JPS61219851A - Specimen spray apparatus for flame atom absorption analysis - Google Patents

Specimen spray apparatus for flame atom absorption analysis

Info

Publication number
JPS61219851A
JPS61219851A JP6071085A JP6071085A JPS61219851A JP S61219851 A JPS61219851 A JP S61219851A JP 6071085 A JP6071085 A JP 6071085A JP 6071085 A JP6071085 A JP 6071085A JP S61219851 A JPS61219851 A JP S61219851A
Authority
JP
Japan
Prior art keywords
mist
atomic absorption
flame
disperser
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6071085A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
英雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6071085A priority Critical patent/JPS61219851A/en
Publication of JPS61219851A publication Critical patent/JPS61219851A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/714Sample nebulisers for flame burners or plasma burners

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform high sensitivity flame atom absorption analysis showing a high S/N ratio, in performing measurement, by spraying a specimen solution discharged from a sprayer in a mist form to a dispersing device having a reticulated structure to allow the same to pass through said dispersing device. CONSTITUTION:A concentric type sprayer 3, wherein a vacuum phenomenon generated by auxiliary fuel gas flowing as a high speed stream is applied, discharges a specimen solution 4 in a mixing chamber 7 for mixing fuel and the auxiliary fuel gas through a tube 5 in a conical mist state 6 non-uniform in a particle size. The mist is passed through a dispersing device 8 having a reticulated structure by discharge force to be dispersed and further formed into fine particles to be guided to a burner 10 along with the fuel and the auxiliary fuel gas as mist 9 having a unified particle size, and burnt and decomposed to form the atomic vapor of a metal element while light with a specific wavelength passing through the formed flame is absorbed. Large particles removed by a decomposition device 8 are discharged from a discharge port 11 as a waste solution. The gap between the decomposition device 8 and the sprayer 3 can be adjusted by a gap adjusting mechanism 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、フレーム原子吸光分析用試料噴霧装置に係シ
、噴霧器で粒子の大きさが不均一な状態の霧となって燃
料および補助燃料ガスとの混曾呈内に放出された試料溶
液を網目博造金有する分散器に吹き付けてそして通過さ
せることによって、さらに霧の微粒子化が行なえるとと
もに霧の太きさも均一化することができる。したがって
、フレーム中に到達する試料溶液の量が4別するととも
に、クレーム中に到達する霧が細いほど熱分解が容易と
なる。これらのことから、網目構造を有する分散器はフ
レーム中で生成される原子蒸気の密度上筒くすることが
できる。符にこれは高感L7レーム原子吸光分析の場曾
に好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sample atomization device for flame atomic absorption spectrometry. By spraying the sample solution released into the mixture with the sample solution and passing it through a disperser having a mesh mesh, it is possible to further atomize the mist and make the thickness of the mist uniform. Therefore, the amount of sample solution that reaches the flame is divided into four categories, and the thinner the mist that reaches the flame, the easier the thermal decomposition becomes. For these reasons, a disperser having a network structure can increase the density of the atomic vapor generated in the flame. This is particularly suitable for highly sensitive L7 beam atomic absorption spectroscopy.

また、噴霧器と分散器との1d]隙を変えるだけの簡単
な操作によシ、原子吸収感度を任意に低下させることが
できるので、特に原子吸光分析法でのダイナミックレン
ジが狭いことに起因して、しばしば要求かで合る關a度
試料における原子吸収感度を低下させての測定の場合に
も好適なフレーム原子吸光分析用試料噴霧装置にIAす
る。
In addition, the atomic absorption sensitivity can be arbitrarily reduced by simply changing the 1d gap between the atomizer and the disperser, which is particularly useful for reducing the dynamic range of atomic absorption spectrometry. Therefore, a flame atomic absorption spectrometer sample spraying apparatus is used, which is suitable even for measurements with reduced atomic absorption sensitivity in samples with a high degree of sensitivity, which is often required.

〔発明の背景〕[Background of the invention]

フレーム原子吸光分光光度計における目的元素の原子化
法として、−i、試料溶液を噴霧器によって吸引させそ
して霧の状態にして燃料および補助燃料ガスとの混合室
へ放出し、それらのガスと一緒にバーナの7レーム中へ
導いて燃焼させて熱分解をして目的元素の原子蒸気を生
成させる方法が一般化させている。この原子化装置にお
ける原子吸収感度は、噴霧器から放出される試料溶液の
霧の状態、特に霧の粒子の大きさに最も大きく依存する
。放出された霧の粒子が大きくすぎると、燃料および補
助燃料ガスとの混合至内の壁面に付着したシ、フレーム
中への試料溶液の到達量が低下して試料効率が極めて悪
くなる。また、フレーム中では、粒子が大きすぎると熱
分解効率が低下するとともに、ノイズの増加を招く。こ
のため、噴霧器によって吸引そして放出さnた試料#液
の量の割には、7レーム中での原子蒸気の生成が低いの
で原子吸収感度および原子吸収感度とノイズの比すなわ
ちS/Nが極めて低下する。したがって、フレーム原子
吸光分光光度計において高い原子吸収感度を得るために
はけ、試料溶液をできるかぎり細かい粒子の状態の霧に
して7V−ム中へ導入する必要がある。
As a method for atomizing the target element in a flame atomic absorption spectrophotometer, -i, the sample solution is aspirated by an atomizer and released in a mist state into a mixing chamber with fuel and auxiliary fuel gases, The method of guiding the material into the flame of a burner and burning it to thermally decompose it and generate atomic vapor of the target element is becoming popular. The atomic absorption sensitivity in this atomization device depends most greatly on the state of the mist of the sample solution discharged from the nebulizer, especially on the size of the particles of the mist. If the emitted mist particles are too large, they will adhere to the inner wall surface before mixing with the fuel and auxiliary fuel gas, and the amount of sample solution reaching the flame will be reduced, resulting in extremely low sample efficiency. Furthermore, in the flame, if the particles are too large, the thermal decomposition efficiency will decrease and noise will increase. For this reason, the atomic absorption sensitivity and the ratio of atomic absorption sensitivity to noise, that is, S/N, are extremely low compared to the amount of sample liquid sucked and discharged by the atomizer, since the generation of atomic vapor in 7 frames is low. descend. Therefore, in order to obtain high atomic absorption sensitivity in a flame atomic absorption spectrophotometer, it is necessary to introduce the sample solution into the 7V-memory in the form of a mist of as fine particles as possible.

しかしながら、フレーム原子吸光分光光度計で一般的に
用いられている噴霧器によって放出される霧の状態は、
粒子の大きさが不均一でフレーム中への到達が容易であ
って、かつ熱分解効率も高く理想的であるとされている
2〜10ミクロン程度以下の極めて細かな粒子の霧は少
なく、その大半は測定に不適当な大きい粒子のため熱分
解効率と試料効率が悪匹。
However, the state of the mist emitted by the nebulizer commonly used in flame atomic absorption spectrophotometers is
There is very little mist of very fine particles of 2 to 10 microns or less, which is considered ideal because the particle size is non-uniform and it is easy to reach the flame, and the thermal decomposition efficiency is high. Most of them are large particles that are unsuitable for measurement, resulting in poor thermal decomposition efficiency and sample efficiency.

したがって、フレーム原子吸光分光光度計では、燃料お
よび補助燃料ガスとの混合室内において、噴霧器から放
出された試料溶液の霧の粒子をさらに微粒子化するとと
もに粒子の大きさを統一して7レーム中での熱分解効率
そして試料効率の向上を計り、よシ高い原子吸収感度を
得るための手段いわゆる分散器が研究され、さまざまな
方法の分散器が実施されてきている。
Therefore, in the flame atomic absorption spectrophotometer, the sample solution mist particles emitted from the atomizer are further atomized in the mixing chamber with the fuel and auxiliary fuel gas, and the particle sizes are unified to form a 7-rem mixture. In order to improve the thermal decomposition efficiency and sample efficiency, and to obtain higher atomic absorption sensitivity, so-called dispersers have been studied, and various methods of dispersers have been implemented.

これらの分散器は、球状のものや船舶のスクリューに類
似した形状のものなど各種さまざまな構造を有している
。しかし、いずれの場合も噴霧器から放出される霧の状
態の試料溶液を吹き付ける部分の構造は面である。吹き
付けられる勢いによって起る共振などによシ霧を分散さ
せ微粒子化を行なう方法である。したがって、微粒子化
された一゛ 試料溶液の霧は、分散器の周囲を迂回して
フレーム中に導入される。これら従来の分散器を用いた
場合の原子吸収感度は、それを用いないで測定した場合
における原子吸収感度に比較して2倍程度向上するとと
もにノイズが軽減するのでS/Nの向上を計ることがで
きるっこれは、分散器の設置が霧の状態を微粒子化させ
フレーム中での試料の熱分解を容易にして原子蒸気の生
成を向上させるのに有効であることに起因している。
These dispersers have a variety of structures, including spherical ones and ones with a shape similar to a ship's propeller. However, in either case, the structure of the portion onto which the sample solution in the form of mist emitted from the atomizer is sprayed is a surface. This is a method of dispersing the mist through resonance caused by the force of the spray and turning it into fine particles. Thus, a mist of atomized sample solution is introduced into the frame, bypassing the disperser. The atomic absorption sensitivity when using these conventional dispersers is approximately twice as high as the atomic absorption sensitivity measured without it, and the noise is reduced, so it is important to improve the S/N. This is because the dispersion device is effective in atomizing the fog and facilitating the thermal decomposition of the sample in the flame to improve the production of atomic vapor.

しかし、霧の状態の試料溶液を面の構造部分に吹き付け
る勢いによって霧を分散させ微粒子化を行なう従来の分
散器の場合は、噴霧器によって吸引されそして霧の状態
として燃料および補助燃料ガスとの混合室内へ放出され
た試料溶液の量のなかでさらに微粒子化されてフレーム
中へ到達する量は、わずか5チ程度である。大半は廃液
として捨てられて測定には用いられない。
However, in the case of a conventional disperser that disperses the mist and atomizes it by spraying the sample solution in the form of a mist onto the structure of the surface, the mist is sucked by the atomizer and mixed with the fuel and auxiliary fuel gas in the form of a mist. Of the amount of sample solution released into the chamber, the amount that is further atomized and reaches the frame is only about 5. Most of it is discarded as waste liquid and is not used for measurements.

これらのことから、従来のフレーム原子吸光分析用試料
噴霧装置では、原子吸収感度を圧右する熱分解効率と試
料効率の二つの要因のうちで、試料効率が悪い欠点を有
している。
For these reasons, the conventional sample spraying apparatus for flame atomic absorption spectrometry has the disadvantage of poor sample efficiency, which is one of the two factors that dominate atomic absorption sensitivity, thermal decomposition efficiency and sample efficiency.

また噴霧器から放出される試料溶液の霧は、円錐状を形
成する。このため、噴霧器と分散器の間隙を大きくとる
と、分散器に吹き付けられる霧の面積が大きくなるとと
もに吹き付けられる勢いが減少する。面の構造部分に吹
き付ける勢いによって霧の微゛粒子化を行なっている従
来のフレーム原子吸光分析用試料噴霧装置の場合は、霧
の分散効率が高く微粒子化が最も多く行なえる噴霧器と
分散器の間隙位置は必然的に定まってしまう。このため
、固定方式が用いられている。噴霧器と分散器の間隙を
変えて原子吸収感度を低下させることは困難である。し
たがって、特に含まれている目的元素の濃度が高い試料
を測定するのに用いられる原子吸収感度を低下させられ
る機能として噴霧器の噴霧量を調整する方法が一般化さ
れている。
The sample solution mist emitted from the nebulizer also forms a cone shape. For this reason, if the gap between the sprayer and the disperser is made large, the area of the mist sprayed onto the disperser will increase and the force of the spray will decrease. In the case of conventional sample spray equipment for flame atomic absorption spectrometry, which uses the force of spraying the spray onto the structural parts of the surface to atomize the mist, it is necessary to use a sprayer and disperser that have high mist dispersion efficiency and can achieve the most atomization. The gap position is inevitably determined. For this reason, a fixed method is used. It is difficult to reduce the atomic absorption sensitivity by changing the gap between the atomizer and disperser. Therefore, a method of adjusting the amount of spray from a nebulizer has become common as a function of reducing the atomic absorption sensitivity used to measure a sample containing a particularly high concentration of a target element.

この原子吸収感度の低下機能の必要性は、原子吸光分光
光度計におけるダイナミックレンジが狭いことに起因す
るもので、比較的多く要求される。
This atomic absorption sensitivity reduction function is required due to the narrow dynamic range of atomic absorption spectrophotometers, and is required relatively frequently.

−しかし、フレーム原子吸光分光光度計で用いられ)に
よって起る減圧現象を応用して試料溶gを吸引しそして
噴霧するコンセントリック(同軸)方式である。この噴
霧器での噴霧量の調整法は、補助燃料ガスの流量を変え
試料溶液の吸引量を調整して行なう必要がある。
-However, it is a concentric method in which the sample solution is sucked in and sprayed by applying the reduced pressure phenomenon caused by a flame atomic absorption spectrophotometer (used in a flame atomic absorption spectrophotometer). To adjust the amount of spray with this sprayer, it is necessary to adjust the amount of sample solution sucked by changing the flow rate of the auxiliary fuel gas.

補助燃料ガスの流量が変化すると当然のことながらフレ
ームの燃焼状態も変動する。このため、原子吸収感度を
調整するたびに燃料ガスの流量も調整して、目的元素の
原子化に適合したフレームの燃焼状態に調整する必要が
ある欠点も有している。
Naturally, when the flow rate of the auxiliary fuel gas changes, the combustion state of the flame also changes. For this reason, it also has the disadvantage that it is necessary to adjust the flow rate of the fuel gas each time the atomic absorption sensitivity is adjusted to adjust the combustion state of the flame to be suitable for atomization of the target element.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、噴霧器によって吸引されそして霧の状
態となって放出される試料溶液を吹き付けて霧をさらに
微粒子とするだめの分散器として網目構造を有した分散
器を、燃料および補助燃料ガスとの混合室内に設置した
。霧の状態で放出さ料効率の向上とフレーム中での熱分
解効率の向上させてS/Nを高め、高感度のフレーム原
子吸光分析を可能とする。
An object of the present invention is to use a disperser having a mesh structure as a disperser for spraying the sample solution sucked by the atomizer and released in the form of mist to make the mist into finer particles. It was installed in a mixing room with It improves the efficiency of released materials in a fog state and the efficiency of thermal decomposition in a flame, increasing S/N and enabling highly sensitive flame atomic absorption spectrometry.

また、網目構造の分散器は霧を通過させるので、噴霧器
と分散器との間隙を変えることによシ、原子吸収感度を
比較的ゆるやかな傾斜で低下させることができる。した
がって、フレームの燃焼状態を変動させることなく任意
に原子吸収感度の低下が行ない得るフレーム原子吸光分
析用試料噴霧装置を提供するにある。
Furthermore, since the mesh-structured disperser allows the mist to pass through, the atomic absorption sensitivity can be lowered with a relatively gentle slope by changing the gap between the atomizer and the disperser. Therefore, it is an object of the present invention to provide a sample spraying device for flame atomic absorption analysis in which the atomic absorption sensitivity can be arbitrarily reduced without changing the combustion state of the flame.

〔発明の概要〕[Summary of the invention]

噴霧器から放出される霧の状態の試料溶液を、網目構造
の分散器に吹き付けて通過嘔せて測定すると次の現象が
起ることを実験によって確認した。
It was experimentally confirmed that the following phenomenon occurred when a sample solution in the form of mist discharged from a sprayer was sprayed through a mesh-structured disperser and measured.

a) 分散器を用いない場合に比較して原子吸収感度が
向上する。したがって、網目構造は霧の微粒子化は可能
である。
a) Atomic absorption sensitivity is improved compared to when no disperser is used. Therefore, the network structure allows the mist to become fine particles.

伐)原子吸収感度は網目の大きさに依存する。) Atomic absorption sensitivity depends on the mesh size.

(3)  原子吸収感度は噴霧器と分散器との間隙に依
存する。間隙によって原子吸収感度は比較的緩やかに変
動する。
(3) Atomic absorption sensitivity depends on the gap between the atomizer and disperser. Atomic absorption sensitivity varies relatively slowly depending on the gap.

(4)  ノイズが軽減する。(4) Noise is reduced.

(5)  試料効率が向上する。(5) Sample efficiency is improved.

これらのことから網目構造の分散器は、原子吸収感度と
S/Hの向上を計るそして原子吸収感度を変化させる際
の機構として有効であることが判る。
These results show that the network-structured disperser is effective as a mechanism for improving the atomic absorption sensitivity and S/H and for changing the atomic absorption sensitivity.

第1図は、網目の大きさと原子吸収感度の関係について
の一例を示したものである。約30000メツシユと細
かなステンレス鋼製の網を用いた。
FIG. 1 shows an example of the relationship between mesh size and atomic absorption sensitivity. A fine stainless steel net with approximately 30,000 meshes was used.

網目の大きさはこの網を重ねることによって調整したう
網の重ね枚数と原子吸収感度の関係Mlから、原子吸収
感度は網目の大きさに依存することが判る。約3000
0メツシユの網を2枚重ねた程度の網目の大きさのとき
が、霧の粒子の微粒子化が良く、霧の大きさも統一でき
るので試料効率と熱分解効率が高いので、高い原子吸収
感度を得ることができる。なおこの場合の試料効率は、
従来の霧の分散技術に比較して3〜5憾程度向上する。
The size of the mesh is adjusted by overlapping the meshes. From the relationship M1 between the number of overlapping meshes and the atomic absorption sensitivity, it can be seen that the atomic absorption sensitivity depends on the size of the mesh. Approximately 3000
When the mesh size is the same as that of two 0-mesh meshes stacked on top of each other, the mist particles are finely divided, and the size of the mist can be unified, resulting in high sample efficiency and thermal decomposition efficiency, resulting in high atomic absorption sensitivity. Obtainable. The sample efficiency in this case is
This is an improvement of 3 to 5 times compared to conventional fog dispersion technology.

網目を大きくとると、霧の粒子の微粒子化の能力が低下
し、霧の大きさを統一することができない。このため、
試料効率と熱分解効率が低下するので原子吸収感度はあ
まり向上しない。またノイズの軽減も少ない。
If the mesh is made too large, the ability to atomize the mist particles will decrease, making it impossible to standardize the size of the mist. For this reason,
Atomic absorption sensitivity does not improve much because sample efficiency and thermal decomposition efficiency decrease. There is also little reduction in noise.

網目を小さくとりすぎると、霧は微粒子化されるので、
熱分解効率が高くなりノイズは軽減する。
If the mesh is too small, the mist will become fine particles,
Thermal decomposition efficiency increases and noise is reduced.

しかし、網目を通過してフレーム中に到達する試料溶液
の量が少なくなシ、試料効率が低下するので原子吸収感
度はあまり向上しない。
However, if the amount of sample solution that passes through the mesh and reaches the frame is small, the sample efficiency decreases and the atomic absorption sensitivity does not improve much.

第2図は、噴霧器と網目構造の分散器との間隙と原子吸
収感度の関係についての一例を示したものである。網目
の大きさは約30000メツシユのステンレス鋼製の網
を2枚重ねたものでるる。
FIG. 2 shows an example of the relationship between the gap between the atomizer and the network-structured disperser and the atomic absorption sensitivity. The size of the mesh is approximately 30,000 meshes made of two overlapping stainless steel meshes.

間隙と原子吸収感度の関係線2から、原子吸収感度は間
隙に依存することが判る。網目構造のため霧の状態の試
料溶液は、従来の分散技術とは異なシ細かい網目を通過
することによってさらに微粒子化される。このため、噴
霧器から放出される霧の吹き付ける勢いには、従来の分
散技術に比較して微粒子化させる分散効率があまり依存
しない。
From the relationship line 2 between the gap and the atomic absorption sensitivity, it can be seen that the atomic absorption sensitivity depends on the gap. Due to the network structure, the sample solution in a mist state is further atomized by passing through a fine mesh, which is different from conventional dispersion techniques. Therefore, compared to conventional dispersion techniques, the dispersion efficiency for forming fine particles does not depend much on the force of spraying the mist emitted from the atomizer.

したがって、間隙によって分散効率は急激に変化しない
ので、原子吸収感度はゆるやかに変化する。
Therefore, since the dispersion efficiency does not change rapidly depending on the gap, the atomic absorption sensitivity changes gradually.

このことから、噴霧器と分散器との間隙を変えるだけの
簡単な操作によって、原子吸収感度を任意に低下させる
ことが可能であることが判る。
This shows that the atomic absorption sensitivity can be arbitrarily reduced by simply changing the gap between the atomizer and the disperser.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明の網目構造の分散器を用いたフレーム
原子吸光分析用試料噴霧装置の一実施例を示したもので
ある。
FIG. 3 shows an embodiment of a sample spraying device for flame atomic absorption spectrometry using the network-structured disperser of the present invention.

高流速で流れる補助燃料ガスによって起る減圧現象を応
用したコンセットリック方式の噴霧器3、ま、試料溶液
4をチューブ5を介して円錐状で粒子の大きさが不均一
な霧の状態6として燃料および補助燃料ガスとの混合室
7内に放出する。その霧は放出された勢いによって網目
構造の分散器8を通過することによって分散さn1粒子
がさらに微粒子となり、その大きさも統一した状態の霧
9となってバーナ10へ燃料および補助燃料ガスと一緒
に導かれて燃廃分解して金属元戎の原子蒸気を生成する
。そしてフレーム中を通過している特定波長の光を吸収
する。分散器8で除去された大きな粒子は廃液として排
出口11から捨てられる。
A concetric type atomizer 3 that applies the depressurization phenomenon caused by auxiliary fuel gas flowing at a high flow rate, and a sample solution 4 is passed through a tube 5 into a cone-shaped mist state 6 with non-uniform particle sizes. into a mixing chamber 7 with fuel and auxiliary fuel gas. The mist is dispersed by passing through the network-structured disperser 8 due to the force of the discharge, and the n1 particles become even finer particles, becoming the mist 9 with a uniform size and being sent to the burner 10 together with the fuel and auxiliary fuel gas. The fuel is decomposed and the atomic vapor of the metal is produced. It then absorbs light of a specific wavelength that passes through the frame. The large particles removed by the disperser 8 are discarded as waste liquid through the outlet 11.

なお分散器8は、噴霧器3との間隙を間隙調整機構12
によって任意に変化させることができる。
Note that the gap between the disperser 8 and the sprayer 3 is adjusted by a gap adjustment mechanism 12.
It can be changed arbitrarily by

第4図は、本発明の網目(約30000メツシユのステ
ンレス鋼製の網を2枚重ねた)構造で霧を通過させるこ
とによって微粒子化を行なう分散器を備えた試料噴霧装
置の場合、従来の技術である球状に勢いよく吹き付けて
分散させて微粒子化を行なう分散器を備えた試料噴霧装
置の場合そして分散器を用いない試料噴霧装置の場合の
原子吸収スペクトルを比較した一例を示したものである
Figure 4 shows that in the case of a sample spraying device equipped with a disperser that atomizes the mist by passing it through the mesh structure of the present invention (two stainless steel meshes of about 30,000 meshes), it is different from the conventional one. This is an example of a comparison of the atomic absorption spectra of a sample spraying device equipped with a disperser that sprays forcefully into a spherical shape to disperse particles into fine particles, and a sample spraying device that does not use a disperser. be.

分散器を用いてない試料噴霧装置での原子吸収スペクト
ル13は、大きな粒子の霧の状態で放出されるのでフレ
ーム中への試料溶液の到達量が極めて少ないのと、霧が
微粒子化されていないのでフレーム中での熱分解効率が
低い九めに、原子吸収感度は最も低い。またノイズも大
きい。
Atomic absorption spectrum 13 from a sample spraying device that does not use a disperser shows that the sample solution is emitted in the form of a mist of large particles, so the amount of sample solution reaching the flame is extremely small, and the mist is not atomized. Therefore, the thermal decomposition efficiency in the flame is low, and the atomic absorption sensitivity is the lowest. There is also a lot of noise.

従来の分散技術である球状の分散器を備えた試料噴霧装
置での原子吸収スペクトル14は、霧の状態を微粒子化
してフレーム中での試料の熱分解を容易にするため、分
散器を用いてない場合の原子吸収スペクトル13に比較
して原子吸収感度が2倍程度向上するとともにノイズも
軽減する。
Atomic absorption spectra 14 using a sample atomizer equipped with a spherical disperser, which is a conventional dispersion technique, are as follows: Compared to the atomic absorption spectrum 13 without this, the atomic absorption sensitivity is improved by about twice and noise is also reduced.

本発明である網目構造の分散器を備えた試料噴霧装置で
の原子吸収スペクトル15は、従来技術の分散器に比較
して試料効率を3〜5チ程度向上できるので原子吸収感
度はさらに1.5倍程度向上する。
The atomic absorption spectrum 15 of the sample spraying device equipped with the network-structured disperser according to the present invention can improve the sample efficiency by about 3 to 5 degrees compared to the conventional disperser, so the atomic absorption sensitivity can be further increased by 1.5 cm. Improved by about 5 times.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フレーム原子吸光分光光度計において
噴霧器によって燃料および補助燃料ガスとの混合室へ霧
の状態で放出された試料溶液の粒子をさらに微粒子化す
ることができるとともに粒子の大きさを均一化してフレ
ーム中へ導入できる。
According to the present invention, in a flame atomic absorption spectrophotometer, it is possible to further atomize particles of a sample solution released in a mist state by an atomizer into a mixing chamber with fuel and auxiliary fuel gas, and to reduce the size of the particles. It can be homogenized and introduced into the frame.

したがって、試料効率とフレーム中での熱分解効率が向
上するので高いS/Nが得られるので高感度フレーム原
子吸光分析を行ない得るのに効果がある。
Therefore, sample efficiency and thermal decomposition efficiency in the flame are improved, and a high S/N ratio can be obtained, which is effective in performing high-sensitivity flame atomic absorption spectrometry.

また、噴霧器と分散器との間隙を変えて原子吸収感度を
任意に下げることができるので、高濃度試料の測定にお
いても効果がある。
Furthermore, since the atomic absorption sensitivity can be lowered arbitrarily by changing the gap between the atomizer and the disperser, it is also effective in measuring high concentration samples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による分散器における網目の大きさと原
子吸収感度の関係の一例を示す関係図、第2図は本発明
の分散器と噴霧器との間隙と原子吸収感度の関係の一例
を示す関係図、第3図は本発明の一実施例を示す機構図
、第4図は実施例での効果を説明するスペクトル図であ
る。 1・・・網の重ね枚数と原子吸収感度の関係線、2・・
・噴霧器と分散器との間隙と原子吸収感度の関係線、3
・・・コンセントリック式噴霧器、4・・・試料溶液、
5・・・試料溶液の吸引用チューブ、6・・・噴霧器か
ら放出された粒子の不均一な試料溶液の霧、7・・・霧
状の試料溶液と燃料ガスそして補助燃料ガスの混合室、
8・・・網目構造の分散器、9・・・分散器によって微
粒子化と粒子の大きさが統一され、フレームに導入する
試料溶液の霧、lO・・・バーナ、11・・・廃液の排
出口、12・・・分散器の位置、SI4I4溝機構3・
・・分散器を用いない試料噴霧装置での原子吸収スペク
トル、14・・・従来技術の分散器を備えた試料噴霧装
置での原子吸収スペクトル、15・・・本発明の分散器
をIllえた試料噴霧装置での原子吸収スペクトル。
FIG. 1 is a relationship diagram showing an example of the relationship between the mesh size and atomic absorption sensitivity in the disperser of the present invention, and FIG. 2 is a relationship diagram showing an example of the relationship between the gap between the disperser and the atomizer of the present invention and atomic absorption sensitivity. FIG. 3 is a mechanical diagram showing an embodiment of the present invention, and FIG. 4 is a spectrum diagram explaining the effects of the embodiment. 1... Relationship line between the number of overlapping meshes and atomic absorption sensitivity, 2...
・Relationship line between the gap between the atomizer and the disperser and the atomic absorption sensitivity, 3
... Concentric sprayer, 4... Sample solution,
5... Sample solution suction tube, 6... Non-uniform sample solution mist of particles emitted from the atomizer, 7... Mixing chamber for atomized sample solution, fuel gas, and auxiliary fuel gas.
8...Mesh-structured disperser, 9...Atomization and particle size are unified by the disperser, mist of the sample solution introduced into the flame, lO...burner, 11...Drainage of waste liquid Outlet, 12... Distributor position, SI4I4 groove mechanism 3.
...Atomic absorption spectrum in a sample atomizer without a disperser, 14...Atomic absorption spectrum in a sample atomizer equipped with a conventional disperser, 15...Sample using the disperser of the present invention Atomic absorption spectrum in a spray device.

Claims (1)

【特許請求の範囲】[Claims] 1、試料溶液を霧の状態とし、燃料および補助燃料ガス
と混合して一緒にバーナのフレーム中に導き燃焼分解さ
せ、そのフレーム中で生成する金属元素の原子蒸気が特
定波長の光だけを吸収して減光させる性質を応用して、
試料溶液中に含まれる金属元素の濃度を知るフレーム原
子吸光分光光度計において、試料と燃料および補助燃料
ガスとの混合室内に設置した金網等で作製された網目構
造を有する分散器に、噴霧器によつて吸引され霧の状態
となつて放出される試料溶液を吹き付けて、網目を通過
させることによつてさらに微粒子化するとともに霧の大
きさを統一することができることと、噴霧器と分散器と
の間隙を任意に変化させることができることを特徴とす
るフレーム原子吸光分析用試料噴霧装置。
1. The sample solution is made into a mist, mixed with fuel and auxiliary fuel gas, and introduced together into the burner flame to be burned and decomposed, and the atomic vapor of the metal element generated in the flame absorbs only light of a specific wavelength. Applying the property of reducing light by
In a flame atomic absorption spectrophotometer that determines the concentration of metal elements contained in a sample solution, a disperser with a mesh structure made of wire mesh, etc. installed in the mixing chamber of the sample, fuel, and auxiliary fuel gas is used to measure the concentration of metal elements contained in a sample solution. The sample solution that is sucked in and discharged in the form of a mist is sprayed and passed through a mesh to further atomize the particles and unify the size of the mist, and the use of a sprayer and a disperser. A sample spraying device for flame atomic absorption analysis, characterized in that the gap can be changed arbitrarily.
JP6071085A 1985-03-27 1985-03-27 Specimen spray apparatus for flame atom absorption analysis Pending JPS61219851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6071085A JPS61219851A (en) 1985-03-27 1985-03-27 Specimen spray apparatus for flame atom absorption analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6071085A JPS61219851A (en) 1985-03-27 1985-03-27 Specimen spray apparatus for flame atom absorption analysis

Publications (1)

Publication Number Publication Date
JPS61219851A true JPS61219851A (en) 1986-09-30

Family

ID=13150113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6071085A Pending JPS61219851A (en) 1985-03-27 1985-03-27 Specimen spray apparatus for flame atom absorption analysis

Country Status (1)

Country Link
JP (1) JPS61219851A (en)

Similar Documents

Publication Publication Date Title
US5969352A (en) Spray chamber with dryer
DE69806504T2 (en) METHOD FOR PRODUCING HOLLOW DROPLES
Todoli et al. Acid effects in inductively coupled plasma atomic emission spectrometry with different nebulizers operated at very low sample consumption rates
US8003069B2 (en) Carbon black, method for the production of carbon black or other flame aerosols, and device for carrying out said method
CA2276018C (en) Spray chamber with dryer
JPH02157036A (en) Method for producing monodispersed aerosol and apparatus thereof
CA2160095A1 (en) Internal mix air atomizing spray nozzle
US5175433A (en) Monodisperse aerosol generator for use with infrared spectrometry
US3516771A (en) Burner for spectroscopic use
US3525476A (en) Fluid diffuser with fluid pressure discharge means and atomizing of material in holder
JPS61219851A (en) Specimen spray apparatus for flame atom absorption analysis
US3866831A (en) Pulsed ultrasonic nebulization system and method for flame spectroscopy
US3469789A (en) Sample introducing device for spectro-chemical analysis
JPS62129743A (en) Sample atomizer for flame atomic absorption analysis
JP2002131226A (en) Atomic absorption spectrophotometer
FI68914B (en) ANALYSIS OF THE PROVISION OF AN ANALYZER
JPS6073437A (en) Apparatus for atomizing sample for spectrochemical analysis
JPH11173979A (en) Atomic absorption spectrophotometer
JP2004347507A (en) Flame atomic absorption spectrophotometer
Mikuška Generator of fine polydisperse aerosol
JPH07151675A (en) Atomic absorption spectrophotometer
JPS59137845A (en) Combustion apparatus for atomic absorption analysis
SU968713A1 (en) Device for atomizing specimen in diffusion flame
Aduroja et al. Analysis of chemical aerosol generation and characterization using various liquid aerosol generators
Akbarnozari et al. Effervescent Suspension Spray in a Gaseous Crossflow