JPS62129743A - Sample atomizer for flame atomic absorption analysis - Google Patents

Sample atomizer for flame atomic absorption analysis

Info

Publication number
JPS62129743A
JPS62129743A JP26926385A JP26926385A JPS62129743A JP S62129743 A JPS62129743 A JP S62129743A JP 26926385 A JP26926385 A JP 26926385A JP 26926385 A JP26926385 A JP 26926385A JP S62129743 A JPS62129743 A JP S62129743A
Authority
JP
Japan
Prior art keywords
sample
disperser
atomic absorption
mist
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26926385A
Other languages
Japanese (ja)
Inventor
Hideo Yamada
英雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26926385A priority Critical patent/JPS62129743A/en
Publication of JPS62129743A publication Critical patent/JPS62129743A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable direct analysis of a highly dense sample, by providing a disperser which finely granulates a sample solution released in a mist from a nozzle of an atomizer to change the gap between the nozzle and the disperser as desired by a gap changing means. CONSTITUTION:Applying a depression phenomena caused by an auxiliary fuel gas running in a high-speed flow, an atomizer 1 turns a liquid sample 2 in a conical mist 4 with uneven particle size through a tube 3 and releases it into a mixing chamber 5 of a fuel and the auxiliary fuel gas. The misty sample 2 is blown against a spherical disperser 6 as strongly as released, dispersed into fine particles by a phenomenon such as resonance caused there and is introduced into a flame 9 of a burner 8 in the form of a mist 7 in a uniform size. As subjected to a thermal decomposition or the like, the misty sample 7 thus introduced into the flame 9 renders metal elements contained in an atomic vapor and to measure the absorption of light with the wavelength intrinsic to the metal passing through the flame 9. A nozzle section of the atomizer 1 and the disperser 6 are regulated with a gap regulating mechanism 10, thereby making the amount of the sample to be introduced variable.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はフレーム原子吸光分析用試料噴霧装置に係り、
特に原子吸光分析法での検+に線のダイナミックレンジ
が狭いことに起因する高濃度試料の分析不可能の場合に
原子吸収感度を低減して分析可能とするのに好適なフレ
ーム原子吸光分析用試料噴霧装置に関するものである。 〔発明の背景〕 フレーム原子吸光分光光度計における金属元素の原子化
法としては、Instrumentati、onl、a
boratory Tnc January 1980
129559のp3−16の「前置混合およびバーナシ
ステムJ(The PrCm1xand nurner
 Systems)に示しであるように、試料溶液を噴
霧器によって吸引させて霧状とし、燃料および補助燃料
ガスとの混器室内へ放出し、それらのガスと一緒にフレ
ー11の中へ導入して熱分解させて金属塩類をJ原子状
の蒸気とする方法が一般化されている。この方法を用い
た原子化装置における原子吸収感度と原子吸収信号のノ
イズは、噴霧器から放出される試料重器の霧のにの状態
、特に霧の粒子の大きさに最も大きく依存する。噴霧器
から放出される霧の粒子が大きい場合は、フレlz巾で
の熱分解効率が低下して原子吸収感度が低下するととも
にノイズの増加を招く。このため、高感度化の傾向にあ
る呪在のフレーム原子吸光分光光度計では、より高い、
原子吸収感度とノイズの比、すなわち、S/Nを得るた
めに熱分解効率が高く、ノイズの発生も少ない理想的な
霧の大きさである2〜10ミクロン程度以下の極めて細
かな粒子を得る方法を用いている。 この露の微粒子化の方法としては分散器を用いろ。すな
わち、噴霧器から放出される霧状の試料溶液を分散器に
吹き付ける。吹き付ける勢いによって起る共振現象など
によって、霧は微粒子化されてフレーt1の中に導入さ
れるようになる。 最近の原子吸光分光光度計の場合は、高感度分析ばかり
でなく、簡憤な操作で精度の高い金属元素の分析ができ
ることから、高濃度試料分析の要求も少なくない。しか
し、原子吸光分析法の場合の検量線は、ダイナミックレ
ンジが他の金属元素の分析法に比較して狭い欠点を有し
ている。このため、高濃度域での検量線は、S変軸方向
に湾曲して濃度を変化させても吸光度が一定となり5、
層頂の差を知ることは不可能な状態となる。したがって
、原子吸光分析法で高#度域を分析する場合の様々な方
法が研究され、実施されてきている。 その方法としてフレーム原子吸光分光光度計の場合は、
試料溶液を吸引し霧の状Jふとして燃料および補助燃料
ガスとの混合室内へ放出する噴霧器の吸引量を少なくし
て原子吸収感度の低下を図るものが一般化されている。 原子吸光分光光度Jトで用いている噴霧器は、空気等の
補助燃料ガスを高流速で流すことによって起こる減圧現
象を応用して試料溶液を吸引し、そして噴霧するコンセ
ントリック(同11i111)方式のものである。この
方式の噴霧器は、吸引(噴霧)tを調整するのに補助燃
料ガスの流量を変えて行う。このため、試料溶液の吸引
(噴m)旦を変化すると補助燃料ガスの流量も変化する
。補助燃料ガスの流量が変わると当然のことながらフレ
ームの燃料状m(燃料ガスと補助燃料ガスの流量比)も
変動する。フレーム原子吸光分析法の場合は、目的元素
の原子蒸気化や共存物による干渉の程度がフレームの状
態に大きく依存する。このため、目的元素そして試料溶
液の状態によって最適なフレームの燃焼状態がある。し
たがって、原子吸収感度を調整するたびに燃料ガスにつ
いても流量を:gM整して、分析に適合したフレー11
の燃焼状態に再調整する必要があった。このように分析
操作性については配慮されていなかった。 また、前述のように原子吸収感度とノイズの比、すなわ
ち、S/Nは、フレーム中に導入される試料溶液の露状
の大きさにも依存する。高いS/Nを得ることができる
2〜10ミクロン程度以下の極めて細かな粒子の霧とす
るために、噴霧器から放出される霧状の試料溶液を球状
等の面構造部分に吹き付けて共振等の現象を起こさせる
分散器を取り付けて原子吸収感度の低下を図る方法もあ
る。 しかし、この方法は、フレー11中での霧状の試料溶液
の熱分解効率が低いため、ノイズが著しく増大する。し
たがって9分析精度について配慮されてないとみること
ができる。さらに、霧状の試料溶液と燃料および補助燃
料ガスとの混合室内に設置しである分散器を分析の都度
脱着することは、分析操作性を悪くする。 〔発明の目的〕 本発明は上記に鑑みてなされたもので、その[)的とす
るところは、ノイズの増大およびフレー11の燃焼状態
の変動を招くことなく原子吸収感度を任意に調整して検
量線のダイナミックレンジを拡張することができるフレ
ーム原子吸光分析用試料噴霧装置を提供することにある
。 〔発明の概要〕 本発明は、噴霧器から放出される霧状の試料溶液を球状
の構造を有する分散器に吹き付ける方法を用いた試料噴
1#装欝にて種々の実験を行った結果、噴霧器と分散器
との間には次の現象が生ずることを確認し、 (1)分散器を用いないと、原子吸収感度は金属元素に
よって多少の差があるものの、約し/2に低下する。し
たがって、検量線のダイナミックレンジを約2倍に拡張
することができる。 (2)分散器を用いないと、金属元素によって差はある
が、ノイズの大きさが少なくとも2倍以上に増大する。 したがって、分析精度の低下を招く危険がある。 (3) 霧状の試料溶液と燃料および補助燃料ガスとの
混合室内に設置しである分散器を分析の都度。 濃度戦によって脱着することは、分析操作性を著しく低
下させる。
[Field of Application of the Invention] The present invention relates to a sample spraying device for flame atomic absorption analysis,
Flame atomic absorption spectrometry suitable for reducing atomic absorption sensitivity and making analysis possible, especially when high concentration samples cannot be analyzed due to the narrow dynamic range of the + line in atomic absorption spectrometry. This invention relates to a sample spraying device. [Background of the Invention] As a method for atomizing metal elements in a flame atomic absorption spectrophotometer, Instrumentati, onl, a
boratory Tnc January 1980
129559 p3-16 “Pre-mixing and burner system J”
The sample solution is drawn into the atomized form by an atomizer, discharged into a mixing chamber with fuel and auxiliary fuel gas, and introduced into the flare 11 together with those gases to generate heat. A commonly used method is to decompose metal salts into J-atomic vapor. The atomic absorption sensitivity and the noise of the atomic absorption signal in an atomization apparatus using this method depend most greatly on the state of the mist of the sample heavy equipment emitted from the atomizer, especially on the size of the particles of the mist. If the mist particles emitted from the atomizer are large, the thermal decomposition efficiency over the full width will decrease, resulting in a decrease in atomic absorption sensitivity and an increase in noise. For this reason, flame atomic absorption spectrophotometers, which are trending toward higher sensitivity, have higher
In order to obtain the ratio of atomic absorption sensitivity to noise, that is, S/N, we obtain extremely fine particles of 2 to 10 microns or less, which is the ideal fog size that has high thermal decomposition efficiency and generates little noise. method is used. Use a disperser to make this dew into fine particles. That is, the atomized sample solution discharged from the atomizer is sprayed onto the disperser. Due to the resonance phenomenon caused by the force of the spray, the mist is atomized and introduced into the flake t1. Recent atomic absorption spectrophotometers are capable of not only high-sensitivity analysis but also highly accurate analysis of metal elements with simple operations, so there is a considerable demand for high-concentration sample analysis. However, the calibration curve for atomic absorption spectrometry has the disadvantage that the dynamic range is narrower than that for other metal element analysis methods. Therefore, the calibration curve in the high concentration range is curved in the direction of the S axis, and the absorbance remains constant even when the concentration changes5.
It becomes impossible to know the difference between the layer tops. Therefore, various methods have been studied and implemented for analyzing high-intensity regions using atomic absorption spectrometry. In the case of flame atomic absorption spectrophotometer as a method,
It has become common to use an atomizer that sucks in a sample solution and releases it in the form of a mist into a mixing chamber with fuel and auxiliary fuel gas to reduce the suction amount to reduce the atomic absorption sensitivity. The atomizer used in Atomic Absorption Spectroscopy J is a concentric (11i111) method that applies the depressurization phenomenon caused by flowing auxiliary fuel gas such as air at a high flow rate to suck the sample solution and spray it. It is something. This type of sprayer adjusts the suction (spray) t by changing the flow rate of the auxiliary fuel gas. Therefore, when the suction (injection) rate of the sample solution changes, the flow rate of the auxiliary fuel gas also changes. Naturally, when the flow rate of the auxiliary fuel gas changes, the fuel level m (flow rate ratio of the fuel gas and auxiliary fuel gas) of the frame also changes. In the case of flame atomic absorption spectrometry, the degree of atomic vaporization of the target element and interference by coexisting substances largely depends on the state of the flame. Therefore, there is an optimal flame combustion state depending on the target element and the state of the sample solution. Therefore, each time the atomic absorption sensitivity is adjusted, the flow rate of the fuel gas is also adjusted to
It was necessary to readjust the combustion conditions. In this way, no consideration was given to analytical operability. Further, as described above, the ratio of atomic absorption sensitivity to noise, that is, the S/N, also depends on the size of the dew of the sample solution introduced into the frame. In order to obtain a mist of extremely fine particles of approximately 2 to 10 microns or less that can obtain a high S/N, the atomized sample solution discharged from the atomizer is sprayed onto a surface structure such as a sphere to avoid resonance, etc. There is also a method of lowering the atomic absorption sensitivity by installing a disperser that causes this phenomenon. However, in this method, the thermal decomposition efficiency of the atomized sample solution in the flake 11 is low, resulting in a significant increase in noise. Therefore, it can be seen that no consideration was given to the accuracy of 9 analysis. Furthermore, removing the disperser installed in the mixing chamber of the atomized sample solution, fuel, and auxiliary fuel gas each time an analysis is performed impairs analysis operability. [Object of the Invention] The present invention has been made in view of the above, and its [) purpose is to arbitrarily adjust the atomic absorption sensitivity without increasing noise or changing the combustion state of the flame 11. An object of the present invention is to provide a sample spraying device for flame atomic absorption spectrometry that can expand the dynamic range of a calibration curve. [Summary of the Invention] The present invention is based on the results of various experiments conducted using a sample spray 1# sample solution using a method of spraying a mist sample solution emitted from a sprayer onto a disperser having a spherical structure. It was confirmed that the following phenomenon occurs between the metal element and the disperser: (1) If the disperser is not used, the atomic absorption sensitivity will decrease to about 2/2, although there are some differences depending on the metal element. Therefore, the dynamic range of the calibration curve can be expanded approximately twice. (2) If a disperser is not used, the noise level will increase by at least twice, although there are differences depending on the metal element. Therefore, there is a risk that analysis accuracy will decrease. (3) A disperser is installed in the mixing chamber of the atomized sample solution, fuel, and auxiliary fuel gas for each analysis. Desorption due to concentration warfare significantly reduces analytical operability.

【4)補助燃料ガスの流量を変えて噴霧器の試料溶液の
吸引(噴霧)量を低下すると、原子吸収感度が低下する
。したがって、検量線のダイナミックレンジを拡張する
ことができる。 (5)補助燃料ガスの流量を変えて噴霧器の試料溶液の
吸引(噴霧)量を増大させると、原子吸収感度が低下す
るので、検量線のダイナミックレンジの拡張をはかるこ
とができる。しかし、この場合、ノイズが著しく増大す
るため1分析端度の低下を招く危険がある。 (6)補助燃料ガスの流量を変えて噴霧器の試料溶液の
吸引(噴m> 3kを変動させると、フレー11の燃焼
状態の変動を招く。lI的元素の原子蒸気化や共存物に
よる干渉の程度は、フレームの燃焼状態に大きく依存す
るため、最適なフレー11の燃焼状態がある。したがっ
て、フレームの燃焼状態が変動することは分析精度の低
下を招く危険がある。試料溶液の吸引(噴WI)量を調
整するたびに燃料ガスの流量についても変えて分析に適
合したフレームの燃焼状態に調整する必要があることは
分析操作性を低下させる。 (7)原子吸収感度は、噴霧器のノズル部と分散器との
間隙にも依存する。間隙によって2〜3倍の範囲で原子
吸収感度は比較的ゆるやかに変動する。したがって、検
量線のダイナミックレンジを2〜3倍拡張することがで
きる。 (8)噴霧器のノズル部と分散器との間隙によるノイズ
の大きさは不変である。したがって1分析端度が低下す
ることはない。 (9)噴霧器のノズル部と分散器との間隙によるフレー
ムの燃焼状態は不変である。したがって。 分析精度および分析操作性を低下させることばない。 (10)噴霧器のノズル部と分散器との間隙を変えるだ
けで簡単な操作で、原子吸収感度を任意に調整できる。 これらのことから、試料溶液を吸引して霧状として放出
する噴霧器のノズル部と、その霧を吹き付けることによ
って起こる共振等の現象で霧をさらに微粒子化してフレ
ーム中での試料の熱分析効率を高めるとともに、ノイズ
の発生を抑制する分散器との間隙を任意に変えることの
できる機構を有したフレーム原子吸光分析用試料噴霧装
置は、原子吸収感度を変化させる必要のある場合、たと
えば検′+IC線のダイナミックレンジが狭いことに起
因してしばしば要求の出る高濃度試料の直接分析におい
て、原子吸収感度を低下させることによってダイナミッ
クレンジを拡張して分析可能とするのに有効であること
がわかり、第3図は、噴霧器のノズル部と球状の分散器
との間隙と原子吸収感度との関係の一例を示す線図で、
噴霧器と分散器との間隙と原子吸収感度(吸光度)との
関係線Cから原子吸収感度は間隙に依存することがわか
り、間隙が小さくなるほど原子吸収感が低下し1間隙が
大きくなると原子吸収感度が高くなり、ある間隙からは
一定の最高感度となることに着目してなされたもので、
試料溶液を吸引し霧状として放出する噴霧器と、この噴
rS器のノズル部から放出される霧状の上記試料溶液を
吹き付けて霧をさらに微粒化するとともにその大きさを
統一する分散器とをjiffえ、上記噴霧器のノズル部
と上記分散器との間隙を任意に変化させることによって
原子吸収感度を調整可能とする間隙変化手段を具備する
構成としたことを特徴としている。 〔発明の実施例〕 以下本発明を第1図に示した実施例および第2図を用い
て詳細に説明する。 第1図は本発明のフレ−11原子吸光分析用試料噴射装
置の一実施例を示す構成図で、液体試料を吸引して霧状
で放出する噴霧器のノズル部と、その霧をさらに微粒子
化してフレーl\中での試料の熱分解効率を高めるため
の分散器との間隙を任意に変えることができるようにし
てあり、噴霧器はコンセントリック(同軸)方式のもの
を、そして分散器は球状のものを示しである。 高速流で流れる補助燃料ガスによって起る減圧現象を応
用した噴霧器1は、液体試料2をチューブ3を介して円
錐状で粒子の大きさが不均一な霧の状fi4にして燃料
および補助燃料ガスとの混合室5内に放出する。その霧
状の試料2は放出される勢いによって球状構造の分散器
6に吹き付けられて、そこで起る共振等の現象により分
散されて微粒子となり、大きさも統一した状態の霧7と
なる。そして燃料および補助燃料ガスと一緒にバーナ8
のフレーム9中へ導かれる。フレーtz 9に導入され
た霧状の試料7は熱分解等を受け、含まれる金属元素が
原子状の蒸気となる。そこで、フレーム9中を通過して
いる金属固有の波長の光の吸収敏を測定する。 噴霧器】の霧を放出するノズル部と分散器6との間隙は
間隙調整機構10によって0.5〜1.Onwnの間で
任意に調整できるようにしである。フレーL 9へ導入
される霧状の試料の量は、噴霧器1のノズル部と分散器
6の間隙によって変化するため、))*子吸収感度を変
えることが可能である。間vXを狭くとるとフレー1.
9へ導入される霧の敏は軽減するので、原子吸収感度が
低下する。間隙を広くとるとフレーム9へ導入される霧
の駄が多くなるので、原子吸収感度が向上する。なお1
分散器6で除去された粒子の大きな霧等のフレーム9へ
導入されない試料は廃液として廃液排出口11から捨て
られる。 第2図は噴霧器1のノズル部と分散器6との間隙がII
nと51mの場合の検量線の状態を比較した一例につい
て示した線図である。間隙が5mの場合の検量線aは高
感度であるため高濃度域での濃度軸方向への湾曲の程度
が大きい。したがって、50ppm以上の濃度域で濃度
が変化してもKll!定される吸光度は一定値となり、
濃度の差を知ることは不可能である。間隙を1rrnと
した場合の検量線すの場合は、原子吸収感度が1/2〜
1/3に低下する。このため、検量線すが濃度軸方向へ
湾曲する状態が、間隙5■の場合の検+ItHcaと異
なる。 間隙F5nw++での検量線aの場合は、50ppm以
上の濃度の41g定は不可能であるのに対して、間隙1
mでの検量線すの場合には120ppnaまでの吸光度
に差が生ずるので濃度を知ることが可能となる。 すなわち、検量線のダイナミックレンジが2〜3倍拡大
されたことになる。 本実施例によれば、噴霧器1と分散器6との間隙を06
5 I〜10+nmの範囲内で調整するだけの簡単な操
作によって、フレームの燃焼状態を変えずに、しかも、
分析精度を低下させることなく2〜3倍の範囲内で原子
吸収感度を任意に変化させろことができるとともに、検
量線のダイナミックレンジを2〜3倍拡張する必要があ
る場合に効果がある。 〔発明の効果〕 以上説明したように、本発明によれば、ノイズの増大お
よびフレームの燃焼状態の変動を招くことなく原子吸収
感度を任意に調整して検量線のダイナミックレンジを2
〜3倍に拡張でき、試料8液を希釈して濃度を低下させ
ることなく2〜3倍の高濃度試料の直接分析ができると
いう効果がある。
[4] If the flow rate of the auxiliary fuel gas is changed to reduce the amount of sample solution sucked (sprayed) by the atomizer, the atomic absorption sensitivity will decrease. Therefore, the dynamic range of the calibration curve can be expanded. (5) If the flow rate of the auxiliary fuel gas is changed to increase the amount of sample solution sucked (sprayed) by the nebulizer, the atomic absorption sensitivity will decrease, so the dynamic range of the calibration curve can be expanded. However, in this case, there is a risk that the accuracy of one analysis will decrease because the noise increases significantly. (6) Varying the flow rate of the auxiliary fuel gas to suck the sample solution into the atomizer (spray m > 3k) will cause fluctuations in the combustion state of the flare 11. Atomic vaporization of lI elements and interference by coexisting substances will occur. Since the degree of combustion greatly depends on the combustion state of the flame, there is an optimal combustion state of the flame 11. Therefore, fluctuations in the combustion state of the flame pose a risk of reducing analysis accuracy. WI) Every time the amount is adjusted, it is necessary to change the fuel gas flow rate to adjust the combustion state of the flame to suit the analysis, which reduces analytical operability. (7) Atomic absorption sensitivity depends on the nozzle of the atomizer. The atomic absorption sensitivity varies relatively slowly within a range of 2 to 3 times depending on the gap. Therefore, the dynamic range of the calibration curve can be expanded by 2 to 3 times. (8) The magnitude of noise due to the gap between the nozzle part of the sprayer and the disperser remains unchanged. Therefore, the 1 analysis accuracy will not decrease. (9) Frame due to the gap between the nozzle part of the sprayer and the disperser The combustion state of the analyzer remains unchanged.Therefore, there is no reduction in analytical accuracy and analytical operability.(10) Atomic absorption sensitivity can be adjusted arbitrarily by simply changing the gap between the nozzle part of the atomizer and the disperser. From these facts, the nozzle part of the atomizer that sucks in the sample solution and releases it as a mist, and the resonance and other phenomena that occur when the mist is sprayed, further atomize the mist and reduce the heat of the sample in the frame. The flame atomic absorption spectrometry sample spray device has a mechanism that can arbitrarily change the gap between the flame atomic absorption spectrometer and the dispersion device, which increases analysis efficiency and suppresses noise generation. In the direct analysis of highly concentrated samples, which is often required due to the narrow dynamic range of the Detection + IC line, it is effective in expanding the dynamic range and enabling analysis by lowering the atomic absorption sensitivity. Figure 3 is a diagram showing an example of the relationship between the gap between the nozzle part of the atomizer and the spherical disperser and the atomic absorption sensitivity.
From the relationship line C between the gap between the atomizer and the disperser and the atomic absorption sensitivity (absorbance), it can be seen that the atomic absorption sensitivity depends on the gap; the smaller the gap, the lower the atomic absorption sensitivity, and the larger the gap, the lower the atomic absorption sensitivity. This was done by focusing on the fact that the sensitivity increases and the maximum sensitivity is constant from a certain gap.
A sprayer that sucks in a sample solution and releases it in the form of a mist, and a disperser that sprays the sample solution in the form of a mist emitted from the nozzle of the sprayer to further atomize the mist and unify its size. jiff is characterized in that it is equipped with a gap changing means that makes it possible to adjust the atomic absorption sensitivity by arbitrarily changing the gap between the nozzle part of the sprayer and the disperser. [Embodiments of the Invention] The present invention will be described in detail below with reference to the embodiment shown in FIG. 1 and FIG. 2. FIG. 1 is a block diagram showing an embodiment of the Fra-11 atomic absorption spectrometry sample injection device of the present invention, showing the nozzle part of the atomizer that sucks in a liquid sample and releases it in the form of a mist, and the nozzle part of the atomizer that sucks in a liquid sample and releases it in the form of a mist. In order to increase the thermal decomposition efficiency of the sample in the flange, the gap between the sprayer and the disperser can be changed arbitrarily.The atomizer is a concentric type, and the disperser is spherical. Here's what's going on. The atomizer 1, which utilizes the depressurization phenomenon caused by the auxiliary fuel gas flowing at high speed, converts the liquid sample 2 through the tube 3 into a conical mist fi4 with non-uniform particle sizes, and generates the fuel and the auxiliary fuel gas. into the mixing chamber 5. The mist-like sample 2 is blown onto a spherical-structured disperser 6 by the force of the discharge, and dispersed by phenomena such as resonance that occur there, becoming fine particles and becoming a mist 7 with a uniform size. and burner 8 with fuel and auxiliary fuel gas.
into frame 9. The atomized sample 7 introduced into the flake tz 9 undergoes thermal decomposition, etc., and the metal elements contained therein become atomic vapors. Therefore, the absorption sensitivity of light having a wavelength specific to the metal passing through the frame 9 is measured. The gap between the nozzle part that emits the mist of the sprayer and the disperser 6 is set to 0.5 to 1.0 by the gap adjustment mechanism 10. This allows for arbitrary adjustment between On and On. Since the amount of atomized sample introduced into the flare L 9 changes depending on the gap between the nozzle part of the atomizer 1 and the disperser 6, it is possible to change the absorption sensitivity. If the interval vX is set narrowly, the frame will be 1.
Since the sensitivity of the fog introduced into 9 is reduced, the atomic absorption sensitivity is reduced. When the gap is widened, more mist is introduced into the frame 9, so that the atomic absorption sensitivity is improved. Note 1
Samples that are not introduced into the frame 9, such as mist with large particles removed by the disperser 6, are discarded as waste liquid through the waste liquid outlet 11. Figure 2 shows that the gap between the nozzle part of the sprayer 1 and the disperser 6 is II.
FIG. 4 is a diagram showing an example of comparing the states of the calibration curves in the case of n and 51 m. Since the calibration curve a when the gap is 5 m has high sensitivity, the degree of curvature in the concentration axis direction in the high concentration region is large. Therefore, even if the concentration changes in the concentration range of 50 ppm or more, Kll! The determined absorbance is a constant value,
It is impossible to know the difference in concentration. In the case of the calibration curve when the gap is 1 rrn, the atomic absorption sensitivity is 1/2 ~
It decreases to 1/3. Therefore, the state in which the calibration curve curves in the concentration axis direction is different from the calibration +ItHca in the case of the gap 5■. In the case of the calibration curve a at the gap F5nw++, it is impossible to determine the concentration of 41g over 50 ppm;
In the case of the calibration curve at m, there is a difference in absorbance up to 120 ppna, so it is possible to know the concentration. In other words, the dynamic range of the calibration curve is expanded two to three times. According to this embodiment, the gap between the sprayer 1 and the disperser 6 is set to 0.6 mm.
5 By simply adjusting within the range of I~10+nm, the combustion state of the flame can be maintained without changing.
It is possible to arbitrarily change the atomic absorption sensitivity within a range of 2 to 3 times without reducing analytical accuracy, and it is effective when it is necessary to expand the dynamic range of the calibration curve by 2 to 3 times. [Effects of the Invention] As explained above, according to the present invention, the dynamic range of the calibration curve can be increased by arbitrarily adjusting the atomic absorption sensitivity without increasing noise or changing the combustion state of the flame.
It has the effect of being able to be expanded up to 3 times, and directly analyzing a sample with 2 to 3 times higher concentration without reducing the concentration by diluting the 8 sample liquids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフレーt1原子吸光分析用試料噴射装
置の一実施例を示す構成図、第2図は噴霧器のノズル部
と分散器との間隙をIMIと5晴に変えた場合のそれぞ
れの検量線を示す線図、第3閣は噴霧器のノズル部と球
状の分散器との間隙と原子吸収感度との関係の一例を示
す線図である。
Fig. 1 is a configuration diagram showing one embodiment of the sample injection device for flake T1 atomic absorption spectrometry analysis of the present invention, and Fig. 2 shows the configuration when the gap between the nozzle part of the sprayer and the disperser is changed to IMI and 5 clear. The third diagram is a diagram showing an example of the relationship between the gap between the nozzle part of the atomizer and the spherical disperser and the atomic absorption sensitivity.

Claims (1)

【特許請求の範囲】[Claims] 1、金属元素を含む試料溶液を霧状として燃料および補
助燃料ガスと混合してフレーム中に導入し、前記金属元
素を熱分解によって原子状の蒸気として前記試料溶液中
に含まれる前記金属元素の濃度を測定するフレーム原子
吸光分光光度計において、前記試料溶液を吸引し霧状と
して放出する噴霧器と、該噴霧器のノズル部から放出さ
れる霧状の前記試料溶液を吹き付けて霧をさらに微粒化
するとともにその大きさを統一する分散器とを備え、前
記噴霧器のノズル部と前記分散器との間隙を任意に変化
させることによって原子吸収感度を調整可能とする間隙
変化手段を具備することを特徴とするフレーム原子吸光
分析用試料噴霧装置。
1. A sample solution containing a metal element is mixed with fuel and auxiliary fuel gas in the form of a mist and introduced into the flame, and the metal element contained in the sample solution is converted into atomic vapor by thermal decomposition. In a flame atomic absorption spectrophotometer for measuring concentration, there is a sprayer that sucks in the sample solution and releases it in the form of a mist, and a sprayer that sprays the sample solution in the form of a mist released from the nozzle of the sprayer to further atomize the mist. and a disperser that unifies the size thereof, and gap changing means that makes it possible to adjust the atomic absorption sensitivity by arbitrarily changing the gap between the nozzle part of the sprayer and the disperser. A sample spray device for flame atomic absorption spectrometry.
JP26926385A 1985-12-02 1985-12-02 Sample atomizer for flame atomic absorption analysis Pending JPS62129743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26926385A JPS62129743A (en) 1985-12-02 1985-12-02 Sample atomizer for flame atomic absorption analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26926385A JPS62129743A (en) 1985-12-02 1985-12-02 Sample atomizer for flame atomic absorption analysis

Publications (1)

Publication Number Publication Date
JPS62129743A true JPS62129743A (en) 1987-06-12

Family

ID=17469915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26926385A Pending JPS62129743A (en) 1985-12-02 1985-12-02 Sample atomizer for flame atomic absorption analysis

Country Status (1)

Country Link
JP (1) JPS62129743A (en)

Similar Documents

Publication Publication Date Title
US4762995A (en) Monodisperse aerosol generator
US4629478A (en) Monodisperse aerosol generator
US4924097A (en) Monodisperse aerosol generator for use with infrared spectrometry
US4968885A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
Righezza et al. Effects of the nature of the solvent and solutes on the response of a light-scattering detector
US6499675B2 (en) Analytical apparatus using nebulizer
US5818581A (en) Elemental analysis method and apparatus
US5285064A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
Todolí et al. Comparison of characteristics and limits of detection of pneumatic micronebulizers and a conventional nebulizer operating at low uptake rates in ICP-AES
Todoli et al. Acid effects in inductively coupled plasma atomic emission spectrometry with different nebulizers operated at very low sample consumption rates
US5175433A (en) Monodisperse aerosol generator for use with infrared spectrometry
US4687929A (en) Monodisperse aerosol generator
US3525476A (en) Fluid diffuser with fluid pressure discharge means and atomizing of material in holder
Hogrefe et al. Development, operation and applications of an aerosol generation, calibration and research facility special issue of aerosol science and technology on findings from the fine particulate matter supersites program
JPH0862128A (en) Sprayer
US5223131A (en) Apparatus for interfacing liquid chromatography-mass spectrometry systems
US3516771A (en) Burner for spectroscopic use
JPS62129743A (en) Sample atomizer for flame atomic absorption analysis
Koropchak et al. Aerosol particle size effects on plasma spectrometric analysis
US3438711A (en) Burner system with heated spray chamber for spectroscopic analysis
US3469789A (en) Sample introducing device for spectro-chemical analysis
US3550858A (en) Adjustable atomizer flame photometer
US20170047215A1 (en) Adjustable aerodynamic lens system for aerodynamic focusing of aerosols
US5033850A (en) Gas flow chamber for use in atomic absorption and plasma spectroscopy
US5335860A (en) Rotary spray chamber device for conditioning aerosols