、磁気記録密度の向上を目的として
小粒径粒子が使用されるようになってきている。このよ
うな小粒径粒子は、一般に記録・再生時のノイズを低下
させ、特に記録波長の短い高域でのノイズを低減するの
で、高密度記録媒体として適している。
By the way, as ferromagnetic particles, needle-shaped γ-ferrite particles, CO metamorphosed ferrite particles, iron powder or iron nitride ferrite particles, and hexagonal ferrite particles typified by barium ferrite particles have conventionally been used. Regardless of the types of particles used, small-sized particles are increasingly being used for the purpose of improving magnetic recording density. Such small-diameter particles generally reduce noise during recording and reproduction, and particularly reduce noise in the high range where the recording wavelength is short, and are therefore suitable as a high-density recording medium.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、強磁性粒子の粒径を小さくしていくと、
一般に下記のような問題を生じる。
However, as the particle size of the ferromagnetic particles is reduced,
Generally, the following problems occur.

第1の問題は、強磁性粒子の粒径が小さくなるに伴って
、その粒子を単一状態で安定に分散させることが非常に
困難になるので、当初目的としたノイズの低減を図り難
いことである。例えば、六方晶フェライト粒子の場合、
第2図に示すように六方晶フェライト粒子1がバインダ
樹脂2を介在した状態でその磁場容易軸がランダムに磁
性層中に存在することになる。
The first problem is that as the particle size of ferromagnetic particles decreases, it becomes extremely difficult to stably disperse the particles in a single state, making it difficult to achieve the original goal of reducing noise. It is. For example, in the case of hexagonal ferrite particles,
As shown in FIG. 2, the magnetic easy axes of hexagonal ferrite particles 1 exist randomly in the magnetic layer with binder resin 2 interposed therebetween.

第2の問題は、強磁性粒子の粒径を小さくしていくと、
比表面積が増大するので、粒子の個々を結着するに要す
るバインダ樹脂を多量に必要とすることになる。その結
果、塗膜の単位体積当りの磁化(Ms )が小さくなり
、得られる出力が小さくなる。この際、磁性層のMsを
維持しようとすると、不可避的に強度低下を招き、記録
・再生時のヘッド目詰まりを生じたり、磁気記録媒体の
スチル耐久性又は耐候性に影響を与える。
The second problem is that as the particle size of the ferromagnetic particles is reduced,
Since the specific surface area increases, a large amount of binder resin is required to bind each particle. As a result, the magnetization (Ms) per unit volume of the coating film becomes smaller, and the output that can be obtained becomes smaller. At this time, if an attempt is made to maintain the Ms of the magnetic layer, the strength inevitably decreases, leading to head clogging during recording and reproduction, and affecting the still durability or weather resistance of the magnetic recording medium.

第3の問題は、小粒径強磁性粒子を使用ことによる配向
性の低下が挙げられる。例えば、六方晶バリウムフェラ
イト粒子を用いた磁気記録媒体では、塗膜を未乾燥状態
で磁場下に置いて、粒子の磁化容易軸が支持体面に垂直
となるように配向させた後、乾燥してバリウムフェライ
トが垂直配向した磁性層を形成しているが、このバリウ
ムフェライト粒子の粒径が0.1μm以下の超微粒径に
なると、高い配向率を得ることが非常に難しくなる。こ
のため、現状では超微粒径の六方晶強磁性粒子による垂
直磁気記録媒体に基体される記録密度の向上が達成され
るに至っていない。
The third problem is a decrease in orientation due to the use of small-sized ferromagnetic particles. For example, in a magnetic recording medium using hexagonal barium ferrite particles, the coating film is placed under a magnetic field in an undried state so that the axis of easy magnetization of the particles is perpendicular to the support surface, and then dried. Barium ferrite forms a vertically oriented magnetic layer, but when the barium ferrite particles have an ultrafine particle size of 0.1 μm or less, it becomes very difficult to obtain a high orientation rate. For this reason, at present, it has not been possible to improve the recording density of a perpendicular magnetic recording medium based on ultrafine hexagonal ferromagnetic particles.

〔発明の目的〕[Purpose of the invention]

本発明は、六方晶強磁性粒子のバインダ樹脂中への分散
性の安定化と充填率の向上を達成した磁気記録媒体を提
供しようとするものである。
The present invention aims to provide a magnetic recording medium in which the dispersibility of hexagonal ferromagnetic particles in a binder resin is stabilized and the filling rate is improved.

〔発明の概要〕[Summary of the invention]

本発明は、支持体上に六方晶強磁性粒子をバインダ樹脂
と共に塗布して磁性層を形成してなる磁気記録媒体にお
いて、前記強磁性粒子がその磁化容易軸方向に積層した
単位集合体として前記磁性層中に存在していることを特
徴とするものである。
The present invention provides a magnetic recording medium in which a magnetic layer is formed by coating hexagonal ferromagnetic particles together with a binder resin on a support, in which the ferromagnetic particles are formed as a unit assembly in which the ferromagnetic particles are laminated in the direction of their easy axis of magnetization. It is characterized by being present in the magnetic layer.

以下、本発明の磁気記録媒体について製造方法を参照し
て詳細に説明する。
Hereinafter, the magnetic recording medium of the present invention will be explained in detail with reference to the manufacturing method.

まず、ガラス結晶化法によりガラスから水相に洗い出さ
れた粒形及び粒径分布の揃った単磁区の六方晶強磁性粒
子を充分に水洗する。つづいて、この大方晶強磁性粒子
にリン酸エステル系界面活性剤やチタンカップリング剤
、シランカップリング剤等の分散剤を添加した後、サン
ドグラインダ、ブレードミキサ、リボンミキサ等の撹拌
混合機を用いて混合、衝撃を与えてランダムに配列され
ていた単磁区の六方晶強磁性粒子の再配列を行ない、更
に乾燥することより第1図に示すように複数枚の単磁区
の大方晶強磁性粒子11が磁化容易軸12方向に積層さ
れた単位集合体13を造る。ひきつづき、単位集合体を
バインダ樹脂と共に溶剤に添加し、必要に応じて分散剤
等を添加し、ボールミル、サンドミル、ニーダ、3本ロ
ール、コロイドミル、ペイントシェーカ、ホモジナイザ
、デイゾルバ等の分散機を用いて激しく混合することに
よって、磁性塗料を調製する。こうした混合過程におい
ても、前記未積層状態の単磁区の六方晶強磁性粒子が予
め添加した分散剤により再配列されて磁化容易軸方向に
積層した単位集合体が樹脂中に形成される。また、単位
集合体はそれを構成する単磁区の六方晶強磁性粒子が相
互に強く積層されているため、前記バインダ樹脂との混
合過程でその強磁性粒子がバラバラになることはない。
First, single-domain hexagonal ferromagnetic particles with uniform particle shape and particle size distribution washed out from the glass into the aqueous phase by the glass crystallization method are thoroughly washed with water. Next, after adding a dispersant such as a phosphate ester surfactant, a titanium coupling agent, or a silane coupling agent to the orthogonal ferromagnetic particles, a stirring mixer such as a sand grinder, blade mixer, or ribbon mixer is used. The hexagonal ferromagnetic particles with a single magnetic domain that had been randomly arranged were rearranged by mixing and impact using the ferromagnet, and by further drying, as shown in Figure 1, multiple single magnetic domain macrogonal ferromagnetic particles were formed. A unit aggregate 13 is created in which particles 11 are stacked in the direction of the easy magnetization axis 12. Subsequently, the unit aggregate is added to the solvent together with the binder resin, and a dispersant is added as necessary, using a dispersing machine such as a ball mill, sand mill, kneader, three-roll mill, colloid mill, paint shaker, homogenizer, dissolver, etc. Prepare the magnetic paint by mixing vigorously. Even in such a mixing process, the single-domain hexagonal ferromagnetic particles in the unstacked state are rearranged by the dispersant added in advance, and unit aggregates are formed in the resin in which they are stacked in the direction of the easy axis of magnetization. Furthermore, since the single-domain hexagonal ferromagnetic particles constituting the unit aggregate are strongly stacked on each other, the ferromagnetic particles do not fall apart during the mixing process with the binder resin.

次いで、この磁性塗料をポリエステルフィルム等の支持
体上に厚さ1〜54m程度塗布し、乾燥して六方晶強磁
性粒子の単位集合体が存在する磁性層を形成して磁気記
録媒体を製造する。この製造工程において、磁性塗料の
塗膜を乾燥する前に、支持体をその面に対して垂直な磁
界中を通過させつつ、溶剤を蒸発させることにより、単
位集合体の磁化容易軸が支持体面に対して垂直に配向さ
れた磁性層を有する垂直磁気記録媒体を製造できる。
Next, this magnetic paint is applied to a thickness of about 1 to 54 m on a support such as a polyester film, and dried to form a magnetic layer in which unit aggregates of hexagonal ferromagnetic particles exist, thereby producing a magnetic recording medium. . In this manufacturing process, before drying the magnetic paint film, the support is passed through a magnetic field perpendicular to its surface and the solvent is evaporated, so that the axis of easy magnetization of the unit aggregate is aligned with the surface of the support. A perpendicular magnetic recording medium having a magnetic layer oriented perpendicular to the magnetic field can be manufactured.

上記六方晶強磁性粒子としては、例えばバリウムフェラ
イト、ストロンチウムフェライト、カルシウムフェライ
ト、又はこれらフェライトを構成する鉄原子の一部をC
Ol”rt、Zr、N+、In5Cu、Ge1Nbの群
れから選ばれる少なくとも一種の元素で置換したもの等
を挙げることができる。こうした大方晶強磁性粒子は、
前述したように粒形及び粒径分布が揃っていることが望
ましい。具体的には、六角板状の結晶の対角線の長さを
d、板の厚みをtとすると、該長さくd)がO,O’3
〜0.2μmで、対角線の長さに対する板の厚み(d/
l)を3〜10のものを使用することが望ましい。特に
、d/lが大きい六方晶強磁性粒子は平板状で、前述し
た混合による衝撃を与える際の磁化容易軸方向への積層
化が容易となる。なお、六方晶強磁性粒子の粒形及び粒
径分布が不揃いであると、大粒子間に小粒子が挟み込ま
れた状態となって、六方晶強磁性粒子が磁化容易軸方向
に積層された単位集合体を作る“ことが困難となる。ま
た、六方晶強磁性粒子は、4Qemu/9以上の磁化を
有し、抗磁力が300 08以上のものを用いることが
望ましい。
Examples of the hexagonal ferromagnetic particles include barium ferrite, strontium ferrite, calcium ferrite, or a part of the iron atoms constituting these ferrites.
Examples include those substituted with at least one element selected from the group of Ol'rt, Zr, N+, In5Cu, and Ge1Nb. Such macrogonal ferromagnetic particles are
As mentioned above, it is desirable that the particle shape and particle size distribution be uniform. Specifically, if the length of the diagonal of a hexagonal plate-shaped crystal is d and the thickness of the plate is t, then the length d) is O, O'3
~0.2 μm, the thickness of the plate relative to the diagonal length (d/
It is desirable to use one having l) of 3 to 10. In particular, hexagonal ferromagnetic particles having a large d/l are tabular and can be easily stacked in the direction of the axis of easy magnetization when applying the impact due to mixing described above. In addition, if the particle shape and particle size distribution of hexagonal ferromagnetic particles are irregular, small particles are sandwiched between large particles, resulting in a unit in which hexagonal ferromagnetic particles are stacked in the direction of the axis of easy magnetization. It becomes difficult to form an aggregate. Furthermore, it is desirable to use hexagonal ferromagnetic particles having a magnetization of 4Qemu/9 or more and a coercive force of 30008 or more.

上記バインダ樹脂としは、例えば塩化ビニル−酢酸ビニ
ル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニ
ル−無水マレイン酸共重合体、塩化ビニル−アクリル酸
共重合体、塩化ビニル−アクリル酸−無水マレイン酸共
重合体等に代表される塩化ビニル系共重合体、又は塩化
ビニリデン共重合体、ポリビニルアルコール、ポリビニ
ルホルマール、ポリビニルブチラール、ポリビニルアセ
タール、ポリエステル、ポリウレタン、ポリカーボネー
ト、ポリエーテル、ポリアクリル酸、ポリビニルピロリ
ドン、ポリ−p−ビニルフェノール、ポリアミド、セル
ロース系樹脂、フェノキシ樹脂等の熱可塑性樹脂及びそ
れらの共重合体、或いはエポキシ樹脂、不飽和ポリエス
テル、フェノール樹脂、メラミン樹脂、尿素樹脂、フラ
ン樹脂、キシレン樹脂、ケトン樹脂等に代表される熱硬
化性樹脂等を挙げることができる。これらの樹脂は、通
常、1種以上の混合物で使用することができる。
Examples of the binder resin include vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, vinyl chloride-acrylic acid copolymer, and vinyl chloride-acrylic acid-maleic anhydride copolymer. Vinyl chloride copolymers typified by copolymers, or vinylidene chloride copolymers, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyvinyl acetal, polyester, polyurethane, polycarbonate, polyether, polyacrylic acid, polyvinylpyrrolidone, Thermoplastic resins such as poly-p-vinylphenol, polyamide, cellulose resin, phenoxy resin and their copolymers, or epoxy resin, unsaturated polyester, phenol resin, melamine resin, urea resin, furan resin, xylene resin, Examples include thermosetting resins typified by ketone resins and the like. These resins can usually be used in mixtures of one or more.

かかるバインダ樹脂は、六方晶強磁性粒子100重1部
に対して5〜30重量部配合することが望ましい。この
理由は、該樹脂を5重量部未満にすると、強磁性粒子へ
の結着力が低下し、一方前記樹脂が30重量部を越える
と、磁気記録媒体として必要な磁気特性が得られなくる
恐れがある。
The binder resin is preferably blended in an amount of 5 to 30 parts by weight per 1 part by weight of 100 hexagonal ferromagnetic particles. The reason for this is that if the amount of the resin is less than 5 parts by weight, the binding force to the ferromagnetic particles will decrease, while if the amount of the resin exceeds 30 parts by weight, the magnetic properties required for a magnetic recording medium may not be obtained. There is.

上記単位集合体をバインダ樹脂と共に溶剤中に添加する
際には、分散剤の他に必要に応じて各種の添加剤を加え
ることも可能である。使用できる添加剤としては、例え
ばカーボン、グラファイト等の帯電防止剤、Cr2O3
、Aβ203に代表される各種研磨剤、CaCO3、M
GO1S102などの無機粉末、各種脂肪酸、脂肪酸エ
ステル、脂肪酸アミド、シリコーンオイル、フロロカー
ボンなどの表面潤滑剤、界面活性剤、安定剤、離型剤、
顔料、染料、老化防止剤、表面処理剤、可塑剤等を挙げ
ることができる。これらはバインダ樹脂100重量部に
対して50重量部以内で添加することが多く、かつ0.
01〜10重量部程度であるならば上記以外の添加剤を
使用することができる。
When adding the unit aggregate to the solvent together with the binder resin, it is also possible to add various additives in addition to the dispersant as necessary. Examples of additives that can be used include antistatic agents such as carbon and graphite, and Cr2O3.
, various abrasives represented by Aβ203, CaCO3, M
Inorganic powders such as GO1S102, surface lubricants such as various fatty acids, fatty acid esters, fatty acid amides, silicone oils, fluorocarbons, surfactants, stabilizers, mold release agents,
Examples include pigments, dyes, anti-aging agents, surface treatment agents, and plasticizers. These are often added in an amount of 50 parts by weight or less per 100 parts by weight of the binder resin, and 0.
Additives other than those mentioned above can be used as long as the amount is about 0.01 to 10 parts by weight.

上記磁性層中に存在する六方晶強磁性粒子全体に占める
単位集合体の割合は、六方晶強磁性粒子のバインダ樹脂
中への分散性、充填率の向上及び磁界中での配向性を良
好にする等の観点から、30%以上、より好ましくは5
0%以上にすることが望ましい。
The ratio of unit aggregates to the total hexagonal ferromagnetic particles present in the magnetic layer is determined to improve the dispersibility of the hexagonal ferromagnetic particles in the binder resin, improve the filling rate, and improve the orientation in the magnetic field. 30% or more, more preferably 5%
It is desirable to set it to 0% or more.

以上、本発明の磁気記録媒体は磁性層中に六方晶強磁性
粒子をその磁化容易軸方向に積層した単位集合体が存在
しているため、該強磁性粒子がランダムに磁性層中に存
在している場合に比べて強磁性粒子の分散性が安定化し
、かつ充填率も向上することより抗磁力を20〜40%
増大できる。
As described above, in the magnetic recording medium of the present invention, since a unit aggregate in which hexagonal ferromagnetic particles are stacked in the direction of the axis of easy magnetization is present in the magnetic layer, the ferromagnetic particles are randomly present in the magnetic layer. The coercive force can be reduced by 20-40% by stabilizing the dispersibility of ferromagnetic particles and improving the filling rate compared to the case where the ferromagnetic particles are
Can be increased.

従って、記録・再生出力及びS/N比の向上を図ること
ができると共に、磁性層の耐久性を向上できる。また、
前述した如く未乾燥状態の塗膜を磁場中で配向させつつ
、乾燥して支持体面に対して垂直に配向された強磁性粒
子(単位集合体)を有する磁性層を形成することにより
、無配向磁性層に比べて高周波数域での記録・再生出力
の優れた高記録密度の垂直磁気記録媒体を得ることがで
きる。
Therefore, recording/reproducing output and S/N ratio can be improved, and the durability of the magnetic layer can be improved. Also,
As mentioned above, by orienting an undried coating film in a magnetic field and drying it to form a magnetic layer having ferromagnetic particles (unit aggregates) oriented perpendicularly to the support surface, non-orientation can be achieved. A perpendicular magnetic recording medium with a high recording density and superior recording/reproducing output in a high frequency range compared to a magnetic layer can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 まず、ガラス結晶化法によりガラスから水相に洗い出さ
れた単磁区の六方晶フェライト粒子とじの8a0・6 
((Fe2−2xCoxTix)203 )(但しXは
0.87を示す)の組成式を有する平均粒径0008μ
m、抗磁力(iHc)7000eの単磁区の置換型バリ
ウムフェライト粒子を用意した。このバリウムフェライ
ト粒子は、0.04μm〜0.10μmの範囲に90重
量%以上の粒径分布を有し、かつ六角板状の結晶の対角
線に対する厚み(d/l’)が5のものであった。
Example 1 First, single-domain hexagonal ferrite particles washed out from the glass into the aqueous phase by the glass crystallization method are bound to 8a0.6.
It has a composition formula of ((Fe2-2xCoxTix)203) (where X is 0.87) and has an average particle size of 0008μ
Single-domain substituted barium ferrite particles with a coercive force (iHc) of 7000e were prepared. The barium ferrite particles have a particle size distribution of 90% by weight or more in the range of 0.04 μm to 0.10 μm, and have a thickness (d/l') of 5 with respect to the diagonal of the hexagonal plate-shaped crystal. Ta.

次いで、前記置換、型バリウムフェライト粒子を充分に
水洗した後、該バリウムフェライト粒子100重量部に
対して炭素数18のジアルキルリン酸エステル1.5重
量部、メチルエチルケトンとトルエンの混合溶剤(混合
比1:1)100重量部及び粒径0.8〜1.0mg+
φのガラスピーズ400重量部を加えサンドグラインダ
中で約5時間混合して衝撃を与えて単磁区のバリウムフ
ェライト粒子がその磁化容易軸方向に積層した単位集合
体を有するスラリーを作った。つづいて、このスラリー
を分子量約20000の塩化ビニル−アクリル酸共重合
体10重量部、ウレタンエラストマ1o重量部を含むメ
チルエチルケトンとトルエンの混合溶剤(混合比1:1
)60重量部を加え、サンドグラインダにて更に1時間
撹拌、混合して磁性塗料を調製した。ひきつづき、この
磁性塗料を濾過し、リバースロールコータでポリエステ
ルフィルム上に厚さ3μm程度塗布、乾燥した。この後
、カレンダ処理により乾燥塗膜(磁性層)表面を平滑に
し、1/2インチ幅に裁断して磁気テープを製造した。
Next, after thoroughly washing the substituted barium ferrite particles with water, 1.5 parts by weight of a dialkyl phosphate having 18 carbon atoms and a mixed solvent of methyl ethyl ketone and toluene (mixing ratio 1) were added to 100 parts by weight of the barium ferrite particles. :1) 100 parts by weight and particle size 0.8 to 1.0 mg+
400 parts by weight of glass beads having a diameter of φ were added and mixed for about 5 hours in a sand grinder to give an impact, thereby producing a slurry having unit aggregates in which single-domain barium ferrite particles were stacked in the direction of their easy magnetization axis. Subsequently, this slurry was mixed with a mixed solvent of methyl ethyl ketone and toluene (mixing ratio 1:1) containing 10 parts by weight of vinyl chloride-acrylic acid copolymer having a molecular weight of about 20,000 and 10 parts by weight of urethane elastomer.
) was added thereto, and the mixture was further stirred and mixed using a sand grinder for 1 hour to prepare a magnetic paint. Subsequently, this magnetic coating material was filtered, coated on a polyester film to a thickness of about 3 μm using a reverse roll coater, and dried. Thereafter, the surface of the dried coating film (magnetic layer) was smoothed by calendering and cut into 1/2 inch width to produce a magnetic tape.

得られた磁気テープにおける磁性層の表面及び断面を走
査型電子顕微鏡で観察したところ、単磁区のバリウムフ
ェライト粒子がその磁化容易軸方向に積層され、その単
位集合体が全体のバリウムフェライト中に40%占めて
存在することが明瞭に認められた。
When the surface and cross-section of the magnetic layer in the obtained magnetic tape was observed with a scanning electron microscope, it was found that single-domain barium ferrite particles were stacked in the direction of their easy magnetization axis, and that a unit aggregate of 40 barium ferrite particles was formed in the entire barium ferrite. It was clearly recognized that the presence of

実施例2 実施例1におけるリバースロールコータによる塗膜を乾
燥する前に、5kOeの垂直配向磁界内に通過しつつ、
乾燥、固化を行なって灰白色の光沢を有する乾燥塗膜を
μ成した。この後、実施例1と同様にカレンダ処理を施
し、1/2インチ幅に裁断して表面が平滑な磁性層を有
する磁気テープを製造した。得られた磁気テープにおけ
る磁性層の表面及び断面を走査型電子顕微鏡で観察した
ところ、単磁区のバリウムフェライト粒子がその磁化容
易軸方向に積層され、その単位集合体が全体のバリウム
フェライト中に60%占めて存在しており、しかも単位
集合体の六角板面がポリエステルフィルム面と平行とな
るように垂直配向していることが明瞭に認められた。
Example 2 Before drying the coating film produced by the reverse roll coater in Example 1, while passing it through a vertically oriented magnetic field of 5 kOe,
It was dried and solidified to form a dry coating film with grayish white gloss. Thereafter, it was calendered in the same manner as in Example 1 and cut into 1/2 inch width to produce a magnetic tape having a magnetic layer with a smooth surface. When the surface and cross-section of the magnetic layer in the obtained magnetic tape was observed with a scanning electron microscope, it was found that single-domain barium ferrite particles were stacked in the direction of their easy magnetization axis, and that the unit aggregate was 60% in the whole barium ferrite. %, and it was clearly observed that the hexagonal plate surfaces of the unit aggregates were vertically oriented so as to be parallel to the polyester film surface.

比較例1 実施例1と同様にガラス結晶化法で作った単磁区の大方
晶バリウムフェライト粒子100重量部に対し炭素数1
8のジアルキルリン酸エステル1.5重量部、メチルエ
チルケトンとトルエンの混合溶剤(混合比1:1)16
0重量部、分子量約20000の塩化ビニル−アクリル
酸共重合体10重量部、ウレタンエラスト710重量部
を加えて混合溶液とし、これに更に粒径0.8〜1、O
sφのガラスピーズ400重量部を加えた後、サンドグ
ラインダ中で約5時間混合した。つづいて、この磁性塗
料を濾過した後、リバースロールコータでポリエステル
フィルム上に厚さ3μm程度塗布、乾燥した。この後、
カレンダ処理により乾燥塗膜(磁性層)表面を平滑にし
、1/2インチ幅に裁断して磁気テープを製造した。
Comparative Example 1 The number of carbon atoms is 1 per 100 parts by weight of single-domain macrogonal barium ferrite particles made by the glass crystallization method in the same manner as in Example 1.
1.5 parts by weight of dialkyl phosphate ester of No. 8, mixed solvent of methyl ethyl ketone and toluene (mixing ratio 1:1) 16
0 parts by weight, 10 parts by weight of a vinyl chloride-acrylic acid copolymer with a molecular weight of about 20,000, and 710 parts by weight of urethane elastomer were added to form a mixed solution, and to this was added a solution with a particle size of 0.8 to 1, O
After adding 400 parts by weight of sφ glass beads, the mixture was mixed in a sand grinder for about 5 hours. Subsequently, this magnetic coating material was filtered, and then coated onto a polyester film to a thickness of about 3 μm using a reverse roll coater and dried. After this,
The surface of the dried coating film (magnetic layer) was smoothed by calendering and cut into 1/2 inch width to produce a magnetic tape.

得られた磁気テープにおける磁性層の表面及び断面を走
査型電子顕微鏡でI!察したところ、単磁区のバリウム
フェライト粒子が塊状をなしており、実施例1.2のよ
うな単位集合体の存在はほとんど認められなかった。
The surface and cross section of the magnetic layer in the obtained magnetic tape were examined using a scanning electron microscope. As a result, it was found that single-domain barium ferrite particles were in the form of a lump, and the existence of unit aggregates like those in Example 1.2 was hardly observed.

比較例2 実施例1と同様にガラス結晶化法で作った単磁区の六方
晶バリウムフェライト粒子を用いて比較例1と同様な磁
性塗料を調製し、これをリバースロールコータでポリエ
ステルフィルム上に厚さ3μm程度塗布した。つづいて
、乾燥前の塗膜を5koeの垂直配向磁界内に通過しつ
つ、乾燥、同化を行なった。この後、カレンダ処理を施
し、1/2インチ幅に裁断して表面が平滑な磁性層を有
する磁気テープを製造した。得られた磁気テープにおけ
る磁性層の表面及び断面を走査型電子顕微鏡で観察した
ところ、単磁区のバリウムフェライト粒子が塊状をなし
て存在しており、実施例1、2のような単位集合体はほ
とんど認められなかった。
Comparative Example 2 A magnetic paint similar to that in Comparative Example 1 was prepared using single-domain hexagonal barium ferrite particles made by the glass crystallization method in the same manner as in Example 1, and coated on a polyester film thickly using a reverse roll coater. A thickness of about 3 μm was applied. Subsequently, the coating film before drying was passed through a vertical alignment magnetic field of 5 koe for drying and assimilation. Thereafter, it was calendered and cut into 1/2 inch width to produce a magnetic tape having a magnetic layer with a smooth surface. When the surface and cross section of the magnetic layer in the obtained magnetic tape was observed with a scanning electron microscope, it was found that single-domain barium ferrite particles were present in clusters, and unit aggregates like those in Examples 1 and 2 were not present. It was hardly recognized.

しかして、本実施例1.2及び比較例1.2の磁気テー
プについて、静磁気特性及び記録・再生出力特性を測定
した。その結果を下記表に示した。
The magnetostatic characteristics and recording/reproducing output characteristics of the magnetic tapes of Example 1.2 and Comparative Example 1.2 were measured. The results are shown in the table below.

なお、表中のテープ保磁力は垂直磁化曲線により測定し
た値、垂直配向率は反磁場(4πMs)補正後の値、記
録・再生出力及びS/N比はテープとヘッドの相対速度
を3.75m/sec 、キャリア周波数を5MHzと
した時の測定値、を夫々示す。
In addition, the tape coercive force in the table is the value measured by the perpendicular magnetization curve, the perpendicular orientation ratio is the value after demagnetizing field (4πMs) correction, and the recording/reproducing output and S/N ratio are the values measured by the relative speed of the tape and the head by 3. 75 m/sec and a carrier frequency of 5 MHz, respectively.

表 実施例3 まず、ガラス結晶化法によりガラスから水相に洗い出さ
れた単磁区の六方晶フェライト粒子とじのsro e 
6 ((Fe2−2xCoXT ix) 203 )(
但しXは0.87を示す)の組成式を有する平均粒径0
.08μm、抗磁力(iHc)700Qeの単磁区の置
換型ストロンチウムフェライト粒子を用意した。このス
トロンチウムフェライト粒子は、0.04um 〜0.
10μmf7)範囲に90重量%以上の粒径分布を有し
、かつ六角板状の結晶の対角線に対する厚み(d/l 
)が5のものであった。
Table Example 3 First, the sro e of single-domain hexagonal ferrite particles washed out from the glass into the aqueous phase by the glass crystallization method.
6 ((Fe2-2xCoXT ix) 203 )(
However, X indicates 0.87) and has an average particle size of 0.
.. Single-domain substituted strontium ferrite particles with a diameter of 08 μm and a coercive force (iHc) of 700 Qe were prepared. The strontium ferrite particles have a diameter of 0.04 um to 0.04 um.
It has a particle size distribution of 90% by weight or more in the range of 10 μm f7), and the thickness (d/l
) was 5.

次いで、前記置換型ストロンチウムフェライト粒子を充
分に水洗した後、該すとろんちうむフェライト粒子10
0!量部に対して炭素数18のジアルキルリン酸エステ
ル1.5重量部、メチルエチルケトンとトルエンの混合
溶剤(混合比1:1)100重量部及び粒径0.8〜1
.0履φのガラスピーズ400重量部を加えサンドグラ
インダ中で約5時間混合して衝撃を与えて単磁区のスト
ロンチウムフェライト粒子がその磁化容易軸方向に積層
した単位集合体を有するスラリーを作った。
Next, after thoroughly washing the substituted strontium ferrite particles with water, the strontium ferrite particles 10
0! 1.5 parts by weight of dialkyl phosphate ester having 18 carbon atoms, 100 parts by weight of a mixed solvent of methyl ethyl ketone and toluene (mixing ratio 1:1), and particle size 0.8 to 1.
.. 400 parts by weight of glass beads with a diameter of 0 mm were added and mixed in a sand grinder for about 5 hours to give an impact, thereby producing a slurry having unit aggregates in which single-domain strontium ferrite particles were stacked in the direction of their easy magnetization axis.

つづいて、このスラリーを用いて実施例1と同様、磁性
塗料の調製、ポリエステルフィルム上への塗布、5kO
eの垂直配向磁界内での乾燥、カレンダ処理、1/2イ
ンチ幅の裁断等を行なって垂直配向磁気テープを製造し
た。
Next, using this slurry, in the same manner as in Example 1, magnetic paint was prepared, applied onto a polyester film, and 5kO
A vertically oriented magnetic tape was manufactured by drying in a vertically oriented magnetic field, calendering, and cutting into 1/2 inch width.

得られた磁気テープについて、静磁気特性及び記録・再
生出力特性を測定した。その結果、垂直磁化曲線により
測定されたテープ保磁力は720Qe、反磁場(4πM
e’)補正後の垂直配向率は0.85であった。また、
テープとヘッドの相対速度を3.75m/sec 、キ
ャリア周波数を5MH2とした時の記録・再生出力は上
記ストロンチウムフェライトを比較例1に従って塗料化
し、塗布して得た磁気テープに比較して+1.5dB。
The magnetostatic properties and recording/reproduction output properties of the obtained magnetic tape were measured. As a result, the tape coercive force measured by the perpendicular magnetization curve was 720Qe, and the demagnetizing field (4πM
e') The vertical orientation ratio after correction was 0.85. Also,
When the relative speed between the tape and the head was 3.75 m/sec and the carrier frequency was 5 MH2, the recording/reproducing output was +1. compared to the magnetic tape obtained by coating the strontium ferrite as a paint according to Comparative Example 1. 5dB.

S/N比は+2.0dBと良好な特性を示した。The S/N ratio was +2.0 dB, showing good characteristics.

一方、得られた磁気テープにおける磁性層の表面及び断
面を走査型電子顕微鏡で観察したところ、単磁区のスト
ロンチウムフェライト粒子がその磁化容易軸方向に積層
され、その単位集合体が全体のストロンチウムフェライ
ト中に70%占めて存在しており、しかも単位集合体の
六角板面がポリエステルフィルム面と平行となるように
垂直配向していることが明瞭に認められた。
On the other hand, when the surface and cross-section of the magnetic layer in the obtained magnetic tape was observed using a scanning electron microscope, it was found that single-domain strontium ferrite particles were stacked in the direction of their easy magnetization axis, and that unit aggregates were present in the entire strontium ferrite. It was clearly observed that the hexagonal plate surface of the unit aggregate was vertically oriented so that it was parallel to the polyester film surface.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば六方晶強磁性粒子を
その磁化容易軸方向に積層した単位集合体として磁性層
中に存在させることによって、該六方晶強磁性粒子を磁
性層中に安定的に分散できると共に、充填率を向上でき
、ひいては磁性層の単位体積当りの飽和磁化の増大を可
能として記録・再生出力及びS/N比の向上、磁性層の
耐久性の向上を達成した磁気記録媒体を提供できる。ま
た、前記六方晶強磁性粒子をその磁化容易軸方向に積層
した単位集合体を有する磁性層を垂直配向することによ
り、磁性層の飽和磁化を減少することなく、高い垂直配
向率を図ることができ、無配向磁性層に比べて高周波数
域での出力特性等の優れた高密度記録が可能な垂直配向
磁気記録媒体を提供できる。
As detailed above, according to the present invention, the hexagonal ferromagnetic particles are stabilized in the magnetic layer by being present in the magnetic layer as a unit aggregate stacked in the direction of the easy axis of magnetization. A magnetic material that can be widely dispersed, improve the filling rate, and increase the saturation magnetization per unit volume of the magnetic layer, thereby improving recording/reproducing output, S/N ratio, and durability of the magnetic layer. Can provide recording media. Furthermore, by vertically orienting a magnetic layer having a unit aggregate in which the hexagonal ferromagnetic particles are laminated in the direction of their easy axis of magnetization, a high perpendicular orientation rate can be achieved without reducing the saturation magnetization of the magnetic layer. Therefore, it is possible to provide a perpendicularly oriented magnetic recording medium that is capable of high-density recording and has superior output characteristics in a high frequency range as compared to a non-oriented magnetic layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体における磁性層中に存在
させる六方晶強磁性粒子をその磁化容易軸方向に積層し
た単位集合体を示す模式図、第2図は従来の磁気記録媒
体における磁性層中に存在する六方晶強磁性粒子の状態
を示す模式図である。 11・・・六方晶強磁性粒子、12・・・磁化容易軸、
13・・・単位集合体。 出願人代理人 弁理士  鈴江武彦 第1図 第2図
Figure 1 is a schematic diagram showing a unit assembly in which hexagonal ferromagnetic particles present in the magnetic layer of the magnetic recording medium of the present invention are laminated in the direction of their easy axis of magnetization, and Figure 2 is a schematic diagram showing the magnetic properties of a conventional magnetic recording medium. FIG. 2 is a schematic diagram showing the state of hexagonal ferromagnetic particles present in a layer. 11... Hexagonal ferromagnetic particle, 12... Easy axis of magnetization,
13...Unit aggregate. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)支持体上に六方晶強磁性粒子をバインダ樹脂と共
に塗布して磁性層を形成してなる磁気記録媒体において
、前記強磁性粒子がその磁化容易軸方向に積層した単位
集合体として前記磁性層中に存在していることを特徴と
する磁気記録媒体。
(1) In a magnetic recording medium in which a magnetic layer is formed by coating hexagonal ferromagnetic particles together with a binder resin on a support, the magnetic layer is formed as a unit aggregate in which the ferromagnetic particles are laminated in the direction of their easy magnetization axis. A magnetic recording medium characterized by being present in a layer.
(2)六方晶強磁性粒子の単位集合体は、その磁化容易
軸が支持体の表面に対して垂直に配向して磁性層中に存
在していることを特徴とする特許請求の範囲第1項記載
の磁気記録媒体。
(2) The unit aggregate of hexagonal ferromagnetic particles is present in the magnetic layer with its axis of easy magnetization oriented perpendicularly to the surface of the support. Magnetic recording medium described in Section 1.
JP60062312A 1985-03-27 1985-03-27 Magnetic recording medium Granted JPS61220126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062312A JPS61220126A (en) 1985-03-27 1985-03-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062312A JPS61220126A (en) 1985-03-27 1985-03-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61220126A true JPS61220126A (en) 1986-09-30
JPH0513326B2 JPH0513326B2 (en) 1993-02-22

Family

ID=13196488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062312A Granted JPS61220126A (en) 1985-03-27 1985-03-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61220126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211316A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Hexagonal strontium ferrite magnetic powder and production method of the same, and magnetic recording medium and production method of the recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119625A (en) * 1983-12-01 1985-06-27 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119625A (en) * 1983-12-01 1985-06-27 Fuji Photo Film Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211316A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Hexagonal strontium ferrite magnetic powder and production method of the same, and magnetic recording medium and production method of the recording medium
US9478331B2 (en) 2012-03-30 2016-10-25 Fujifilm Corporation Hexagonal strontium ferrite magnetic powder and method of manufacturing the same, and magnetic recording medium and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0513326B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
US4666770A (en) Magnetic recording medium
JPS61220126A (en) Magnetic recording medium
JP3132536B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH07153074A (en) Manufacture for magnetic recording medium
JPS6341133B2 (en)
JPH0296922A (en) Magnetic recording medium
JPH04129024A (en) Magnetic recording medium and production thereof
JPH0510805B2 (en)
JPH0959541A (en) Production of magnetic coating and production of magnetic recording medium
JPS60138733A (en) Production of magnetic recording medium
JPS59151342A (en) Magnetic recording medium and its manufacture
JPH0660365A (en) Magnetic recording medium
JPS59124023A (en) Magnetic recording medium
JPS61123021A (en) Magnetic recording medium
JPS61123024A (en) Magnetic recording medium
JPH08273158A (en) Production of magnetic recording medium
JPH08106622A (en) Magnetic recording medium and its production
JPS61217936A (en) Production of magnetic recording medium
JPS62159345A (en) Production of magnetic recording medium
JPH0721549A (en) Magnetic recording medium and its production
JPS61214227A (en) Production of magnetic tape
JPS62195726A (en) Magnetic recording medium
JPS62195725A (en) Magnetic recording medium
JPH01211321A (en) Magnetic recording medium
JPH01239820A (en) Co-coating magnetic iron oxide powder and magnetic recording medium using same