JPS61219618A - Plasticization controlling device for injection molder - Google Patents

Plasticization controlling device for injection molder

Info

Publication number
JPS61219618A
JPS61219618A JP5963385A JP5963385A JPS61219618A JP S61219618 A JPS61219618 A JP S61219618A JP 5963385 A JP5963385 A JP 5963385A JP 5963385 A JP5963385 A JP 5963385A JP S61219618 A JPS61219618 A JP S61219618A
Authority
JP
Japan
Prior art keywords
screw
pressure
resin
control
plasticizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5963385A
Other languages
Japanese (ja)
Other versions
JPH0253211B2 (en
Inventor
Tohaku Kawaguchi
川口 東白
Kiyoshi Hashimoto
潔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5963385A priority Critical patent/JPS61219618A/en
Publication of JPS61219618A publication Critical patent/JPS61219618A/en
Publication of JPH0253211B2 publication Critical patent/JPH0253211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable to highly-accurately control the retreating speed of a screw so as to control the pressure of molten resin over the wide range from 0kg/cm<2> by a method wherein a resin pressure sensor to detect the pressure of molten material at the tip of a heating cylinder in the form of electric signals and a means to directly convert the rotational speed of a motor into the movement of a hydraulic piston to reciprocatingly drive a plasticizing screw are provided. CONSTITUTION:In an in-line screw type injection molder, a resin pressure sensor 54 to detect the pressure of molten material at the tip of a heating cylinder during the plasticizing process in the form of electric signals, a motor 50, the amount of revolution of which is determined by given control signals, and a means to directly convert the rotational speed of the motor 50 into the movement of a hydraulic piston to reciprocatingly drive a plasticizing screw 3 are provided. A control circuit 52 supplies the control signal to the motor, based upon the detection signal inputted from the resin pressure sensor, in order to control the retreating speed of said plasticizing screw 3 so as to control the pressure of molten material at the tip of the heating cylinder 2 nearly at 0kg/cm<2> and at the same time as low as possible over the range, within which no negative pressure produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は射出成形機において可塑化される材料の温度や
溶融、混線状態などを安定させるために可塑化条件を制
御する可塑他制n装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a plasticizing control device that controls plasticizing conditions in order to stabilize the temperature, melting, cross-wire state, etc. of a material that is plasticized in an injection molding machine. It is related to.

[従来の技術フ インラインスクリュタイプ射出成形機は、押出し成形機
のようにバレル(加熱筒)内のスクリュが連続的に回転
するちのではなく、スクリュは可塑化計!動作、射出動
作にしたがって周期的に回転および停止を繰返す。また
、可塑化工程において、スクリュはホッパから溶融樹脂
等の材料を供給されながら後退するので、スクリュの有
効長は刻々変化する。上記の2つの基本的動作に起因し
、可塑化された樹脂の濃度と溶融および混線状態とに不
均一が生じ、成形品の品質を低下する原因となる。
[Conventional technology Fine-line screw type injection molding machines do not have screws inside the barrel (heating cylinder) that rotate continuously like extrusion molding machines do, but the screws are plasticizers! It rotates and stops periodically according to the operation and injection operation. Further, in the plasticizing process, the screw retreats while being supplied with material such as molten resin from the hopper, so the effective length of the screw changes every moment. Due to the above two basic operations, non-uniformity occurs in the concentration of the plasticized resin and in the melting and cross-wire states, which causes a reduction in the quality of the molded product.

これを防止するため、射出成形機の可装化工程において
は、スクリュの後退速度の制御によって可塑化制御を行
っている。
To prevent this, in the plasticizing process of the injection molding machine, plasticization is controlled by controlling the retraction speed of the screw.

従来、スクリュの後退速度を制御するためには、スクリ
ュの回転速度の調整によって溶融樹脂をスクリュ前方へ
移送する作用の大きさを制御し、油圧シリンダの背圧の
調整によってスクリュの後退抵抗力を制御する方法を個
別または同時に実施する制御装置が種々提案されている
Conventionally, in order to control the retraction speed of the screw, the magnitude of the action of transferring the molten resin to the front of the screw was controlled by adjusting the rotational speed of the screw, and the retraction resistance force of the screw was controlled by adjusting the back pressure of the hydraulic cylinder. Various control devices have been proposed that perform control methods individually or simultaneously.

[本発明が解決しようとする問題点] しかし、後退抵抗は、油圧シリンダ内の背圧だシブでは
なく、スクリュと加熱筒との[擦抵抗や、スクリュ溝内
の樹脂と加熱筒との摩擦抵抗、油圧シリンダのパツキン
抵抗、油圧モータユニットのrR動抵抗とどの緩和であ
って、これらがスクリュの後退を妨げている。溶融樹脂
圧は、上記後退抵抗力と等しいか、それ以上でなければ
ならないので、背圧がたとえピロとなっても、溶融樹脂
圧はゼロにならず、ある値を有する。従って、背圧調整
では、その値以下の溶融樹脂圧での可塑化はできない。
[Problems to be Solved by the Invention] However, the retraction resistance is not due to the back pressure inside the hydraulic cylinder, but rather due to the friction resistance between the screw and the heating cylinder, and the friction between the resin in the screw groove and the heating cylinder. Resistance, gasket resistance of the hydraulic cylinder, rR dynamic resistance of the hydraulic motor unit, and other relaxation factors prevent the screw from retracting. The molten resin pressure must be equal to or greater than the above-mentioned retreating resistance force, so even if the back pressure becomes pyro, the molten resin pressure does not become zero but has a certain value. Therefore, by adjusting the back pressure, plasticization cannot be performed at a molten resin pressure lower than that value.

しかし、例えば、溶融樹脂圧のゼロ近傍にお1)る制御
が適当でないと、スクリュの後退が脈動したり、後退速
度が局部的に低下したりするばかりでなく、樹脂の梗類
によってはスクリュが後退せずに停止してしまうことが
あった。
However, if the molten resin pressure is not properly controlled in the vicinity of zero (1), for example, not only will the screw retraction pulsate or the retraction speed locally decrease, but also the screw Sometimes the machine would stop without moving backwards.

また、スクリュ背圧の調整によってスクリュ後退速度を
間接的に制御するものであるから、調整がむつかしく、
さらにスクリュ背圧を制御しても、作動油の圧縮性や油
圧配管系の圧力による容積変化で油圧配管系の遅れ時間
が発生して溶融樹脂圧が直ちに追従しないという欠点が
あった。その上、汎用スクリュで各種の成形条件や樹脂
の梯順に対応した後退抵抗を制御することが困難であっ
た。
In addition, since the screw retraction speed is indirectly controlled by adjusting the screw back pressure, adjustment is difficult;
Furthermore, even if the screw back pressure is controlled, a lag time occurs in the hydraulic piping system due to volume changes due to the compressibility of the hydraulic oil and the pressure of the hydraulic piping system, resulting in a drawback that the molten resin pressure does not follow immediately. Furthermore, it has been difficult to control the retraction resistance with a general-purpose screw in accordance with various molding conditions and resin ladder sequences.

[問題を解決するための手段] 従って、本発明の主目的は、溶融樹脂圧がゼロから広範
囲に至るまで、高精度でスクリュ後退速度を制御すると
のできる射出成形機の可塑化制御装置を提供することで
ある。
[Means for Solving the Problem] Therefore, the main object of the present invention is to provide a plasticization control device for an injection molding machine that can control the screw retraction speed with high precision from zero to a wide range of molten resin pressure. It is to be.

本発明の他の目的は、油圧配管系による遅れ時間のない
連応性の高い可塑化制御装置を提供することである。
Another object of the present invention is to provide a highly responsive plasticizing control device that does not have delay time caused by a hydraulic piping system.

更に、本発明の他の目的は、従来の汎用射出成形機にも
適用容易で構成の簡単な可塑化制御装置を提供すること
である。
Furthermore, another object of the present invention is to provide a plasticization control device that is easily applicable to conventional general-purpose injection molding machines and has a simple configuration.

上記目的を達成するために、本発明による割出成形機の
可塑化制御装置は、インラインスクリュ型の射出成形機
において、可塑化工程時に加熱筒先端部の溶融材料の圧
力を電気信号として検出する樹脂圧力センサと、与えら
れる制御信号によって回転量が決定される電11J I
jlと、この電動機の回転速度を可塑化スクリュを往復
駆動する油圧ピストンの移動機に直接変換する手段と、
前記樹脂圧力センサの検出信号を入力しこれに基づき前
記可塑化スクリュの後退速度を前記加熱筒先端部におけ
る溶融材料の圧力が負圧にならない範囲でかつほぼOk
g/ cfになるように制御し得るように制御信号を前
記電動機へ供給する制御回路とを備えた構成にした。
In order to achieve the above object, the plasticization control device for an index molding machine according to the present invention detects the pressure of the molten material at the tip of the heating cylinder as an electric signal during the plasticization process in an in-line screw type injection molding machine. The rotation amount is determined by the resin pressure sensor and the supplied control signal.
jl, and means for directly converting the rotational speed of the electric motor into a hydraulic piston moving machine that reciprocates the plasticizing screw;
The detection signal of the resin pressure sensor is input, and based on this, the retraction speed of the plasticizing screw is set within a range where the pressure of the molten material at the tip of the heating cylinder does not become negative pressure and is approximately OK.
g/cf.

[作  用] 可塑化スクリュを回転させて樹脂を可塑化し、加熱筒先
端部に可塑化溶融された樹脂が順次たまれば、それに応
じて可塑化スクリュが後退する。
[Function] The plasticizing screw is rotated to plasticize the resin, and when the plasticized and melted resin gradually accumulates at the tip of the heating cylinder, the plasticizing screw retreats accordingly.

このとき、加熱筒先端部の溶融樹脂の圧力を電気信号と
して取出し、その電気信号に応じて可塑化スクリュ後退
用の電動機を適宜な回転数のもとに連続して回転させ、
ねじ機構などの機械的な伝動機構を介して可塑化スクリ
ュを適宜な速度で後退させ、加熱筒先端部にお【プる溶
融樹脂の圧力が負圧にならない範囲で、かつ、はぼOk
a/cfになるようにする。
At this time, the pressure of the molten resin at the tip of the heating cylinder is extracted as an electric signal, and in accordance with the electric signal, the electric motor for retracting the plasticizing screw is continuously rotated at an appropriate rotation speed.
The plasticizing screw is retracted at an appropriate speed through a mechanical transmission mechanism such as a screw mechanism, and the pressure of the molten resin flowing into the tip of the heating cylinder does not become negative pressure, and the pressure is OK.
A/cf.

[実施例] つぎに、1実施例によって、本発明をさらに詳細に説明
する。
[Example] Next, the present invention will be explained in more detail by way of an example.

第1図は本発明によるインラインスクリュ式射出成形機
の全体構成を示し、実線は油圧系統を点線は電気系統を
示す。図において、先端部にノズル1を有する加熱筒2
内には、スクリュ3が回転かつ、往復動自在に設けられ
ており、スクリュ3は、後記するピストンロッド7の一
部に取付けられて進退自在に設けられている油圧モータ
4の回転軸と同心状に直結されている。また、加熱筒2
には−ぜの射出シリンダ5.6の外筒が一体的に固定さ
れており、これら両方の射出シリンダ5.6に共用され
る口字状のピストンロッド7には、前記スクリュ3がス
ラストベアリング8を介して回転自在に軸支されている
。スラストベアリング8部において、スクリュ3の一部
とピストンロッド7の一部は、二つ割のカップリング8
aによって連結されており、スクリュ3は自由に回転す
るが、ピストンロッド7と一体になって前後進するよう
になっている。両シリンダ5.6のヘッドエンド側ボー
ト9.10には、切換弁11を備えた油圧配管12が接
続されており、また両シリンダ5.6のロッドエンド側
ボート13.14には、切換弁15を備えた油圧配管1
7が接続されている。さらに、油圧モータ4には、切換
弁18を備えた油圧配管19が接続されており、この油
圧配管19と前記油圧配管12.17とは合流されて流
a 1ilIIll弁20とリリーフ弁21とを備えた
油圧配管22により油圧ポンプ23と油圧タンク24と
に接続されている。スクリュ3の基部近傍には、これと
加熱82との間へ樹脂を供給するホッパ25が設けられ
ており、また、加熱筒2の外周部には内部の樹脂を加熱
するとヒータ26が設けられている。
FIG. 1 shows the overall configuration of an in-line screw type injection molding machine according to the present invention, with solid lines showing the hydraulic system and dotted lines showing the electrical system. In the figure, a heating cylinder 2 with a nozzle 1 at its tip
A screw 3 is provided within the interior so as to be rotatable and reciprocating. are directly connected to the In addition, the heating tube 2
The outer cylinder of the two injection cylinders 5.6 is integrally fixed, and the screw 3 is attached to a thrust bearing on the mouth-shaped piston rod 7 that is shared by both injection cylinders 5.6. 8 and is rotatably supported. In the thrust bearing 8 part, a part of the screw 3 and a part of the piston rod 7 are connected to the halved coupling 8.
a, and the screw 3 rotates freely, but moves forward and backward together with the piston rod 7. A hydraulic pipe 12 equipped with a switching valve 11 is connected to the head end boat 9.10 of both cylinders 5.6, and a switching valve is connected to the rod end boat 13.14 of both cylinders 5.6. Hydraulic piping 1 with 15
7 is connected. Furthermore, a hydraulic piping 19 equipped with a switching valve 18 is connected to the hydraulic motor 4, and this hydraulic piping 19 and the hydraulic piping 12.17 are merged to form a flow valve 20 and a relief valve 21. It is connected to a hydraulic pump 23 and a hydraulic tank 24 by a hydraulic pipe 22 provided therein. A hopper 25 is provided near the base of the screw 3 to supply resin between this and the heater 82, and a heater 26 is provided on the outer periphery of the heating cylinder 2 to heat the resin inside. There is.

さらに、ピストンロッド7に固定されたねじ部材49に
は、電動サーボモータ50と直結のねじ軸51が螺合さ
れており、電動リーボモータ50を回転させることによ
りねじ作用でピストンロッド7を介してスクリュ3が進
退するように構成されている。
Furthermore, a screw shaft 51 that is directly connected to an electric servo motor 50 is screwed into the screw member 49 fixed to the piston rod 7, and when the electric servo motor 50 is rotated, the screw is screwed through the piston rod 7 by a screw action. 3 is configured to move forward and backward.

第11i2Iに示しためねじ部材49は常にねじ軸51
に螺合させているが、これは、第6.7図に示すように
、めねじ部材49をねじ軸51に螺合させなかったりす
ることができる。
The internal threaded member 49 shown in No. 11i2I is always connected to the threaded shaft 51.
However, as shown in FIG. 6.7, the female threaded member 49 may not be threaded onto the threaded shaft 51.

第6.7図において、ピストンロッド7の側面にはブラ
ケット27を介して、ボックス28が固定されている。
In FIG. 6.7, a box 28 is fixed to the side surface of the piston rod 7 via a bracket 27.

ボックス28中には、めねじ部材49を構成する外面が
角形の二つ割ナツト49a149bが、ボックス28側
の一面49cと、軸線方向の筒外面49d 、49eが
接触された状態で配されている。上記−面49cをボッ
クス28の底面に密着させて設けたのは、ねじ軸51が
回転したとき、めねじ部材49が回ることなく軸線方向
に移動しうるようにしたためであり、上記筒外面49d
 、496をボックス28の軸線方向の両内壁に密着さ
せて設けたのは、めねじ部材49とボックス28が常に
一体に軸線方向に移動しうるようにしたためである。ボ
ックス28の両側外面にはシリンダ29a 、29bを
固定し、シリンダ29a 129bのピストンロッド3
0a 、30bの先端部は二つ割ナツト49a 、49
bにそれぞれ固定した。そして、シリンダ29a、29
bのピストンロッド30a 、30bを同時に進退′c
5けることによって、二つ割ナツト49a 、49bを
ねじ軸51にかみ合わせたり、螺合をはずしたりするこ
とができる。ねじ軸51は軸受用を介して固定部材32
に回動自在に取付けられており、一方の固定部材32に
電動サーボモータ50が取付参ノられている。
Inside the box 28, a split nut 49a149b with a rectangular outer surface constituting the female threaded member 49 is arranged with one surface 49c on the box 28 side and the axially cylindrical outer surfaces 49d and 49e in contact with each other. . The reason why the negative surface 49c is provided in close contact with the bottom surface of the box 28 is so that when the screw shaft 51 rotates, the female threaded member 49 can move in the axial direction without rotating, and the cylinder outer surface 49d
, 496 are provided in close contact with both inner walls of the box 28 in the axial direction so that the female threaded member 49 and the box 28 can always move together in the axial direction. Cylinders 29a and 29b are fixed to the outer surfaces of both sides of the box 28, and the piston rods 3 of the cylinders 29a and 129b are fixed.
The tips of 0a and 30b are split nuts 49a and 49
Each was fixed in b. And cylinders 29a, 29
Simultaneously advance and retreat the piston rods 30a and 30b of b'c
5, the split nuts 49a and 49b can be engaged with or unscrewed from the screw shaft 51. The screw shaft 51 is connected to the fixing member 32 through a bearing.
An electric servo motor 50 is attached to one of the fixed members 32 so as to be rotatable.

シリンダ29a 、29bのピストンロッド30a、3
Qbを前進させれば、二つ割ナツト49a149bをね
じ軸51にかみ合わせることができる。
Piston rods 30a, 3 of cylinders 29a, 29b
By advancing Qb, the split nut 49a149b can be engaged with the screw shaft 51.

この状態で電動サーボモータ50を駆動させれば、ねじ
@51が回転し、二つ割ナツト49a 、49bから構
成されているめねじ部材49がボックス28とともに軸
線方向に移動し、シリンダ5.6のピストンロッド7は
前後進する。
When the electric servo motor 50 is driven in this state, the screw @51 rotates, and the female threaded member 49 made up of the split nuts 49a and 49b moves in the axial direction together with the box 28, and the cylinder 5.6 The piston rod 7 moves back and forth.

シリンダ29a 、29bのピストンロッド30a 、
30bを後退させれば、二つ割ナツト49a149bを
ねじ軸51からかみ合いをはずすことができるので、シ
リンダ5.6を作用させれば、ねじ部材49はピストン
ロッド7とともに前後進する。
Piston rods 30a of cylinders 29a, 29b,
30b is moved backward, the split nut 49a149b can be disengaged from the screw shaft 51, so that when the cylinder 5.6 is activated, the screw member 49 moves forward and backward together with the piston rod 7.

め勾じ部材49をねじ軸51にかみ合わせるのは、可塑
化計量工程時に、電動サーボモータ50の作動で可塑化
スクリュ3を後退させるためであリ、めねじ部材49を
ねじ軸51からはずすのは、射出工程時にシリンダ5.
6の作用だけで可塑化スクリュ3を前進させることがで
きるようにしたためである。
The reason why the female screw member 49 is engaged with the screw shaft 51 is to move the plasticizing screw 3 backward by the operation of the electric servo motor 50 during the plasticization metering process, and the female screw member 49 is removed from the screw shaft 51. During the injection process, cylinder 5.
This is because the plasticizing screw 3 can be advanced only by the action of 6.

本実施例では、可塑化計量時に可塑化スクリュ3を後退
させるとき、電動サーボモータ50により機械的にスク
リュ3を後退させるので、スクリュ3は微妙に変動する
油圧変動や脈動、作動油の圧縮による作動おくれ、樹脂
圧等に何ら影響されることなく円滑に後退する。
In this embodiment, when retracting the plasticizing screw 3 during plasticization measurement, the screw 3 is mechanically retracted by the electric servo motor 50. Smoothly retreats without being affected by operation delay, resin pressure, etc.

一方、加熱筒2の先端部における溶融樹脂の圧力を検出
するために溶融樹脂圧センサ54が設けられる。また、
油圧モータ4の負荷を検出するために負荷圧センサ55
が油圧配管1つの途中に設()られる。これ等のセンサ
54および55の出力は各接続線53および56を介し
て制御回路52の入力■1およびI2とそれぞれ接続さ
れる。制御回路52は予め設定された処理プログラムを
内蔵し、センサ54および55からの入力信号に基づき
所定の演算を実行する。この制御回路52の出力O1は
接続線57を介して電動サーボモータ5oに接続され、
出力o2は接続線58を介して流層調整弁20と接続さ
れる。更に、出力o1は警報器59と接続される。
On the other hand, a molten resin pressure sensor 54 is provided to detect the pressure of the molten resin at the tip of the heating cylinder 2. Also,
A load pressure sensor 55 is used to detect the load on the hydraulic motor 4.
is installed in the middle of one hydraulic pipe. The outputs of these sensors 54 and 55 are connected to inputs 1 and 12 of the control circuit 52 via connection lines 53 and 56, respectively. The control circuit 52 contains a preset processing program and executes predetermined calculations based on input signals from the sensors 54 and 55. The output O1 of this control circuit 52 is connected to the electric servo motor 5o via a connection line 57,
The output o2 is connected to the flow layer regulating valve 20 via a connecting line 58. Furthermore, the output o1 is connected to an alarm device 59.

以下、上記構成による射出成型機の動作について説明す
る。
The operation of the injection molding machine with the above configuration will be explained below.

ピストンロッド7がシリンダ5および6内へ後退してス
クリュ3が前進した状態でホッパ25がらスクリュ3の
基部へ樹脂を供給し、切換弁15.18の切換により油
圧モータ4を回転させてボート9.10.13.14を
いずれも油圧タンク24側へ切換えると、加熱により溶
融した樹脂は、スクリュ3の回転により混線され可塑化
されながら加熱筒2の前部へ送られるとともに、スクリ
ュ3は樹脂の圧力により徐々に後退しようとする。
With the piston rod 7 retreating into the cylinders 5 and 6 and the screw 3 moving forward, resin is supplied from the hopper 25 to the base of the screw 3, and the hydraulic motor 4 is rotated by switching the switching valve 15, 18 to move the boat 9. .10, 13, and 14 are all switched to the hydraulic tank 24 side, the resin melted by heating is mixed and plasticized by the rotation of the screw 3, and is sent to the front of the heating cylinder 2. It tries to retreat gradually due to the pressure of

ただし、この時、スクリュ3は後記するように、電動サ
ーボモータ50の作用により所望の後退速度で後退させ
る。所要の装入量に応じたストロークだけスクリュ3が
後退すると、不図示のリミットスイッチが作動してスク
リュ3の回転と1退とが停止し、加熱筒2の先端部には
可塑化された材料が一時蓄えられる。次に前回サイクル
の成形品が金型から取出されて金型が閉じられると、切
換弁15が切換られてボート13.14へ送油され、ス
クリュ3が前進することにより加熱筒先端部に蓄えられ
た樹脂が加圧されて金型キャビティ内へ射出される。射
出された樹脂が金型内で冷却されている間に次回サイク
ルの可塑化計融工程が行なわれる。
However, at this time, the screw 3 is retracted at a desired retraction speed by the action of the electric servo motor 50, as will be described later. When the screw 3 retreats by a stroke corresponding to the required charging amount, a limit switch (not shown) is activated to stop the rotation and retraction of the screw 3, and the tip of the heating cylinder 2 is filled with plasticized material. is temporarily stored. Next, when the molded product from the previous cycle is taken out of the mold and the mold is closed, the switching valve 15 is switched to send oil to the boat 13, 14, and as the screw 3 advances, the oil is stored at the tip of the heating cylinder. The resin is pressurized and injected into the mold cavity. While the injected resin is being cooled in the mold, the next cycle of plasticizing and melting process is carried out.

上記の工程において、スクリュ3が侵返しつつあるとき
、制御回路52は溶融樹脂圧センサ54および負荷圧セ
ンサ55の各検出信号を入力し、これ等の値に基づき所
定の演鋒を行なった後、電動サーボモータ50に対して
はスクリュ3の後退速度の制御信号を、流山調整弁20
に対してはスクリュ3の回転数の制御信号をそれぞれ供
給する。
In the above process, when the screw 3 is beginning to regress, the control circuit 52 inputs the detection signals of the molten resin pressure sensor 54 and the load pressure sensor 55, and performs a predetermined operation based on these values. , a control signal for the backward speed of the screw 3 is sent to the electric servo motor 50,
A control signal for the rotational speed of the screw 3 is supplied to each of them.

スクリュ回転数に比しスクリュ後退速度が遅すぎる場合
には、スクリュ3と加熱筒2との摩擦抵抗や、スクリュ
3溝内の樹脂と加熱筒2とのf!pm抵抗、シリンダ5
.6内にお【プるピストンロッド7の前進(第1図にお
いて右方向への移動)、油圧モータユニット4の回転軸
摺動抵抗などの緩和によってスクリュ3の後退が妨げら
れているのであるから、加熱筒2の先端内部の溶融樹脂
の圧力が既定の閾より高くなったとき、制御回路52は
スクリュ後退速度制御信号を電動サーボモータ50へ供
給する。電動ナーボモータ5oは1IIIII!1回路
52から供給される信号に応じた回転mでネジ軸51を
回転し、それに伴ってめねじ部材49はネジ軸51の軸
方向へ移動する。その結果、ピストンロッド7はスクリ
ュ3を移動さきることとなる。
If the screw retraction speed is too slow compared to the screw rotation speed, the frictional resistance between the screw 3 and the heating cylinder 2 or the f! pm resistance, cylinder 5
.. This is because the retreat of the screw 3 is prevented by the advancement of the piston rod 7 (movement to the right in Fig. 1) and the relaxation of the sliding resistance of the rotating shaft of the hydraulic motor unit 4. When the pressure of the molten resin inside the tip of the heating cylinder 2 becomes higher than a predetermined threshold, the control circuit 52 supplies a screw retraction speed control signal to the electric servo motor 50. Electric Nervo Motor 5o is 1IIIIII! The threaded shaft 51 is rotated by a rotation m corresponding to the signal supplied from the one circuit 52, and the female threaded member 49 moves in the axial direction of the threaded shaft 51 accordingly. As a result, the piston rod 7 is able to move past the screw 3.

そして、このとき、加熱n2の先端内部の溶融樹脂圧が
、例えば2〜3kg/cvノよウニ、okg/cvに近
い正圧になり、スクリュ後退抵抗力がマイナスになるよ
うに、スクリュ3の後退速度を制御する。勿論、スクリ
ュ3に背圧をもたせることなく、スクリュ3を電動サー
ボモータ5oのみで、ねじ軸51、めねじ部材49、ピ
ストンロッド7を介して、直接優遇させる。
At this time, the molten resin pressure inside the tip of the heating n2 becomes a positive pressure close to, for example, 2 to 3 kg/cv, or 0 kg/cv, and the screw 3 is adjusted so that the screw retreating resistance force becomes negative. Control the retraction speed. Of course, the screw 3 is directly operated via the screw shaft 51, the female thread member 49, and the piston rod 7 only by the electric servo motor 5o without applying back pressure to the screw 3.

制御回路52は、スクリュ回転数に比しスクリュ後退速
度が速すぎる場合にノズル1からのエアの吸収によって
溶融樹脂圧力が規定の閾値より低下したとき、スクリュ
後退速度制御信号を電動サーボモータ50へ供給する。
The control circuit 52 sends a screw retraction speed control signal to the electric servo motor 50 when the molten resin pressure drops below a predetermined threshold due to air absorption from the nozzle 1 when the screw retraction speed is too fast compared to the screw rotation speed. supply

電動サーボモータ50は制御回路52から供給される信
号に応じた回転速度でネジ軸51を回転し、それに伴っ
てめ勾じ部材49はネジ軸51の軸方向へ移動する。そ
の結果、ピストンロッド7はスクリュ3を移動させるこ
ととなる。
The electric servo motor 50 rotates the screw shaft 51 at a rotational speed according to a signal supplied from the control circuit 52, and the diagonal member 49 moves in the axial direction of the screw shaft 51 accordingly. As a result, the piston rod 7 moves the screw 3.

一方、ホッパの樹脂材料の欠乏、あるいは、ブリッジ現
象によりスクリュ3の基部へ樹脂が供給されなくなった
場合は、油圧モータ4の負荷が低下し、これが負荷圧セ
ンサ55によって検出される。この検出信号により制御
回路52は流量調整弁20に信号を送り、スクリュの後
退および回転を停止させると共に警報器59によって異
常を示す警報を発する。
On the other hand, if resin is no longer supplied to the base of the screw 3 due to a lack of resin material in the hopper or a bridging phenomenon, the load on the hydraulic motor 4 decreases, and this is detected by the load pressure sensor 55. In response to this detection signal, the control circuit 52 sends a signal to the flow rate regulating valve 20 to stop the screw from retracting and rotating, and also causes the alarm 59 to issue an alarm indicating an abnormality.

上記の制御動作をよりよく理解する1助として、以下ス
クリュ3の後退動作について詳細に説明する。
To help better understand the above control operation, the retraction operation of the screw 3 will be explained in detail below.

第2図および第3図は、それぞれ縦軸にスクリュ前方に
蓄えられた溶融樹脂の圧力をとり、横軸にスクリュ背圧
ないしは電動機の作用によるスクリュ後退抵抗力をとっ
て示す関係線図であって、第2図は従来の射出成形機の
場合を示し、第3図は本発明に・係る射出成形機の場合
を示している。
Figures 2 and 3 are relationship diagrams in which the vertical axis represents the pressure of the molten resin stored in front of the screw, and the horizontal axis represents the screw back pressure or the screw retreat resistance force due to the action of the electric motor. 2 shows the case of a conventional injection molding machine, and FIG. 3 shows the case of the injection molding machine according to the present invention.

また、第4図および第5図はそれぞれ縦軸にスクリュ溝
内の樹脂圧力をとり、横軸に加熱筒2内でのスクリュの
位置をとって示す関係図であって、第4図は従来の成形
機の場合を示し、第5図は本発明に係る成形契の場合を
示している。
4 and 5 are relationship diagrams in which the vertical axis represents the resin pressure in the screw groove, and the horizontal axis represents the position of the screw within the heating cylinder 2. FIG. 5 shows the case of a molding machine according to the present invention.

第2図、第3図において明らかなように従来はスクリュ
背圧により付加するスクリュ後退1氏抗力の14節によ
り、樹脂圧力の調節範囲がP(樹脂の種類にもよるが、
通常の熱可塑性樹脂では、例えば、P−20〜30kg
/Cvである。)ノ点カラ始まるが、これに対し、スク
リ]3の後退駆動力を溶融樹脂圧力と油圧モータの負荷
圧力との検出によって制御した本発明の場合には、樹脂
圧力の調節範囲がゼロから始まるように拡大される。す
なわち、従来の背圧による方法と同様に、スクリュに加
わる後退抵抗力がプラスの範囲に加え、本発明では、ス
クリュに加わる後退抵抗力がマイナスとなる。つまり、
後退援助させるように作用させることがでかる。
As is clear from Figures 2 and 3, in the past, the adjustment range of resin pressure was P (depending on the type of resin, but
For ordinary thermoplastic resin, for example, P-20 to 30 kg
/Cv. However, in the case of the present invention in which the backward driving force of Screw 3 is controlled by detecting the molten resin pressure and the load pressure of the hydraulic motor, the resin pressure adjustment range starts from zero. It will be enlarged as follows. That is, like the conventional method using back pressure, the backward resistance force applied to the screw is added to the positive range, and in the present invention, the backward resistance force applied to the screw is negative. In other words,
It can be used to assist in retreating.

その結果、従来の可塑化制御でスクリュ後退速度の脈動
、低下、停止を起こしていた樹脂に対しても安定した可
塑化が達成される。
As a result, stable plasticization can be achieved even for resins that have caused pulsations, reductions, or stops in the screw retraction speed under conventional plasticization control.

また、これを可塑化工程中におけるスクリュ溝内の樹脂
圧力の変化で見ると、第4図、第5図に示すようになる
。各図において向って右側がホッパ25側であり、左側
がスクリュ3の先端部である。また、第4図において、
曲線L1はスクリュ背バのある場合、曲@L2はスクリ
ュ背圧のない場合、第5図において曲線し、はスクリュ
に付加する後退抵抗力のある場合、曲線L4はスクリュ
に対して作用させる外力すなわち後退抵抗力が0の場合
、曲線Ltは本発明による場合、ずなわら、スクリュの
後退を援助する方向に力を支えた場合の曲線である。
Moreover, if this is seen in terms of the change in resin pressure within the screw groove during the plasticizing process, it becomes as shown in FIGS. 4 and 5. In each figure, the right side is the hopper 25 side, and the left side is the tip of the screw 3. Also, in Figure 4,
Curve L1 is the curve in Fig. 5 when there is a screw back pressure, curve @L2 is the curve when there is no screw back pressure, curve L4 is the curve when there is a retreating resistance force applied to the screw, and curve L4 is the external force acting on the screw. That is, when the retreating resistance force is 0, the curve Lt according to the present invention is of course the curve when the force is supported in a direction that supports the retreating of the screw.

ホッパ25から供給された材料は、スクリュ溝内の樹脂
圧力に打ち勝ってスクリュ3の前方へ移送されなければ
ならないが、図においてホッパ25側から樹脂圧力の立
上り位置が遠くかつ樹脂圧力が小さいほど樹脂の移送が
容易である。
The material supplied from the hopper 25 must overcome the resin pressure in the screw groove and be transferred to the front of the screw 3. In the figure, the farther the resin pressure rises from the hopper 25 side and the lower the resin pressure, the more the resin Easy to transport.

第5図に示す本発明の場合においては、曲線L5とする
ことができ、第4図に示す従来のものよりも、樹脂の移
送が容易になることがわかる。すなわち、前述したスク
リュ3の後退速度の脈動、低下、停止等はいずれもフィ
ードゾーンで樹脂に作用する推進力が弱いことで起きる
ものであるから、曲線Lsの性能を得ることによってこ
れが解決される。
In the case of the present invention shown in FIG. 5, the curve L5 can be used, and it can be seen that the resin can be transferred more easily than in the conventional case shown in FIG. That is, since the aforementioned pulsations, decreases, and stops in the retraction speed of the screw 3 are all caused by the weak propulsive force acting on the resin in the feed zone, these problems can be solved by obtaining the performance of the curve Ls. .

さらに、油圧モータ4の負荷圧力とスクリュ3の後退速
度の関係について考察すると下記のようになる。射出成
形機はスクリュ3の回転が連続的でなく、回転、停止の
繰返しであって、スクリュの非回転時にもスラリ3内の
樹脂には熱エネルギが加えられて温度が上がり、その分
だけ粘度が下がるので、可塑化開始時には油圧モータ4
の負荷圧力が低くなっている。一方、スクリュ回転中は
常にホッパから新しい樹脂が供給されるので、スクリュ
3内の樹脂温度が低下しその分だけ粘度が上がるので、
可塑化計は工程の初期では、油圧モ千夕4の負荷圧力は
除々に増加する。また、スクリュ3の回転とともにスク
リュ3の前部に溶融樹脂を移送しながらスクリュ自体が
後退するので、可塑化計用工程の後半では油圧モータ4
の負荷圧力は減少する。油圧モータ4が低い負荷圧力で
回転すると、溶融樹脂に与える機械エネルギが少なくな
る。これをカバーするためにスクリュの後退速度を小さ
くすると、樹脂がスクリュ3を通過する時間は油圧モー
タ4の負荷圧力が高いときよりも長くなる。このように
、スクリュ負荷圧力×樹脂の通過時間−樹脂に与える機
械エネルギーの関係に堆づき、スクリュ3の負荷圧力を
負荷圧センサ55によって検出し、単位体積当りのエネ
ルギが一定になるようにスクリュの後退速度を演韓によ
り決定するようにしたので、可塑化された樹脂材料の温
度、分散状態のバラツキが少なくなる。
Furthermore, the relationship between the load pressure of the hydraulic motor 4 and the retraction speed of the screw 3 is considered as follows. In an injection molding machine, the screw 3 does not rotate continuously, but rotates and stops repeatedly. Even when the screw is not rotating, thermal energy is applied to the resin in the slurry 3, increasing its temperature, and the viscosity increases accordingly. decreases, so when plasticizing starts, hydraulic motor 4
load pressure is low. On the other hand, since new resin is constantly supplied from the hopper while the screw is rotating, the resin temperature inside the screw 3 decreases and the viscosity increases accordingly.
At the beginning of the process of the plasticization meter, the load pressure of the hydraulic motor 4 gradually increases. In addition, as the screw 3 rotates, the screw itself moves back while transferring the molten resin to the front part of the screw 3, so in the latter half of the plasticization meter process, the hydraulic motor 4
The load pressure of decreases. When the hydraulic motor 4 rotates at a low load pressure, less mechanical energy is applied to the molten resin. If the retraction speed of the screw is reduced in order to compensate for this, the time for the resin to pass through the screw 3 becomes longer than when the load pressure of the hydraulic motor 4 is high. In this way, based on the relationship of screw load pressure x resin passage time - mechanical energy applied to the resin, the load pressure of the screw 3 is detected by the load pressure sensor 55, and the screw is adjusted so that the energy per unit volume is constant. Since the receding speed of the plasticized resin material is determined by the retraction speed, variations in the temperature and dispersion state of the plasticized resin material are reduced.

またスクリュの後退速度を制御すると同時に、スクリュ
の回転数の制御も組入れれば、さらに成形条件の幅を広
げることができる。
Furthermore, if control of the number of rotations of the screw is incorporated at the same time as controlling the retraction speed of the screw, the range of molding conditions can be further expanded.

[効  果] 本発明では、可塑化計量時に可塑化スクリュを後退させ
るとき、加熱筒先端部における溶融樹脂の圧力に応じて
、電気サーボモータなどの電動機により、ねじ機構を介
して機械的に可塑化スクリュを後退させ、加熱筒先端部
にお【プる溶融樹脂の圧力が負圧にならない範囲で、か
つ、はぼOka/C′げになるように制御できるので、
可塑化スクリュは、微妙に変動する油圧変動や脈動、作
動油の圧縮による作動おくれ、樹脂圧等に何ら影響され
ることなく円滑に後退する。したがって、常に、安定し
た樹脂の可塑化が達成され、一定した良品質の射出製品
が確実容易に得られる。
[Effect] In the present invention, when retracting the plasticizing screw during plasticization measurement, an electric motor such as an electric servo motor mechanically plasticizes the resin through a screw mechanism in accordance with the pressure of the molten resin at the tip of the heating cylinder. By retracting the melting screw, it is possible to control the pressure of the molten resin flowing into the tip of the heating cylinder so that it does not become a negative pressure and is slightly lower than Oka/C'.
The plasticizing screw retracts smoothly without being affected by subtle oil pressure fluctuations and pulsations, operational delays due to compression of hydraulic oil, resin pressure, etc. Therefore, stable plasticization of the resin is always achieved and injection products of consistent good quality are easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による射出成形機の可塑化制御装置の1
実施例を示す縦断面図および回路図、第2図〜第5図は
従来技術と本発明の動作の相違を説明するための線図で
あり、第2図は従来技術における樹脂圧力線図、第3図
は本発明における樹脂圧力線図、第4図は従来技術にお
けるスクリュ溝内樹脂圧力線図、第5図は本発明におけ
るスクリュ溝内樹脂圧力線図、第6.7図はねじ機構部
の1実施例を示すもので、第6図は第7図の■−VI線
図、第7図は第6図の■−■線図である。 2・・・加熱筒、3・・・スクリュ、4・・・油圧モー
タ、5.6・・・割出シリンダ、7・・・ピストンロッ
ド、11.15.18・・・切換弁、20・・・流量制
御弁、23・・・油圧ポンプ、49・・・めねじ部材、
50・・・電動サーボモータ、51・・・ねじ軸、52
・・・制御回路、54.55・・・センサ、59・・・
警報器特許出願人  宇部興産株式会社 $2図   第3図 スクリュイ1! 第6図 第7図
FIG. 1 shows a plasticizing control device for an injection molding machine according to the present invention.
A vertical cross-sectional view and a circuit diagram showing the embodiment, FIGS. 2 to 5 are diagrams for explaining the difference in operation between the prior art and the present invention, and FIG. 2 is a resin pressure diagram in the prior art; Figure 3 is a resin pressure diagram in the present invention, Figure 4 is a resin pressure diagram in the screw groove in the prior art, Figure 5 is a resin pressure diagram in the screw groove in the present invention, and Figures 6.7 are screw mechanisms. FIG. 6 is a ■-VI line diagram in FIG. 7, and FIG. 7 is a ■--■ line diagram in FIG. 6. 2... Heating cylinder, 3... Screw, 4... Hydraulic motor, 5.6... Indexing cylinder, 7... Piston rod, 11.15.18... Switching valve, 20. ...Flow control valve, 23...Hydraulic pump, 49...Female thread member,
50... Electric servo motor, 51... Screw shaft, 52
...Control circuit, 54.55...Sensor, 59...
Alarm device patent applicant: Ube Industries, Ltd. $2 Figure 3 Screw 1! Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)可塑化工程時に加熱筒先端部の溶融材料の圧力を
電気信号として検出する樹脂圧力センサと、与えられる
制御信号によって回転量が決定される電動機と、この電
動機の回転速度を可塑化スクリュを往復駆動する油圧ピ
ストンの移動量に直接変換する手段と、前記樹脂圧力セ
ンサの検出信号を入力しこれに基づき前記可塑化スクリ
ュの後退速度を前記加熱筒先端部における溶融材料の圧
力が負圧にならない範囲でかつほぼ0kg/cm^2に
なるように制御し得るように制御信号を前記電動機へ供
給する制御回路とを備えた射出成形機の可塑化制御装置
(1) A resin pressure sensor that detects the pressure of the molten material at the tip of the heating cylinder as an electrical signal during the plasticizing process, an electric motor whose rotation amount is determined by the supplied control signal, and a plasticizing screw that controls the rotation speed of this electric motor. and a means for directly converting the amount of movement of a hydraulic piston that reciprocates, and a detection signal of the resin pressure sensor, and based on this, the retraction speed of the plasticizing screw is determined so that the pressure of the molten material at the tip of the heating cylinder is negative pressure. A plasticizing control device for an injection molding machine, comprising: a control circuit that supplies a control signal to the electric motor so as to be able to control the plasticization within a range of not becoming 0 kg/cm^2 and approximately 0 kg/cm^2.
(2)電動機の回転速度を可塑化スクリュを往復駆動す
る油圧ピストンの移動量に変換する手段は、前記油圧ピ
ストンの往復動方向と平行に前記電動機の出力軸と一体
に設けたねじ軸とこのねじ軸に螺着され前記油圧ピスト
ンと一体に取付けられるめねじ部材とからなり、この前
記めねじ部材は、前記ねじ軸と螺合したり、この螺合が
解除されたりし得るような半割状の構造をなす特許請求
の範囲第1項記載の射出成形機の可塑化制御装置。
(2) The means for converting the rotational speed of the electric motor into the amount of movement of the hydraulic piston that reciprocates the plasticizing screw includes a screw shaft provided integrally with the output shaft of the electric motor in parallel with the reciprocating direction of the hydraulic piston; It consists of a female threaded member that is screwed onto a threaded shaft and is attached integrally with the hydraulic piston, and the female threaded member is a half-split member that can be screwed into or unscrewed from the threaded shaft. A plasticization control device for an injection molding machine according to claim 1, which has a structure of:
JP5963385A 1985-03-26 1985-03-26 Plasticization controlling device for injection molder Granted JPS61219618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5963385A JPS61219618A (en) 1985-03-26 1985-03-26 Plasticization controlling device for injection molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5963385A JPS61219618A (en) 1985-03-26 1985-03-26 Plasticization controlling device for injection molder

Publications (2)

Publication Number Publication Date
JPS61219618A true JPS61219618A (en) 1986-09-30
JPH0253211B2 JPH0253211B2 (en) 1990-11-16

Family

ID=13118827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5963385A Granted JPS61219618A (en) 1985-03-26 1985-03-26 Plasticization controlling device for injection molder

Country Status (1)

Country Link
JP (1) JPS61219618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112921A (en) * 1988-10-24 1990-04-25 Sumitomo Heavy Ind Ltd Feedback control method for injection molding machine
EP0395543A2 (en) * 1989-04-25 1990-10-31 Howmet Corporation Injection molding apparatus and method for controlling same
JP2010083074A (en) * 2008-10-01 2010-04-15 Toyo Mach & Metal Co Ltd Injection molding machine
JP2012024936A (en) * 2010-07-20 2012-02-09 Japan Steel Works Ltd:The Method and apparatus for controlling blow molding machine
CN107627568A (en) * 2017-09-05 2018-01-26 华南理工大学 Synchronous plasticizing metered shot forming method and equipment based on eccentric rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131221A (en) * 1984-07-24 1986-02-13 Nissei Plastics Ind Co Control of backpressure in injection molding machine
JPS6137409A (en) * 1984-07-31 1986-02-22 Japan Steel Works Ltd:The Method of controlling motor driven injection apparatus
JPS61217227A (en) * 1985-03-25 1986-09-26 Toyo Kikai Kinzoku Kk Back pressure control for injection molding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131221A (en) * 1984-07-24 1986-02-13 Nissei Plastics Ind Co Control of backpressure in injection molding machine
JPS6137409A (en) * 1984-07-31 1986-02-22 Japan Steel Works Ltd:The Method of controlling motor driven injection apparatus
JPS61217227A (en) * 1985-03-25 1986-09-26 Toyo Kikai Kinzoku Kk Back pressure control for injection molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112921A (en) * 1988-10-24 1990-04-25 Sumitomo Heavy Ind Ltd Feedback control method for injection molding machine
EP0395543A2 (en) * 1989-04-25 1990-10-31 Howmet Corporation Injection molding apparatus and method for controlling same
JP2010083074A (en) * 2008-10-01 2010-04-15 Toyo Mach & Metal Co Ltd Injection molding machine
JP2012024936A (en) * 2010-07-20 2012-02-09 Japan Steel Works Ltd:The Method and apparatus for controlling blow molding machine
CN107627568A (en) * 2017-09-05 2018-01-26 华南理工大学 Synchronous plasticizing metered shot forming method and equipment based on eccentric rotor
CN107627568B (en) * 2017-09-05 2023-07-11 华南理工大学 Synchronous plasticizing metering injection molding method and equipment based on eccentric rotor

Also Published As

Publication number Publication date
JPH0253211B2 (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US4579515A (en) Plasticating control apparatus for injection machine
JPS60174623A (en) Injection molding machine
CN108582655A (en) A kind of full electric injection molding machine independence She Tai mechanisms
WO2017185552A1 (en) Injection molding apparatus having spherical rotor
JP2004216808A (en) Injection molding machine
CN101352912B (en) Injection molding machine, and method for adjusting a reverse rotation amount of a reverse rotation process in an injection molding machine
US3427639A (en) Injection molding apparatus
JPS61219618A (en) Plasticization controlling device for injection molder
US11911944B2 (en) Injection device and injection control method
US4240996A (en) Process for controlling part density in fast injection molding machines
CN208812404U (en) A kind of full electric injection molding machine independence She Tai mechanism
US5028373A (en) Method for controlling injection unit of injection molding machine
CN1239034A (en) Method for controlling drive of screw in injection molding machine
JP2638626B2 (en) Feedback control method for injection molding machine
JPH01192521A (en) Control method of screw of injection molding machine and device
JP2006123357A (en) Driving control method and driving control device of continuous plasticization type injection molding machine
US20020005598A1 (en) Method of controlling the screw of injection molding machine
JPH11268092A (en) Injection apparatus
JPS645809B2 (en)
JP3848137B2 (en) Injection control device
JPS646273Y2 (en)
JP7135134B2 (en) Injection device
WO2022210778A1 (en) Injection molding machine
JPH0544896B2 (en)
JP3534990B2 (en) Control method of injection molding machine