JPS6212669A - Sintered body whose surface is titanium oxide and inside is titanium oxynitirde - Google Patents

Sintered body whose surface is titanium oxide and inside is titanium oxynitirde

Info

Publication number
JPS6212669A
JPS6212669A JP60149226A JP14922685A JPS6212669A JP S6212669 A JPS6212669 A JP S6212669A JP 60149226 A JP60149226 A JP 60149226A JP 14922685 A JP14922685 A JP 14922685A JP S6212669 A JPS6212669 A JP S6212669A
Authority
JP
Japan
Prior art keywords
titanium
sintered body
powder
layer
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60149226A
Other languages
Japanese (ja)
Other versions
JPH042539B2 (en
Inventor
素彦 吉住
晋 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60149226A priority Critical patent/JPS6212669A/en
Publication of JPS6212669A publication Critical patent/JPS6212669A/en
Publication of JPH042539B2 publication Critical patent/JPH042539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は表面層が窒化チタンで内部が酸窒化チタンより
なる焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered body whose surface layer is made of titanium nitride and whose interior is made of titanium oxynitride.

〈従来技術およびその問題点〉 IVa族、Va族金属の窒化物、即ち、窒化チタン、窒
化ジルコニウム、窒化ハフニワム、窒化ニオブ等は耐熱
性、耐食性に優れた高硬度化合物で。
<Prior art and its problems> Nitrides of group IVa and Va group metals, ie, titanium nitride, zirconium nitride, hafnium nitride, niobium nitride, etc., are high hardness compounds with excellent heat resistance and corrosion resistance.

美麗な黄金光沢を有する。さらに、これらの化合物は導
電性を有するため、はこり等が付着しにくい。それゆえ
、フィルムや磁気テープの巻き取シのガイド部材や2合
成繊維やフィルム等を製造する際のガイド部材として極
めて優れた特性を有し。
It has a beautiful golden luster. Furthermore, since these compounds have electrical conductivity, it is difficult for lumps and the like to adhere to them. Therefore, it has extremely excellent properties as a guide member for winding up films and magnetic tapes, and as a guide member when manufacturing synthetic fibers, films, etc.

また装飾用としても有用である。It is also useful for decoration.

これらの化合物のなかでも、窒化チタンは低比重であり
、比較的安価であるため最も一般的に使用されている。
Among these compounds, titanium nitride is the most commonly used because it has a low specific gravity and is relatively inexpensive.

窒化チタンの焼結体は、従来、二酸化チタンと炭素材料
を混合した粉末を窒素雰囲気中で還元窒化することによ
って、窒化チタン粉末を得、該粉末を圧縮成形し、真空
中またはアルゴン等の不活性雰囲気中において1700
℃以上の高温で焼結して製造している。しかし、前記方
法で得られる窒化チタン粉末は粒度が粗く、焼結に長時
間を要し、しかも緻密な焼結体を得ることができない。
Sintered bodies of titanium nitride have conventionally been produced by reducing and nitriding a powder of a mixture of titanium dioxide and a carbon material in a nitrogen atmosphere, compression molding the powder, and molding the powder in a vacuum or in an argon atmosphere. 1700 in active atmosphere
Manufactured by sintering at high temperatures above ℃. However, the titanium nitride powder obtained by the above method has a coarse particle size, requires a long time for sintering, and moreover, it is impossible to obtain a dense sintered body.

緻密な焼結体を得ようとして、よシ高温で焼結を欅1概
Iトレ6巳↓441淑随1剖を行なうと、脱窒を起す。
In an attempt to obtain a dense sintered body, if sintering is carried out at very high temperatures, denitrification will occur.

それゆえ、他の化合物の焼結体の表面に窒化チタンをコ
ーティングすることも行なわれているが。
Therefore, coating the surface of sintered bodies of other compounds with titanium nitride has also been practiced.

母材と窒化チタンの被膜が剥離し易いという欠点があシ
、さらに被膜自体の強度にも問題がある。
Another drawback is that the titanium nitride coating tends to peel off from the base material, and there is also a problem with the strength of the coating itself.

〈発明の構成〉 本発明は上記従来の問題点を解決するものであって9本
発明によれば2表面層が主に窒化チタンでちゃ、該表面
層から内部にかけて窒素含有量が次第に減少する一方酸
素含有量が増加し、内部が酸窒化チタンである焼結体が
提供される。
<Structure of the Invention> The present invention solves the above conventional problems. According to the present invention, the second surface layer is mainly made of titanium nitride, and the nitrogen content gradually decreases from the surface layer to the inside. On the other hand, a sintered body with an increased oxygen content and a titanium oxynitride interior is provided.

本発明の焼結体は表面層が窒化チタンであり。The surface layer of the sintered body of the present invention is titanium nitride.

内部が酸窒化チタンであって9表面の窒化チタン層と内
部の酸窒化チタン層との間には1表面から内部に進むに
つれて窒素含有量が減少する一方酸素含有量が増加する
中間層が存在する。即ち本発明の焼結体は表面の窒化チ
タン層と内部の酸窒化チタン層との間に上記中間層が介
在する漸次的な二重構造を有する。表面層および内部層
の窒素含有量および酸素含有量はそれぞれ次表の通りで
ある。
The interior is titanium oxynitride, and between the titanium nitride layer on the 9 surface and the titanium oxynitride layer inside, there is an intermediate layer in which the nitrogen content decreases while the oxygen content increases as you go from the 1 surface to the inside. do. That is, the sintered body of the present invention has a gradual double structure in which the intermediate layer is interposed between the titanium nitride layer on the surface and the titanium oxynitride layer inside. The nitrogen content and oxygen content of the surface layer and internal layer are shown in the following table, respectively.

本発明の焼結体はこのように表面から内部にかけて窒素
含有量と酸素含有量とが徐々に変化する組成であるため
、従来のように表面に窒化チタンをコーテングしたもの
に比べて表面の窒化チタン層と内部の酸窒化チタン層と
の結合が極めて強固である。更に焼結体の密度も格段に
大きい。因に窒化チタン粉末を圧縮成形して焼結した従
来の焼結体はビッカース硬度が800〜1500に9/
mぜ程度。
Since the sintered body of the present invention has a composition in which the nitrogen content and oxygen content gradually change from the surface to the inside, the sintered body has a nitrided surface compared to the conventional one whose surface is coated with titanium nitride. The bond between the titanium layer and the internal titanium oxynitride layer is extremely strong. Furthermore, the density of the sintered body is also significantly higher. Incidentally, the conventional sintered body made by compression molding and sintering titanium nitride powder has a Vickers hardness of 800 to 1500, which is 9/9
About mze.

密度が90〜97チ程度であるのに対し本発明の焼結体
はビッカース硬度および密度がそれぞれ1700〜18
50kg/mm+ 981以上であり従来の焼結体く比
べて緻密、かつ強固である。また従来の焼結体の導電性
は1x10−”fLcR程度であるのに比べ本発明の焼
結体は1〜5x1o−’ユ儂であり導電性もすぐれてい
る。
While the density is about 90 to 97 inches, the sintered body of the present invention has a Vickers hardness and a density of 1700 to 18 inches, respectively.
50kg/mm+981 or more, which is denser and stronger than conventional sintered bodies. Further, while the conductivity of the conventional sintered body is about 1×10 −′fLcR, the sintered body of the present invention has excellent conductivity of 1 to 5×10−” fLcR.

次に上記焼結体は、酸窒化チタン粉末を圧縮成形し、1
200〜1700℃の温度範囲において窒素あるいはア
ンモニア雰囲気中で焼結することによって得られる。原
料の酸窒化チタン粉末は二酸化チタン粉末を700〜1
000℃の温度範囲においてアンモニアガスと反応させ
て得られるものが好適である。アンモニア雰囲気中で二
酸化チタン粉末を700〜1000℃の温度範囲で加熱
すると。
Next, the above sintered body is obtained by compression molding titanium oxynitride powder.
It is obtained by sintering in a nitrogen or ammonia atmosphere at a temperature range of 200 to 1700°C. The raw material titanium oxynitride powder is titanium dioxide powder 700 to 1
Preferably, it is obtained by reacting with ammonia gas in a temperature range of 1,000°C. When titanium dioxide powder is heated in the temperature range of 700-1000°C in an ammonia atmosphere.

二酸化チタンの還元と窒化が起って酸窒化チタン粉末が
得られる。この温度範囲では焼結は殆ど起らないので、
微細な二酸化チタン粉末を原料として使用すると、その
tまの微細な酸窒化チタンを得ることができる。
Titanium dioxide is reduced and nitrided to obtain titanium oxynitride powder. Almost no sintering occurs in this temperature range, so
When fine titanium dioxide powder is used as a raw material, titanium oxynitride as fine as that amount can be obtained.

酸窒化チタンの原料となる二酸化チタンは、どのような
製法のものでもよいが、微細な酸窒化チタン粉末を得る
ためには、できるだけ微細な二酸化チタン粉末を用いな
ければならない。二酸化チタン粉末とアンモニアの反応
は700〜1000℃の温度範囲において1時間以上行
なう。700℃未満では反応速度が充分でなく、未反応
の二酸化チタンが多量に残留し、高強度の焼結体を得る
ための原料としては不適である。また1000℃を超え
る温度では粒子の結合が起り、得られる酸窒化チタン粉
末は粗大なものとなるので焼結原料としては同様に不適
である。
Titanium dioxide, which is a raw material for titanium oxynitride, may be manufactured by any method, but in order to obtain fine titanium oxynitride powder, it is necessary to use titanium dioxide powder as fine as possible. The reaction between titanium dioxide powder and ammonia is carried out in a temperature range of 700 to 1000°C for 1 hour or more. If the temperature is less than 700°C, the reaction rate is not sufficient and a large amount of unreacted titanium dioxide remains, making it unsuitable as a raw material for obtaining a high-strength sintered body. Further, at temperatures exceeding 1000° C., particle bonding occurs and the resulting titanium oxynitride powder becomes coarse, making it similarly unsuitable as a sintering raw material.

上記のようにして得られた酸窒化チタン粉末を所望の形
状に圧縮成形する。この時、バインダーとしてPVA、
CMC,PVP等の粘結物質(糊料)を少量添加してお
く方が圧粉体の強度を高め取扱いを容易にする。プレス
圧は特に限定されない。
The titanium oxynitride powder obtained as described above is compression molded into a desired shape. At this time, PVA as a binder,
Adding a small amount of a caking substance (sizing agent) such as CMC or PVP increases the strength of the green compact and makes it easier to handle. Press pressure is not particularly limited.

との圧粉体をアンモニア雰囲気または窒素雰囲気で12
00〜1700℃の温度範囲で焼結する。
The green compact is heated in an ammonia or nitrogen atmosphere for 12 hours.
Sinter at a temperature range of 00 to 1700°C.

焼結温度を1200〜1700℃に限定する理由は、1
200℃未満では、いかに長時間焼結しても密度は上が
らず、充分な硬度を有する焼結体が得られない。また1
700℃を超える温度で焼結しても、焼結時間は短縮さ
れないのみならず、脱窒素が起υはじめ、緻密な焼結体
を得ることができない。ま庭焼結温度に達するまでの昇
温速度は500℃/hr以下が望ましい。500℃/h
rを超える速度で昇温すると、ひび割れを生じたり9表
面の窒化チタン層が剥離することがある。
The reason for limiting the sintering temperature to 1200 to 1700°C is 1.
If the temperature is less than 200°C, no matter how long the sintering time is, the density will not increase and a sintered body with sufficient hardness will not be obtained. Also 1
Sintering at a temperature exceeding 700° C. not only does not shorten the sintering time, but also causes denitrification to occur, making it impossible to obtain a dense sintered body. It is desirable that the temperature increase rate to reach the Maniwa sintering temperature is 500° C./hr or less. 500℃/h
If the temperature is increased at a rate exceeding r, cracks may occur or the titanium nitride layer on the surface may peel off.

なお、内部の酸窒化チタンの酸素量は二酸化チタン粉末
をアンモニアと反応させる際の温度と反応時間を調整す
ることによって制御できる。
Note that the amount of oxygen in the titanium oxynitride inside can be controlled by adjusting the temperature and reaction time when titanium dioxide powder is reacted with ammonia.

更に、圧粉体をアンモニアあるいは窒素雰囲気中で焼成
する際、アンモニアあるいは窒素50vo1%未満の不
活性ガスないし水素ガスを混合して表面の窒化チタン層
の厚さを制御することが出来る。尚。
Furthermore, when the green compact is fired in an ammonia or nitrogen atmosphere, the thickness of the titanium nitride layer on the surface can be controlled by mixing ammonia or an inert gas containing less than 50vol% nitrogen or hydrogen gas. still.

酸窒化チタンの粉末を得る際、二酸化チタンとアンモニ
アとの反応が充分でないと、焼結体の表面に二酸化チタ
ンが残存する場合があるが1表面層の酸素量が40%以
下の場合は硬度に悪影響を与えな込ので差し支えない。
When obtaining titanium oxynitride powder, if the reaction between titanium dioxide and ammonia is not sufficient, titanium dioxide may remain on the surface of the sintered body, but if the oxygen content in one surface layer is less than 40%, the hardness will decrease. There is no problem as it may have a negative impact on the

またこの場合内部層にも二酸化チタンが少量残存するが
殆ど影響ない。
In this case, a small amount of titanium dioxide also remains in the inner layer, but it has almost no effect.

以上の製造方法によシ表面が窒化チタンで内部が酸窒化
チタンのままである焼結体が得られる。
By the above manufacturing method, a sintered body having a titanium nitride surface and a titanium oxynitride inside is obtained.

との焼結体は微細な酸窒化チタン粉末を焼結原料とする
ために短時間で緻密な焼結体を得ることが出来る。
Since the sintered body of this method uses fine titanium oxynitride powder as the sintering raw material, a dense sintered body can be obtained in a short time.

〈実施例および比較例〉 実施例1 平均粒径0.06μの二酸化チタンを800℃の温度で
アンモニア雰囲気中において4時間反応させて得られた
粉末KPVA1% を加え造粒した粉末を1t/dの圧
力で50X501m+の金型を用いて8fiの厚さの圧
粉体とした。との圧粉体をアンモニア雰囲気中で160
0°Cにおいて2時間焼結したところ黄金色の焼結体が
得られた。
<Examples and Comparative Examples> Example 1 Powder obtained by reacting titanium dioxide with an average particle size of 0.06μ in an ammonia atmosphere at a temperature of 800°C for 4 hours, granulated with 1% KPVA was added at 1t/d. A powder compact with a thickness of 8 fi was made using a mold of 50 x 501 m+ at a pressure of . The green compact was heated to 160℃ in an ammonia atmosphere.
After sintering at 0°C for 2 hours, a golden yellow sintered body was obtained.

この焼結体の表面から0.1flのところまでは1.7
−のTie、が混在する窒化チタン層からなk)、Q、
3wsよシ中心部は、酸素量8.2%、窒素量16.7
%チタン量75.1%の組成より成る層によって形成さ
れていた。また表面から0.1111〜0.3111の
層は徐々に酸素含有量が増加し、窒素量が減少している
酸窒化チタン層であった。この焼結体のビッカース硬度
は1830′Kg/mぜであった。
The distance from the surface of this sintered body to 0.1 fl is 1.7
- from a titanium nitride layer mixed with Tie, k), Q,
The center of 3ws has an oxygen content of 8.2% and a nitrogen content of 16.7%.
It was formed by a layer having a composition of 75.1% titanium. The layer 0.1111 to 0.3111 from the surface was a titanium oxynitride layer in which the oxygen content gradually increased and the nitrogen content decreased. The Vickers hardness of this sintered body was 1830'Kg/mze.

実施例2 実施例1と同じ圧粉体を窒素雰囲気中で1300℃で3
時間焼結し、得られた焼結体は表面から0.05io+
 (7) ト?ニー ロ1 テハ4.0 %f) Ti
01が混在する窒化チタン層よシなり、0.’05〜0
.2111の層は徐々に酸素含有量が増加、窒素含有量
が減少し、 Q、’laxより中心部は酸素量8.0チ
、窒素量17.0チの酸窒化チタン層よシ成っていた。
Example 2 The same green compact as in Example 1 was heated at 1300°C in a nitrogen atmosphere for 3
The obtained sintered body was sintered for a time of 0.05 io+ from the surface.
(7) To? Ni Ro1 Teha4.0%f) Ti
The titanium nitride layer has a mixture of 0.01 and 0.01. '05~0
.. In the layer 2111, the oxygen content gradually increased and the nitrogen content decreased, and the center part from Q, 'lax was composed of a titanium oxynitride layer with an oxygen content of 8.0 cm and a nitrogen content of 17.0 cm. .

この焼結体のビッカ実施例3 実施例1.2と同じ二酸化チタン粉末を900℃の温度
で3時間反応させた粉末を実施例1.2と同じ条件で圧
粉体とした。この圧粉体を窒素を20vo1%のアルゴ
ンで希釈した雰囲気下で1500℃において6時間焼結
した。この焼結体は表面から0.07flのととるまで
は2.3チのTie、が混在する窒化チタン層より成り
、0.07〜0.25mの層は徐々に酸素含有量が増加
、窒素含有量が減少し。
Example 3 of this sintered body The same titanium dioxide powder as in Example 1.2 was reacted at a temperature of 900° C. for 3 hours, and a powder was made into a green compact under the same conditions as in Example 1.2. This green compact was sintered at 1500° C. for 6 hours in an atmosphere in which nitrogen was diluted with 20vol% argon. This sintered body consists of a titanium nitride layer mixed with 2.3 inches of Tie from the surface to 0.07 fl, and the layer from 0.07 to 0.25 m gradually increases in oxygen content and nitrogen. content decreases.

0.25fmより中心部は酸素量8.(]4%窒素量1
7.1チの酸窒化チタン層で形成されていた。この焼結
体の色調は実施例1.2とほぼ同じ黄金色で、ビッカー
ス硬度は1810に9/mmテあった。
From 0.25 fm, the oxygen content in the center is 8. (]4% nitrogen amount 1
It was formed of a 7.1-inch titanium oxynitride layer. The color tone of this sintered body was almost the same golden yellow as in Example 1.2, and the Vickers hardness was 1810/9/mm.

比較例 平均粉末1.0μの窒化チタン粉末を実施例と同じ条件
で圧粉体とし窒素雰囲気中で1700℃で4時間焼結し
た。得られた焼結体の色調は暗い赤色でビッカース硬度
は900に97mm″であった。
Comparative Example Titanium nitride powder with an average powder size of 1.0 μm was made into a compact under the same conditions as in the example and sintered at 1700° C. for 4 hours in a nitrogen atmosphere. The color tone of the obtained sintered body was dark red, and the Vickers hardness was 900.97 mm''.

Claims (1)

【特許請求の範囲】 1 表面層が主に窒化チタンであり、該表面層から内部
にかけて窒素含有量が次第に減少する一方酸素含有量が
増加し、内部が酸窒化チタンである表面が窒化チタンで
内部が酸窒化チタンからなる焼結体。 2 表面層の窒素含有量が21重量%以上であり、内部
の酸素含有量が2〜25重量%、窒素含有量10〜21
重量%である特許請求の範囲第1項の焼結体。
[Claims] 1. The surface layer is mainly made of titanium nitride, the nitrogen content gradually decreases from the surface layer to the inside, while the oxygen content increases, and the inside is made of titanium oxynitride and the surface is made of titanium nitride. A sintered body whose interior is made of titanium oxynitride. 2 The nitrogen content of the surface layer is 21% by weight or more, the internal oxygen content is 2 to 25% by weight, and the nitrogen content is 10 to 21% by weight.
% by weight of the sintered body of claim 1.
JP60149226A 1985-07-09 1985-07-09 Sintered body whose surface is titanium oxide and inside is titanium oxynitirde Granted JPS6212669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60149226A JPS6212669A (en) 1985-07-09 1985-07-09 Sintered body whose surface is titanium oxide and inside is titanium oxynitirde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60149226A JPS6212669A (en) 1985-07-09 1985-07-09 Sintered body whose surface is titanium oxide and inside is titanium oxynitirde

Publications (2)

Publication Number Publication Date
JPS6212669A true JPS6212669A (en) 1987-01-21
JPH042539B2 JPH042539B2 (en) 1992-01-20

Family

ID=15470619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60149226A Granted JPS6212669A (en) 1985-07-09 1985-07-09 Sintered body whose surface is titanium oxide and inside is titanium oxynitirde

Country Status (1)

Country Link
JP (1) JPS6212669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056898A (en) * 2009-09-14 2011-03-24 Toshiba Hokuto Electronics Corp Thermal print head and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056898A (en) * 2009-09-14 2011-03-24 Toshiba Hokuto Electronics Corp Thermal print head and method for manufacturing the same

Also Published As

Publication number Publication date
JPH042539B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
JPS6256107B2 (en)
JPS5864269A (en) Silicon nitride sintered body and manufacture
JPS6212669A (en) Sintered body whose surface is titanium oxide and inside is titanium oxynitirde
JPS59184771A (en) Manufacture of silicon nitride sintered body
JPS61291462A (en) Manufacture of sintered body comprising tianium oxonitride inside and titanium nitride on surface
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS60200862A (en) Manufacture of sintered body constituting titanium nitride on surface and titanium nitride oxide in inside
JPS61215253A (en) Chromium oxide base ceramic material
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JPS63270360A (en) High-density sintered silicon oxynitride and production thereof
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPS6311575A (en) Manufacture of aluminum nitride sintered body
JPH01197360A (en) Zirconia-based golden spike and production thereof
JPS6317262A (en) Aluminum nitride sintered body
JPS61201662A (en) Manufacture of composite ceramics
JPS60215576A (en) Manufacture of sialon sintered body
JPS60255673A (en) Manufacture of titanium oxynitride sintered body
JPS60186473A (en) Silicon nitride sintered body and manufacture
JPH0568428B2 (en)
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPH0585506B2 (en)
JPS6379763A (en) Manufacture of silicon nitride reaction sintered body
JPS63176369A (en) Manufacture of silicon oxynitride base sintered body
JPS5926974A (en) Si3n4 sintered body and manufacture