JPS61219761A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS61219761A
JPS61219761A JP60059631A JP5963185A JPS61219761A JP S61219761 A JPS61219761 A JP S61219761A JP 60059631 A JP60059631 A JP 60059631A JP 5963185 A JP5963185 A JP 5963185A JP S61219761 A JPS61219761 A JP S61219761A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
oxide
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059631A
Other languages
Japanese (ja)
Inventor
敦彦 田中
卓二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60059631A priority Critical patent/JPS61219761A/en
Publication of JPS61219761A publication Critical patent/JPS61219761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は信頼性の高い窒化珪素質焼結体の製法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a highly reliable silicon nitride sintered body.

(従来の技術およびその問題点) 窒化珪素質焼結体は耐熱性および耐腐食性が優れており
、次世代の構造材料として有望視されている。代表的な
窒化珪素質焼結体の製法としては、窒化珪素に、酸化イ
ツトリウム、酸化アルミニウム、酸化マグネシウムのよ
うな酸化物系焼結助剤を配合した混合粉末を焼結する方
法が知られている。例えば、特公昭49−21091号
公報には、窒化珪素に酸化イツトリウムおよび酸化アル
ミニウムを配合した混合物を焼結する方法が開示されて
いる。
(Prior art and its problems) Silicon nitride sintered bodies have excellent heat resistance and corrosion resistance, and are considered promising as next-generation structural materials. A typical method for producing a silicon nitride sintered body is to sinter a mixed powder of silicon nitride mixed with an oxide sintering aid such as yttrium oxide, aluminum oxide, or magnesium oxide. There is. For example, Japanese Patent Publication No. 49-21091 discloses a method of sintering a mixture of silicon nitride, yttrium oxide, and aluminum oxide.

上記方法で得られる窒化珪素質焼結体は高強度を有する
ものの、焼結体の信頼性の目安となるワイブル係数が小
さく、即ち製品内の強度のばらつきが大きく、構造材料
として使用するには信頼性が低いという欠点を有してい
た。上記製品内のばらつきをワイブル係数で表すと、現
在一般に使用されている金属材料が25以上であるのに
対し窒化珪素質焼結体は5〜15程度である。従って、
窒化珪素質焼結体のワイブル係数を金属材料と同等以上
にすることが強く望まれている。
Although the silicon nitride sintered body obtained by the above method has high strength, the Weibull coefficient, which is a measure of the reliability of the sintered body, is small, that is, the strength variation within the product is large, and it cannot be used as a structural material. It had the disadvantage of low reliability. When the variation within the above-mentioned products is expressed as a Weibull coefficient, it is 25 or more for metal materials currently in general use, whereas it is about 5 to 15 for silicon nitride sintered bodies. Therefore,
It is strongly desired that the Weibull coefficient of a silicon nitride sintered body be equal to or higher than that of a metal material.

尚、窒化珪素および稀土類元素の化合物の粉末成形体を
、窒化硼素粉末中または窒化硼素容器内で仮焼結した後
に本焼結する方法が、特開昭53−42208号公報に
記載されている。しかし、この方法は本発明とは構成が
異なっており、さらに上記公報には窒化珪素質焼結体の
ワイブル係数を増大させるという本発明の目的および効
果についての記載はまったくない。
Furthermore, JP-A-53-42208 describes a method in which a powder compact of a compound of silicon nitride and a rare earth element is temporarily sintered in boron nitride powder or in a boron nitride container, and then main sintered. There is. However, this method differs in structure from the present invention, and furthermore, the above-mentioned publication does not describe at all the purpose and effect of the present invention of increasing the Weibull coefficient of a silicon nitride sintered body.

(問題点を解決するための手段) 本発明は前記要望を満たすものであり、その要旨は、窒
化珪素100重量部、酸化物系焼結助剤1〜20ffi
量部および窒化硼素0.1〜10frf1部からなる混
合粉末を焼結することにある。
(Means for Solving the Problems) The present invention satisfies the above-mentioned needs, and its gist is as follows: 100 parts by weight of silicon nitride, 1 to 20 parts by weight of an oxide sintering aid.
1 part of boron nitride and 0.1 to 10 frf of boron nitride are sintered.

本発明で使用される窒化珪素粉末は、α相含有率が90
%以上であり、粒径が0.1〜1μであることが好まし
い。このような窒化珪素はそれ自体公知の方法、例えば
、金属珪素と窒素またはアンモニアとを高い温度で反応
させる直接窒化法、シ゛リカと炭素との混合物を窒素ま
たはアンモニア雰囲気下に反応させる還元窒化法、シリ
コンジイミドまたはシリコンテトラアミドを加熱分解す
る、所謂イミド分解法によって得ることができる。
The silicon nitride powder used in the present invention has an α phase content of 90
% or more, and the particle size is preferably 0.1 to 1 μm. Such silicon nitride can be produced by methods known per se, such as a direct nitriding method in which metallic silicon is reacted with nitrogen or ammonia at high temperatures, a reductive nitriding method in which a mixture of silica and carbon is reacted in a nitrogen or ammonia atmosphere, It can be obtained by the so-called imide decomposition method in which silicon diimide or silicon tetraamide is thermally decomposed.

酸化物系焼結助剤としては、窒化珪素の焼結助剤として
公知の酸化物をすべて使用することができ、その具体例
としては、酸化マグネシウム、酸化イツトリウム、酸化
アルミニウム、酸化セリウム、酸化ベリリウム、酸化珪
素が挙げられる。これらの酸化物系焼結助剤は、単独で
使用することもでき、2種以上を糺み合わせて使用する
こともできる。組合せの例としては、酸化イツトリウム
/酸化アルミニウム、酸化マグネシウム/酸化珪素、酸
化マグネシウム/酸化アルミニウム、酸化マグネシウム
/酸化イツトリウムが挙げられる。
As the oxide-based sintering aid, all oxides known as sintering aids for silicon nitride can be used, and specific examples thereof include magnesium oxide, yttrium oxide, aluminum oxide, cerium oxide, and beryllium oxide. , silicon oxide. These oxide-based sintering aids can be used alone or in combination of two or more. Examples of combinations include yttrium oxide/aluminum oxide, magnesium oxide/silicon oxide, magnesium oxide/aluminum oxide, magnesium oxide/yttrium oxide.

酸化物系焼結助剤の使用量は、窒化珪素100重量部当
たり1〜20重量部、好ましくは1〜10重量部である
。その使用量が過度に小さいと窒化珪素の焼結性が低下
し、逆に使用量が過度に大きいと得られる窒化珪素質焼
結体の強度が低下する。
The amount of the oxide sintering aid used is 1 to 20 parts by weight, preferably 1 to 10 parts by weight, per 100 parts by weight of silicon nitride. If the amount used is too small, the sinterability of silicon nitride will be reduced, and if the amount used is too large, the strength of the obtained silicon nitride sintered body will be reduced.

窒化硼素の使用量は、窒化珪素100重量部当たり、0
.1〜10重量部、好ましくは0.5〜3重量部である
。窒化硼素の使用量が低すぎると本発明の目的とするワ
イブル係数の高い窒化珪素質焼結体を得ることができず
、その使用量が大すぎると窒化珪素の焼結性が低下し、
その結果、得られる窒化珪素質焼結体の強度が小さくな
る。
The amount of boron nitride used is 0 per 100 parts by weight of silicon nitride.
.. The amount is 1 to 10 parts by weight, preferably 0.5 to 3 parts by weight. If the amount of boron nitride used is too low, it will not be possible to obtain a silicon nitride sintered body with a high Weibull coefficient, which is the objective of the present invention, and if the amount used is too large, the sinterability of silicon nitride will decrease,
As a result, the strength of the silicon nitride sintered body obtained becomes low.

本発明においては、窒化珪素にさらに窒化アルミニウム
を配合することができる。その配合量は窒化珪素100
重量部当たり通常5重量部以下、好ましくは0.5〜3
重量部である。窒化アルミニウムを配合することにより
得られる窒化珪素質焼結体のワイブル係数および曲げ強
度がさらに向上する。
In the present invention, aluminum nitride can be further blended with silicon nitride. Its blending amount is 100% silicon nitride.
Usually 5 parts by weight or less, preferably 0.5 to 3 parts by weight
Parts by weight. By incorporating aluminum nitride, the Weibull modulus and bending strength of the silicon nitride sintered body obtained are further improved.

窒化珪素に酸化物系焼結助剤、場合によりさらに窒化ア
ルミニウムを配合する方法については特に限定はなく、
乾式混合方法およびメタノール、エタノールのような低
級アルコールを分散媒として湿式混合し、ついで分散媒
を蒸発除去する方法を適宜採用することができる。
There are no particular limitations on the method of blending silicon nitride with an oxide sintering aid and, if necessary, aluminum nitride.
A dry mixing method and a method of wet mixing using a lower alcohol such as methanol or ethanol as a dispersion medium and then removing the dispersion medium by evaporation can be appropriately employed.

混合粉末から焼結体を1尋る方法には特に制限はなく、
公知の方法を採用することができる。そのような方法の
例としては、金型プレス法、ラバープレス法、鋳込成形
法により成形品を作り、ついで焼結する方法、成形と焼
結を同時に行うホットプレス法が挙げられる。焼結は、
一般に、窒素、アンモニアまたはこれらとアルゴン、ヘ
リウムとの混合ガスのような不活性ガス雰囲気下に、1
500〜1800℃の温度に10時間以内の時間保持す
ることによって行われる。
There are no particular restrictions on the method for producing a sintered body from a mixed powder.
A known method can be adopted. Examples of such methods include a method in which a molded article is made by a mold press method, a rubber press method, a cast molding method and then sintered, and a hot press method in which molding and sintering are performed simultaneously. Sintering is
Generally, under an inert gas atmosphere such as nitrogen, ammonia, or a mixture of these gases with argon or helium,
It is carried out by holding at a temperature of 500 to 1800°C for a period of up to 10 hours.

(実施例) 以下に実施例を示す。以下において「部」はすべて「重
量部」を示す。
(Example) Examples are shown below. In the following, all "parts" indicate "parts by weight."

実施例1および2 窒化珪素粉末[宇部興産Il製、5N−2101100
部、第1表に記載の量の酸化イツトリウム粉末[信越化
学■製コ、酸化アルミニウム粉末[住人化学■製、AR
P−30]および窒化硼素粉末[昭和電工■製、U H
P ]をメタノールを分散媒としてボールミルで64時
間混合した後、乾燥造粒した。造粒物を40 X 80
 X 50 鰭の金型を用いて成形した後、プレス圧1
.5 t /cutでラバープレスした。得られた成形
品を高周波誘導炉を用い、窒素雰囲気下に常圧で175
0℃まで2℃/分で昇温した後、同温度に1時間保持し
た。
Examples 1 and 2 Silicon nitride powder [manufactured by Ube Industries, Ltd., 5N-2101100
Yttrium oxide powder [manufactured by Shin-Etsu Chemical Co., Ltd.], aluminum oxide powder [manufactured by Sumitomo Chemical Co., Ltd., AR] in the amounts listed in Table 1.
P-30] and boron nitride powder [manufactured by Showa Denko, U H
P] were mixed in a ball mill for 64 hours using methanol as a dispersion medium, and then dried and granulated. Granules 40 x 80
After molding using a X 50 fin mold, press pressure 1
.. Rubber press was performed at 5 t/cut. The obtained molded product was heated in a high-frequency induction furnace at normal pressure in a nitrogen atmosphere at 175°C.
After raising the temperature to 0°C at a rate of 2°C/min, the temperature was maintained at the same temperature for 1 hour.

得られた焼結体から3X4X35■lのテストピース4
0本を切り出し、これをスパン30mmで3点曲げテス
トを行い、強度およびワイブル係数を求めた。結果を第
1表に示す。
Test piece 4 of 3X4X35L was made from the obtained sintered body.
A piece was cut out and subjected to a three-point bending test with a span of 30 mm to determine its strength and Weibull coefficient. The results are shown in Table 1.

比較例1 窒化硼素を使用しない以外は実施例1と同様の方法を繰
り返した。結果を第1表に示す。
Comparative Example 1 The same method as Example 1 was repeated except that boron nitride was not used. The results are shown in Table 1.

実施例3および4 酸化イツトリウム、酸化アルミニウムおよび窒化硼素の
使用量を変え、さらに窒化アルミニウム粉末[シュタル
ク社製]の所定量を配合した以外は実施例1と同様の方
法を繰り返した。結果を第1表に示す。
Examples 3 and 4 The same method as in Example 1 was repeated, except that the amounts of yttrium oxide, aluminum oxide and boron nitride used were changed, and a predetermined amount of aluminum nitride powder (manufactured by Stark) was added. The results are shown in Table 1.

比較例2 窒化硼素を使用しない以外は実施例3と同様の方法を繰
り返した。結果を第1表に示す。
Comparative Example 2 The same method as Example 3 was repeated except that boron nitride was not used. The results are shown in Table 1.

実施例5〜7 第2表に記載の酸化物系焼結助剤の所定量を窒化珪素粉
末[宇部興産l4ylJ製、5N−EIOコ 100部
に混合した以外は実施例1におけると同様にして焼結体
を製造した。結果を第2表に示す。
Examples 5 to 7 The same procedure as in Example 1 was carried out except that a predetermined amount of the oxide sintering aid listed in Table 2 was mixed with 100 parts of silicon nitride powder [manufactured by Ube Industries 14ylJ, 5N-EIO]. A sintered body was manufactured. The results are shown in Table 2.

なお、酸化マグネシウムはキシダ化学■製の特級試薬を
使用し、酸化セリウムおよび酸化ベリリウムは和光紬薬
工業■製の特級および化学用試薬を使用した。
For magnesium oxide, a special grade reagent manufactured by Kishida Kagaku (■) was used, and for cerium oxide and beryllium oxide, special grade and chemical reagents manufactured by Wako Tsumugi Kogyo (■) were used.

比較例3〜5 窒化硼素を使用しなかった以外は実施例5〜7を繰り返
した。結果を第2表に示す。
Comparative Examples 3-5 Examples 5-7 were repeated except that no boron nitride was used. The results are shown in Table 2.

(発明の効果) 本発明によれば、実施例の結果かられかるように、ワイ
ブル係数が高い窒化珪素質焼結体を得ることができる。
(Effects of the Invention) According to the present invention, a silicon nitride sintered body having a high Weibull coefficient can be obtained as seen from the results of Examples.

本発明で得られる窒化珪素質焼結体は信頼製が著しく高
いので、構造材料として好適に使用することができる。
Since the silicon nitride sintered body obtained by the present invention has extremely high reliability, it can be suitably used as a structural material.

第1表 Y2O3Aj!203  BN   Aj!N   ワ
イブル 曲げ強度−■−」LIL IL−係数一一昨/
−一対鮒11 8,9 2.2 2゜2 0 30 8
6〃2 8.9 2.2 1.1 0 40 93比較
例1  8.9   2.2    0   0   
 10   94力i+グリ3   5.5    3
.8    2.2   1.7      45  
  92〃4 5.5 3.8 0.6 1.7 28
 97比較例2  5.5   3.8    0  
1.7    14   98第2表 酸化物系焼結助剤  BN     ワイブル 曲げ強
度種  類  量    (iro      イ臓 
  (kg/m孟)■部L  □
Table 1 Y2O3Aj! 203 BN Aj! N Weibull Bending strength-■-"LIL IL-Coefficient 1-1/
-Pair of crucian carp 11 8,9 2.2 2゜2 0 30 8
6〃2 8.9 2.2 1.1 0 40 93 Comparative example 1 8.9 2.2 0 0
10 94 force i + guri 3 5.5 3
.. 8 2.2 1.7 45
92〃4 5.5 3.8 0.6 1.7 28
97 Comparative Example 2 5.5 3.8 0
1.7 14 98 Table 2 Oxide-based sintering aids BN Weibull Bending strength type Quantity (iro
(kg/m) ■ Part L □

Claims (1)

【特許請求の範囲】[Claims] 窒化珪素100重量部、酸化物系焼結助剤1〜20重量
部および窒化硼素0.1〜10重量部からなる混合粉末
を焼結することを特徴とする窒化珪素質焼結体の製法。
A method for producing a silicon nitride sintered body, which comprises sintering a mixed powder consisting of 100 parts by weight of silicon nitride, 1 to 20 parts by weight of an oxide sintering aid, and 0.1 to 10 parts by weight of boron nitride.
JP60059631A 1985-03-26 1985-03-26 Manufacture of silicon nitride base sintered body Pending JPS61219761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059631A JPS61219761A (en) 1985-03-26 1985-03-26 Manufacture of silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059631A JPS61219761A (en) 1985-03-26 1985-03-26 Manufacture of silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS61219761A true JPS61219761A (en) 1986-09-30

Family

ID=13118771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059631A Pending JPS61219761A (en) 1985-03-26 1985-03-26 Manufacture of silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS61219761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275392A (en) * 1987-04-30 1988-11-14 ロックウエル − リモルディ・エス・ピー・エー Guide sleeve for sewing machine
EP0439419A1 (en) * 1990-01-23 1991-07-31 Ercros S.A. Composite ceramic materials for applications in engineering at high temperature and under severe conditions of thermal shock and a process for their production
WO1994024066A1 (en) * 1993-04-15 1994-10-27 Hoechst Ceramtec Aktiengesellschaft High-strength silicon nitride ceramic component for use in engines, machinery and equipment
CN108117396A (en) * 2017-12-11 2018-06-05 陕西科技大学 The preparation method of biomedical ceramics material based on silicon nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493011A (en) * 1977-12-29 1979-07-23 Denki Kagaku Kogyo Kk Composite material
JPS5895661A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Silicon nitride high tenacity ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493011A (en) * 1977-12-29 1979-07-23 Denki Kagaku Kogyo Kk Composite material
JPS5895661A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Silicon nitride high tenacity ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275392A (en) * 1987-04-30 1988-11-14 ロックウエル − リモルディ・エス・ピー・エー Guide sleeve for sewing machine
EP0439419A1 (en) * 1990-01-23 1991-07-31 Ercros S.A. Composite ceramic materials for applications in engineering at high temperature and under severe conditions of thermal shock and a process for their production
WO1994024066A1 (en) * 1993-04-15 1994-10-27 Hoechst Ceramtec Aktiengesellschaft High-strength silicon nitride ceramic component for use in engines, machinery and equipment
CN108117396A (en) * 2017-12-11 2018-06-05 陕西科技大学 The preparation method of biomedical ceramics material based on silicon nitride

Similar Documents

Publication Publication Date Title
JPS61219761A (en) Manufacture of silicon nitride base sintered body
JPS62187171A (en) Manufacture of aluminum nitride sintered body
JP2845983B2 (en) Boron nitride powder
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPS63295479A (en) Sintered aluminum nitride body and its production
JPS61183174A (en) Aluminum nitride aintered body
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPS60145960A (en) Anticorrosive ceramic sintered body
JPH0522670B2 (en)
JP2732078B2 (en) Silicon nitride sintered body
JPS5874571A (en) Manufacture of silicon nitride sintered body
JP2974534B2 (en) Refractory manufacturing method and refractory
JPS63295478A (en) Sintered aluminum nitride body and its production
JPS6337073B2 (en)
JPS6163571A (en) Manufacture of aluminum nitride sintered body
JPS60195058A (en) Manufacture of aluminum nitride sintered body
JP2571070B2 (en) Method of manufacturing substrate material for thin film magnetic head
JPH082968A (en) Boron nitride-based sintered compact and its production
JPS5929546B2 (en) Manufacturing method of heat-resistant ceramics
JPS63176369A (en) Manufacture of silicon oxynitride base sintered body
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPS63236765A (en) Aluminum nitride sintered body
JPS60210573A (en) Manufacture of silicon carbide sintered body
JPS6212669A (en) Sintered body whose surface is titanium oxide and inside is titanium oxynitirde