WO2022210778A1 - Injection molding machine - Google Patents

Injection molding machine Download PDF

Info

Publication number
WO2022210778A1
WO2022210778A1 PCT/JP2022/015678 JP2022015678W WO2022210778A1 WO 2022210778 A1 WO2022210778 A1 WO 2022210778A1 JP 2022015678 W JP2022015678 W JP 2022015678W WO 2022210778 A1 WO2022210778 A1 WO 2022210778A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
pressure
injection
mold
motor
Prior art date
Application number
PCT/JP2022/015678
Other languages
French (fr)
Japanese (ja)
Inventor
弘康 谷藤
大吾 堀田
大 大野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023511419A priority Critical patent/JPWO2022210778A1/ja
Priority to DE112022001947.6T priority patent/DE112022001947T5/en
Priority to CN202280009179.XA priority patent/CN116745046A/en
Publication of WO2022210778A1 publication Critical patent/WO2022210778A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • B29C45/54Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston and plasticising screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to an injection molding machine.
  • An injection molding machine is equipped with a cylinder to which resin pellets are supplied as a molding material, and a heater that heats the cylinder to melt the resin pellets.
  • An injection molding machine manufactures a molded product by melting resin pellets in a cylinder and filling a cavity space in a mold device with the melted resin.
  • Various sensors are installed in the injection molding machine. And it is preferred to recognize the exact torque and stress from the values detected by the sensors.
  • Patent Document 1 measures and stores the rotational torque during weighing, and inputs it into a function assumed in advance to set the allowable upper limit of the rotational torque of the screw, so complicated material mechanical strength calculations are not required. Even without it, torque monitoring based on the allowable upper limit is realized.
  • One aspect of the present invention provides a technique for improving the accuracy of pressure control for filling the molding material and detection of the pressure acting on the screw.
  • An injection molding machine has an injection device that fills a mold device with molding material, and a control device that controls the injection device.
  • the injection device has a cylinder that heats the molding material, a screw that is arranged in the cylinder, and a metering motor that rotates the screw.
  • the control device corrects the pressure set value used for the screw pressure control based on the circumferential position of the screw, which changes based on the operation of the metering motor, or a pressure detector that detects the pressure acting on the screw. It has a correction control section for correcting the detection value output from.
  • An injection molding machine has an injection device that fills a mold device with molding material, and a control device that controls the injection device.
  • the injection device has a cylinder that heats the molding material, a screw that is arranged in the cylinder, and an injection motor that moves the screw along the cylinder.
  • the control device corrects the pressure set value used for the screw pressure control based on the axial position of the screw, which changes based on the operation of the injection motor, or a pressure detector that detects the pressure acting on the screw. It has a correction control section for correcting the detection value output from.
  • An injection molding machine has an injection device that fills a mold device with molding material, and a control device that controls the injection device.
  • the injection device has a cylinder that heats the molding material, a screw arranged in the cylinder, and an injection motor that moves the screw.
  • the controller corrects the pressure setpoint used to control the screw pressure based on the speed of the screw, which varies based on the operation of the injection motor, or the pressure output from the pressure detector that detects the pressure acting on the screw. and a correction control section for correcting the detected value.
  • the influence of disturbance is suppressed, and the precision of the pressure control for filling the molding material and the detection of the pressure acting on the screw is improved.
  • FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • FIG. 3 is a diagram showing a state at the start of injection of the injection device according to one embodiment.
  • FIG. 4 is a diagram showing a state of the injection device according to one embodiment when injection is completed.
  • FIG. 5 is a partially enlarged view of the injection completion state of the injection device according to one embodiment.
  • FIG. 6 is a diagram showing functional blocks of components of a control device according to an embodiment.
  • FIG. 7 is a conceptual diagram showing the pressure detected by the load detector during weighing according to the first embodiment.
  • FIG. 8 is a diagram illustrating the relationship between the value detected by the load detector and the force due to the resin pressure according to the first embodiment.
  • FIG. 9 is a diagram showing detection values detected by the load detector when the injection spline shaft is moved while the position of the screw in the circumferential direction is fixed according to the first embodiment.
  • 10 is a diagram exemplifying a table in a correction information storage unit registered in a registration unit according to the first embodiment;
  • FIG. FIG. 11 is a diagram showing a flowchart for registering correction values in a correction information storage unit in the control device according to the first embodiment.
  • FIG. 12 is a flowchart for performing display processing during weighing in the control device according to the first embodiment.
  • FIG. 13 is a diagram illustrating resistance (including friction) that changes according to the circumferential position (rotational angle) of the screw or the position of the screw (phase of injection spline shaft).
  • FIG. 14 is a diagram showing the structure of a speed correction value storage table held by a correction information storage unit according to the second embodiment.
  • FIG. 15 is a diagram exemplifying variations in correction values calculated by the correction control unit according to the second embodiment using equation (3).
  • FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment when mold opening is completed.
  • FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping.
  • the X-axis direction, Y-axis direction and Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and Y-axis direction represent the horizontal direction, and the Z-axis direction represents the vertical direction.
  • the X-axis direction is the mold opening/closing direction
  • the Y-axis direction is the width direction of the injection molding machine 10 .
  • the Y-axis direction negative side is called the operating side
  • the Y-axis direction positive side is called the non-operating side.
  • the injection molding machine 10 includes a mold clamping device 100 that opens and closes a mold device 800, an ejector device 200 that ejects a molded product molded by the mold device 800, and the mold device 800.
  • a moving device 400 for moving the injection device 300 forward and backward with respect to the mold device 800;
  • a control device 700 for controlling each component of the injection molding machine 10;
  • a frame 900 that supports the components.
  • the frame 900 includes a mold clamping device frame 910 that supports the mold clamping device 100 and an injection device frame 920 that supports the injection device 300 .
  • the mold clamping device frame 910 and the injection device frame 920 are each installed on the floor 2 via leveling adjusters 930 .
  • a control device 700 is arranged in the inner space of the injection device frame 920 . Each component of the injection molding machine 10 will be described below.
  • the moving direction of the movable platen 120 when the mold is closed (for example, the X-axis positive direction) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened is defined as the rear (for example, the X-axis negative direction). do.
  • the mold clamping device 100 performs mold closing, pressure increase, mold clamping, depressurization, and mold opening of the mold device 800 .
  • Mold apparatus 800 includes a fixed mold 810 and a movable mold 820 .
  • the mold clamping device 100 is, for example, a horizontal type, and the mold opening/closing direction is horizontal.
  • the mold clamping device 100 includes a stationary platen 110 to which a stationary mold 810 is attached, a movable platen 120 to which a movable mold 820 is attached, a moving mechanism 102 that moves the movable platen 120 in the mold opening/closing direction with respect to the stationary platen 110, have
  • the fixed platen 110 is fixed to the mold clamping device frame 910 .
  • a stationary mold 810 is attached to the surface of the stationary platen 110 facing the movable platen 120 .
  • the movable platen 120 is arranged movably in the mold opening/closing direction with respect to the mold clamping device frame 910 .
  • a guide 101 for guiding the movable platen 120 is laid on the mold clamping device frame 910 .
  • a movable die 820 is attached to the surface of the movable platen 120 facing the fixed platen 110 .
  • the moving mechanism 102 moves the movable platen 120 back and forth with respect to the fixed platen 110 to perform mold closing, pressure increase, mold clamping, pressure release, and mold opening of the mold device 800 .
  • the moving mechanism 102 includes a toggle support 130 spaced apart from the stationary platen 110 , tie bars 140 connecting the stationary platen 110 and the toggle support 130 , and moving the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction.
  • a toggle mechanism 150 that operates the toggle mechanism 150
  • a mold clamping motor 160 that operates the toggle mechanism 150
  • a motion conversion mechanism 170 that converts the rotary motion of the mold clamping motor 160 into a linear motion
  • a mold that adjusts the interval between the stationary platen 110 and the toggle support 130.
  • a thickness adjustment mechanism 180 .
  • the toggle support 130 is spaced apart from the fixed platen 110 and mounted on the mold clamping device frame 910 so as to be movable in the mold opening/closing direction.
  • the toggle support 130 may be arranged so as to be movable along a guide laid on the mold clamping device frame 910 .
  • the guides of the toggle support 130 may be common with the guides 101 of the movable platen 120 .
  • the fixed platen 110 is fixed to the mold clamping device frame 910, and the toggle support 130 is arranged to be movable in the mold opening/closing direction with respect to the mold clamping device frame 910.
  • the stationary platen 110 may be arranged to be movable relative to the mold clamping device frame 910 in the mold opening/closing direction.
  • the tie bar 140 connects the stationary platen 110 and the toggle support 130 with a gap L in the mold opening/closing direction.
  • a plurality of (for example, four) tie bars 140 may be used.
  • the multiple tie bars 140 are arranged parallel to the mold opening/closing direction and extend according to the mold clamping force.
  • At least one tie bar 140 may be provided with a tie bar strain detector 141 that detects strain of the tie bar 140 .
  • Tie-bar distortion detector 141 sends a signal indicating the detection result to control device 700 .
  • the detection result of the tie bar strain detector 141 is used for detection of mold clamping force and the like.
  • the tie bar strain detector 141 is used as a mold clamping force detector that detects the mold clamping force, but the present invention is not limited to this.
  • the mold clamping force detector is not limited to the strain gauge type, but may be of piezoelectric type, capacitive type, hydraulic type, electromagnetic type, etc., and its mounting position is not limited to the tie bar 140 either.
  • the toggle mechanism 150 is arranged between the movable platen 120 and the toggle support 130 and moves the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction.
  • the toggle mechanism 150 has a crosshead 151 that moves in the mold opening/closing direction, and a pair of link groups that bend and stretch as the crosshead 151 moves.
  • a pair of link groups each has a first link 152 and a second link 153 that are connected by a pin or the like so as to be bendable and stretchable.
  • the first link 152 is swingably attached to the movable platen 120 with a pin or the like.
  • the second link 153 is swingably attached to the toggle support 130 with a pin or the like.
  • a second link 153 is attached to the crosshead 151 via a third link 154 .
  • the crosshead 151 advances and retreats with respect to the toggle support 130
  • the first link 152 and the second link 153 bend and stretch, and the movable platen 120 advances and retreats with respect to the toggle support 130 .
  • the configuration of the toggle mechanism 150 is not limited to the configurations shown in FIGS. 1 and 2.
  • the number of nodes in each link group is five, but the number may be four, and one end of the third link 154 is coupled to the node between the first link 152 and the second link 153. may be
  • the mold clamping motor 160 is attached to the toggle support 130 and operates the toggle mechanism 150 .
  • the mold clamping motor 160 advances and retreats the crosshead 151 with respect to the toggle support 130 , thereby bending and stretching the first link 152 and the second link 153 to advance and retreat the movable platen 120 with respect to the toggle support 130 .
  • the mold clamping motor 160 is directly connected to the motion conversion mechanism 170, but may be connected to the motion conversion mechanism 170 via a belt, pulley, or the like.
  • the motion conversion mechanism 170 converts rotary motion of the mold clamping motor 160 into linear motion of the crosshead 151 .
  • the motion conversion mechanism 170 includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
  • the mold clamping device 100 Under the control of the control device 700, the mold clamping device 100 performs a mold closing process, a pressure increasing process, a mold clamping process, a depressurizing process, a mold opening process, and the like.
  • the mold clamping motor 160 is driven to advance the crosshead 151 to the mold closing completion position at the set movement speed, thereby advancing the movable platen 120 and bringing the movable mold 820 into contact with the fixed mold 810. .
  • the position and moving speed of the crosshead 151 are detected using, for example, a mold clamping motor encoder 161 or the like.
  • the mold clamping motor encoder 161 detects rotation of the mold clamping motor 160 and sends a signal indicating the detection result to the control device 700 .
  • the crosshead position detector for detecting the position of the crosshead 151 and the crosshead movement speed detector for detecting the movement speed of the crosshead 151 are not limited to the mold clamping motor encoder 161, and general ones are used. can. Further, the movable platen position detector for detecting the position of the movable platen 120 and the movable platen moving speed detector for detecting the moving speed of the movable platen 120 are not limited to the mold clamping motor encoder 161, and general ones are used. can.
  • the mold clamping motor 160 is further driven to further advance the crosshead 151 from the mold closing completion position to the mold clamping position, thereby generating mold clamping force.
  • the mold clamping motor 160 is driven to maintain the position of the crosshead 151 at the mold clamping position.
  • the mold clamping force generated in the pressurizing process is maintained.
  • a cavity space 801 (see FIG. 2) is formed between the movable mold 820 and the fixed mold 810, and the injection device 300 fills the cavity space 801 with a liquid molding material.
  • a molded product is obtained by solidifying the filled molding material.
  • the number of cavity spaces 801 may be one or plural. In the latter case, multiple moldings are obtained simultaneously.
  • the insert material may be arranged in part of the cavity space 801 and the other part of the cavity space 801 may be filled with the molding material.
  • a molded product in which the insert material and the molding material are integrated is obtained.
  • the mold clamping motor 160 is driven to retract the crosshead 151 from the mold clamping position to the mold opening start position, thereby retracting the movable platen 120 and reducing the mold clamping force.
  • the mold opening start position and the mold closing completion position may be the same position.
  • the mold clamping motor 160 is driven to retract the crosshead 151 from the mold opening start position to the mold opening completion position at a set moving speed, thereby retracting the movable platen 120 and moving the movable mold 820 to the fixed metal. away from the mold 810; After that, the ejector device 200 ejects the molded product from the movable mold 820 .
  • the setting conditions in the mold closing process, pressure rising process, and mold clamping process are collectively set as a series of setting conditions.
  • the moving speed and position of the crosshead 151 including the mold closing start position, the moving speed switching position, the mold closing completion position, and the mold clamping position
  • the mold clamping force in the mold closing process and the pressurizing process are set as a series of setting conditions.
  • the mold closing start position, the movement speed switching position, the mold closing completion position, and the mold clamping position are arranged in this order from the rear side to the front side, and represent the start point and end point of the section in which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set. Only one of the mold clamping position and the mold clamping force may be set.
  • the setting conditions in the depressurization process and the mold opening process are set in the same way.
  • the moving speed and position of the crosshead 151 (mold opening start position, moving speed switching position, and mold opening completion position) in the depressurizing process and the mold opening process are collectively set as a series of setting conditions.
  • the mold opening start position, the movement speed switching position, and the mold opening completion position are arranged in this order from the front side to the rear side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural.
  • the moving speed switching position does not have to be set.
  • the mold opening start position and the mold closing completion position may be the same position. Also, the mold opening completion position and the mold closing start position may be the same position.
  • the moving speed, position, etc. of the crosshead 151 the moving speed, position, etc. of the movable platen 120 may be set.
  • the mold clamping force may be set instead of the position of the crosshead (for example, mold clamping position) or the position of the movable platen.
  • the toggle mechanism 150 amplifies the driving force of the mold clamping motor 160 and transmits it to the movable platen 120 .
  • the amplification factor is also called toggle factor.
  • the toggle magnification changes according to the angle ⁇ formed between the first link 152 and the second link 153 (hereinafter also referred to as “link angle ⁇ ”).
  • the link angle ⁇ is obtained from the position of the crosshead 151 .
  • the toggle magnification becomes maximum.
  • the mold thickness is adjusted so that a predetermined mold clamping force can be obtained during mold clamping.
  • the distance L between the fixed platen 110 and the toggle support 130 is adjusted so that the link angle ⁇ of the toggle mechanism 150 becomes a predetermined angle when the movable mold 820 touches the fixed mold 810 . to adjust.
  • the mold clamping device 100 has a mold thickness adjusting mechanism 180.
  • the mold thickness adjustment mechanism 180 adjusts the mold thickness by adjusting the distance L between the stationary platen 110 and the toggle support 130 .
  • the timing of mold thickness adjustment is, for example, between the end of a molding cycle and the start of the next molding cycle.
  • the mold thickness adjusting mechanism 180 is, for example, a threaded shaft 181 formed at the rear end of the tie bar 140, a screw nut 182 held by the toggle support 130 so as to be rotatable and non-retractable, and screwed to the threaded shaft 181. and a mold thickness adjusting motor 183 that rotates the screw nut 182 .
  • a threaded shaft 181 and a threaded nut 182 are provided for each tie bar 140 .
  • the rotational driving force of the mold thickness adjusting motor 183 may be transmitted to the multiple screw nuts 182 via the rotational driving force transmission portion 185 .
  • Multiple screw nuts 182 can be rotated synchronously. By changing the transmission path of the rotational driving force transmission portion 185, it is also possible to rotate the plurality of screw nuts 182 individually.
  • the rotational driving force transmission section 185 is configured by, for example, gears.
  • a driven gear is formed on the outer circumference of each screw nut 182
  • a driving gear is attached to the output shaft of the mold thickness adjusting motor 183
  • an intermediate gear that meshes with a plurality of driven gears and the driving gear is formed in the central portion of the toggle support 130. rotatably held.
  • the rotational driving force transmission section 185 may be configured by a belt, a pulley, or the like instead of the gear.
  • the operation of the mold thickness adjusting mechanism 180 is controlled by the control device 700.
  • the control device 700 drives the mold thickness adjusting motor 183 to rotate the screw nut 182 .
  • the position of toggle support 130 with respect to tie bar 140 is adjusted, and the distance L between stationary platen 110 and toggle support 130 is adjusted.
  • a plurality of mold thickness adjusting mechanisms may be used in combination.
  • the interval L is detected using the mold thickness adjustment motor encoder 184.
  • the mold thickness adjusting motor encoder 184 detects the amount and direction of rotation of the mold thickness adjusting motor 183 and sends a signal indicating the detection result to the control device 700 .
  • the detection result of the mold thickness adjustment motor encoder 184 is used for monitoring and controlling the position and interval L of the toggle support 130 .
  • the toggle support position detector that detects the position of the toggle support 130 and the gap detector that detects the gap L are not limited to the mold thickness adjustment motor encoder 184, and general ones can be used.
  • the mold clamping device 100 may have a mold temperature controller that adjusts the temperature of the mold device 800 .
  • the mold device 800 has a flow path for a temperature control medium inside.
  • the mold temperature controller adjusts the temperature of the mold device 800 by adjusting the temperature of the temperature control medium supplied to the flow path of the mold device 800 .
  • the mold clamping device 100 of this embodiment is a horizontal type in which the mold opening/closing direction is horizontal, it may be a vertical type in which the mold opening/closing direction is a vertical direction.
  • the mold clamping device 100 of this embodiment has the mold clamping motor 160 as a drive source, the mold clamping motor 160 may be replaced by a hydraulic cylinder. Further, the mold clamping device 100 may have a linear motor for mold opening and closing and an electromagnet for mold clamping.
  • the moving direction of the movable platen 120 when the mold is closed (for example, the positive direction of the X axis) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened (for example, X-axis negative direction) will be described as the rear.
  • the ejector device 200 is attached to the movable platen 120 and advances and retreats together with the movable platen 120 .
  • the ejector device 200 has an ejector rod 210 that ejects a molded product from the mold device 800 and a drive mechanism 220 that moves the ejector rod 210 in the moving direction of the movable platen 120 (X-axis direction).
  • the ejector rod 210 is disposed in a through hole of the movable platen 120 so that it can move back and forth.
  • the front end of ejector rod 210 contacts ejector plate 826 of movable mold 820 .
  • the front end of ejector rod 210 may or may not be connected to ejector plate 826 .
  • the drive mechanism 220 has, for example, an ejector motor and a motion conversion mechanism that converts the rotary motion of the ejector motor into the linear motion of the ejector rod 210 .
  • the motion conversion mechanism includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
  • the ejector device 200 performs an ejecting process under the control of the control device 700 .
  • the ejector plate 826 is moved forward by advancing the ejector rod 210 from the standby position to the ejecting position at a set moving speed to eject the molded product.
  • the ejector motor is driven to retract the ejector rod 210 at the set movement speed, and the ejector plate 826 is retracted to the original standby position.
  • the position and moving speed of the ejector rod 210 are detected using, for example, an ejector motor encoder.
  • the ejector motor encoder detects rotation of the ejector motor and sends a signal indicating the detection result to the control device 700 .
  • the ejector rod position detector for detecting the position of the ejector rod 210 and the ejector rod moving speed detector for detecting the moving speed of the ejector rod 210 are not limited to ejector motor encoders, and general ones can be used.
  • the axial direction of the screw 330 during filling (for example, the negative direction of the X axis among the directions in which the screw 330 can move) is The description will be made with the forward direction and the axial direction of the screw 330 during weighing (for example, the positive direction of the X-axis among the directions in which the screw 330 can move) as the rearward direction.
  • the injection device 300 is installed on a slide base 301 , and the slide base 301 is arranged to move forward and backward relative to the injection device frame 920 .
  • the injection device 300 is arranged to move back and forth with respect to the mold device 800 .
  • the injection device 300 touches the mold device 800 and fills the cavity space 801 in the mold device 800 with the molding material.
  • the injection device 300 includes, for example, a cylinder 310 that heats the molding material, a nozzle 320 that is provided at the front end of the cylinder 310, a screw 330 that is rotatably arranged in the cylinder 310 so that it can move back and forth, and a screw that rotates. , an injection motor 350 for advancing and retreating the screw 330 , and a load detector 360 for detecting the load transmitted between the injection motor 350 and the screw 330 .
  • the cylinder 310 heats the molding material supplied inside from the supply port 311 .
  • the molding material includes, for example, resin.
  • the molding material is formed into, for example, a pellet shape and supplied to the supply port 311 in a solid state.
  • a supply port 311 is formed in the rear portion of the cylinder 310 .
  • a cooler 312 such as a water-cooled cylinder is provided on the outer circumference of the rear portion of the cylinder 310 .
  • a heater 313 such as a band heater and a temperature detector 314 are provided on the outer periphery of the cylinder 310 ahead of the cooler 312 .
  • the cylinder 310 is divided into a plurality of zones in the axial direction of the cylinder 310 (for example, the X-axis direction).
  • a heater 313 and a temperature detector 314 are provided in each of the plurality of zones.
  • a set temperature is set for each of the plurality of zones, and the controller 700 controls the heater 313 so that the temperature detected by the temperature detector 314 becomes the set temperature.
  • the nozzle 320 is provided at the front end of the cylinder 310 and pressed against the mold device 800 .
  • a heater 313 and a temperature detector 314 are provided around the nozzle 320 .
  • the controller 700 controls the heater 313 so that the detected temperature of the nozzle 320 becomes the set temperature.
  • the screw 330 is arranged in the cylinder 310 so as to be rotatable and advanceable.
  • the molding material is sent forward along the helical groove of the screw 330 .
  • the molding material is gradually melted by the heat from the cylinder 310 while being fed forward.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . After that, when the screw 330 is advanced, the liquid molding material accumulated in front of the screw 330 is injected from the nozzle 320 and filled in the mold device 800 .
  • a backflow prevention ring 331 is movably attached to the front of the screw 330 as a backflow prevention valve that prevents backflow of the molding material from the front to the rear of the screw 330 when the screw 330 is pushed forward.
  • the anti-backflow ring 331 is pushed backward by the pressure of the molding material in front of the screw 330 when the screw 330 is advanced, and is relatively to the screw 330 until it reaches a closed position (see FIG. 2) that blocks the flow path of the molding material. fall back. This prevents the molding material accumulated in front of the screw 330 from flowing backward.
  • the anti-backflow ring 331 is pushed forward by the pressure of the molding material sent forward along the helical groove of the screw 330 when the screw 330 is rotated, and is in an open position where the flow path of the molding material is opened. (see FIG. 1) relative to the screw 330. Thereby, the molding material is sent forward of the screw 330 .
  • the anti-backflow ring 331 may be either a co-rotating type that rotates together with the screw 330 or a non-co-rotating type that does not rotate together with the screw 330 .
  • the injection device 300 may have a drive source that advances and retracts the backflow prevention ring 331 with respect to the screw 330 between the open position and the closed position.
  • the metering motor 340 rotates the screw 330 .
  • the drive source for rotating the screw 330 is not limited to the metering motor 340, and may be, for example, a hydraulic pump.
  • the injection motor 350 moves the screw 330 forward and backward. Between the injection motor 350 and the screw 330, a motion conversion mechanism or the like that converts the rotary motion of the injection motor 350 into the linear motion of the screw 330 is provided.
  • the motion conversion mechanism has, for example, a screw shaft and a screw nut screwed onto the screw shaft. Balls, rollers, or the like may be provided between the screw shaft and the screw nut.
  • the drive source for advancing and retreating the screw 330 is not limited to the injection motor 350, and may be, for example, a hydraulic cylinder.
  • a load detector 360 detects the load transmitted between the injection motor 350 and the screw 330 .
  • the detected load is converted into pressure by the control device 700 .
  • the load detector 360 is provided in a load transmission path between the injection motor 350 and the screw 330 and detects the load acting on the load detector 360 .
  • the load detector 360 sends a detected load signal to the control device 700 .
  • the load detected by the load detector 360 is converted into the pressure acting between the screw 330 and the molding material, the pressure received by the screw 330 from the molding material, the back pressure on the screw 330, and the pressure acting on the molding material from the screw 330. Used for control and monitoring of pressure, etc.
  • the pressure detector that detects the pressure of the molding material is not limited to the load detector 360, and a general one can be used.
  • a nozzle pressure sensor or a mold internal pressure sensor may be used.
  • a nozzle pressure sensor is installed at the nozzle 320 .
  • the mold internal pressure sensor is installed inside the mold apparatus 800 .
  • the injection device 300 Under the control of the control device 700, the injection device 300 performs a weighing process, a filling process, a holding pressure process, and the like.
  • the filling process and the holding pressure process may collectively be called an injection process.
  • the weighing motor 340 is driven to rotate the screw 330 at a set rotation speed, and the molding material is fed forward along the helical groove of the screw 330. Along with this, the molding material is gradually melted.
  • the screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 .
  • the rotation speed of the screw 330 is detected using a metering motor encoder 341, for example.
  • Weighing motor encoder 341 detects the rotation of weighing motor 340 and sends a signal indicating the detection result to control device 700 .
  • the screw rotation speed detector for detecting the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used.
  • the injection motor 350 may be driven to apply a set back pressure to the screw 330 in order to limit rapid retraction of the screw 330 .
  • the back pressure on the screw 330 is detected using a load detector 360, for example.
  • the metering process is completed when the screw 330 is retracted to the metering completion position and a predetermined amount of molding material is accumulated in front of the screw 330 .
  • the axial position and rotational speed of the screw 330 in the weighing process are collectively set as a series of setting conditions. For example, a weighing start position, rotation speed switching position, and weighing completion position are set. These positions are arranged in this order from the front side to the rear side, and represent the start point and end point of the section in which the rotational speed is set. A rotation speed is set for each section.
  • the rotational speed switching position may be one or plural. The rotation speed switching position does not have to be set. Also, the back pressure is set for each section.
  • the injection motor 350 is driven to advance the screw 330 at a set movement speed, and the liquid molding material accumulated in front of the screw 330 is filled into the cavity space 801 in the mold device 800 .
  • the position and moving speed of the screw 330 are detected using an injection motor encoder 351, for example.
  • the injection motor encoder 351 detects rotation of the injection motor 350 and sends a signal indicating the detection result to the control device 700 .
  • V/P switching switching from the filling process to the holding pressure process
  • the position at which V/P switching takes place is also called the V/P switching position.
  • the set moving speed of the screw 330 may be changed according to the position of the screw 330, time, and the like.
  • the position and movement speed of the screw 330 in the filling process are collectively set as a series of setting conditions.
  • a filling start position also called an “injection start position”
  • a moving speed switching position and a V/P switching position are set. These positions are arranged in this order from the rear side to the front side, and represent the start point and end point of the section for which the movement speed is set.
  • a moving speed is set for each section.
  • the moving speed switching position may be one or plural. The moving speed switching position does not have to be set.
  • the upper limit value of the pressure of the screw 330 is set for each section in which the moving speed of the screw 330 is set.
  • the pressure of screw 330 is detected by load detector 360 .
  • the screw 330 is advanced at the set travel speed.
  • the screw 330 exceeds the set pressure, the screw 330 is advanced at a moving speed slower than the set moving speed so that the pressure of the screw 330 is equal to or less than the set pressure for the purpose of mold protection.
  • the screw 330 may be temporarily stopped at the V/P switching position, and then the V/P switching may be performed. Immediately before the V/P switching, instead of stopping the screw 330, the screw 330 may be slowly advanced or slowly retracted.
  • the screw position detector for detecting the position of the screw 330 and the screw moving speed detector for detecting the moving speed of the screw 330 are not limited to the injection motor encoder 351, and general ones can be used.
  • the injection motor 350 is driven to push the screw 330 forward, and the pressure of the molding material at the front end of the screw 330 (hereinafter also referred to as “holding pressure”) is maintained at the set pressure.
  • the remaining molding material is pushed toward the mold device 800 .
  • a shortage of molding material due to cooling shrinkage in the mold apparatus 800 can be replenished.
  • the holding pressure is detected using the load detector 360, for example.
  • the set value of the holding pressure may be changed according to the elapsed time from the start of the holding pressure process.
  • a plurality of holding pressures and holding times for holding the holding pressure in the holding pressure step may be set respectively, and may be collectively set as a series of setting conditions.
  • the molding material in the cavity space 801 inside the mold device 800 is gradually cooled, and when the holding pressure process is completed, the entrance of the cavity space 801 is closed with the solidified molding material. This state is called a gate seal, and prevents the molding material from flowing back from the cavity space 801 .
  • the cooling process is started. In the cooling process, the molding material inside the cavity space 801 is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
  • the injection device 300 of the present embodiment is of the in-line screw method, it may be of the pre-plastic method or the like.
  • a pre-plastic injection apparatus supplies molding material melted in a plasticizing cylinder to an injection cylinder, and injects the molding material from the injection cylinder into a mold apparatus.
  • a screw is arranged to be rotatable and non-retractable, or a screw is arranged to be rotatable and reciprocal.
  • a plunger is arranged in the injection cylinder so that it can move back and forth.
  • the injection device 300 of the present embodiment is a horizontal type in which the axial direction of the cylinder 310 is horizontal, but may be a vertical type in which the axial direction of the cylinder 310 is vertical.
  • the mold clamping device combined with the vertical injection device 300 may be either vertical or horizontal.
  • the mold clamping device combined with the horizontal injection device 300 may be horizontal or vertical.
  • the axial direction of the screw 330 during filling (for example, the negative direction of the X-axis) is defined as the front, and the axial direction of the screw 330 during weighing (eg, the positive direction of the X-axis). is described as backward.
  • the moving device 400 advances and retreats the injection device 300 with respect to the mold device 800 . Further, the moving device 400 presses the nozzle 320 against the mold device 800 to generate nozzle touch pressure.
  • the moving device 400 includes a hydraulic pump 410, a motor 420 as a drive source, a hydraulic cylinder 430 as a hydraulic actuator, and the like.
  • the hydraulic pump 410 has a first port 411 and a second port 412 .
  • Hydraulic pump 410 is a pump that can rotate in both directions, and by switching the rotation direction of motor 420, hydraulic fluid (for example, oil) is sucked from one of first port 411 and second port 412 and discharged from the other. to generate hydraulic pressure. Note that the hydraulic pump 410 can also suck the working fluid from the tank and discharge the working fluid from either the first port 411 or the second port 412 .
  • the motor 420 operates the hydraulic pump 410 .
  • Motor 420 drives hydraulic pump 410 with a rotational direction and rotational torque according to a control signal from control device 700 .
  • Motor 420 may be an electric motor or may be an electric servomotor.
  • the hydraulic cylinder 430 has a cylinder body 431 , a piston 432 and a piston rod 433 .
  • the cylinder body 431 is fixed with respect to the injection device 300 .
  • the piston 432 partitions the inside of the cylinder body 431 into a front chamber 435 as a first chamber and a rear chamber 436 as a second chamber.
  • Piston rod 433 is fixed relative to stationary platen 110 .
  • the front chamber 435 of the hydraulic cylinder 430 is connected to the first port 411 of the hydraulic pump 410 via the first flow path 401 .
  • the hydraulic fluid discharged from the first port 411 is supplied to the front chamber 435 through the first flow path 401, thereby pushing the injection device 300 forward.
  • the injection device 300 is advanced and the nozzle 320 is pressed against the stationary mold 810 .
  • the front chamber 435 functions as a pressure chamber that generates nozzle touch pressure of the nozzle 320 by the pressure of the hydraulic fluid supplied from the hydraulic pump 410 .
  • the rear chamber 436 of the hydraulic cylinder 430 is connected to the second port 412 of the hydraulic pump 410 via the second flow path 402 .
  • the hydraulic fluid discharged from the second port 412 is supplied to the rear chamber 436 of the hydraulic cylinder 430 through the second flow path 402, thereby pushing the injection device 300 rearward.
  • the injection device 300 is retracted and the nozzle 320 is separated from the stationary mold 810 .
  • the moving device 400 includes the hydraulic cylinder 430 in this embodiment, the present invention is not limited to this.
  • an electric motor and a motion conversion mechanism that converts the rotary motion of the electric motor to the linear motion of the injection device 300 may be used instead of the hydraulic cylinder 430.
  • the control device 700 is composed of, for example, a computer, and has a CPU (Central Processing Unit) 701, a storage medium 702 such as a memory, an input interface 703, and an output interface 704, as shown in FIGS.
  • the control device 700 performs various controls by causing the CPU 701 to execute programs stored in the storage medium 702 .
  • the control device 700 also receives signals from the outside through an input interface 703 and transmits signals to the outside through an output interface 704 .
  • the control device 700 repeatedly performs a weighing process, a mold closing process, a pressurizing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process, thereby producing a molded product.
  • a series of operations for obtaining a molded product for example, the operation from the start of the weighing process to the start of the next weighing process, is also called “shot” or "molding cycle”.
  • the time required for one shot is also called “molding cycle time" or "cycle time”.
  • a single molding cycle has, for example, a weighing process, a mold closing process, a pressurization process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurization process, a mold opening process, and an ejection process in this order.
  • the order here is the order of the start of each step.
  • the filling process, holding pressure process, and cooling process are performed during the clamping process.
  • the start of the clamping process may coincide with the start of the filling process. Completion of the depressurization process coincides with the start of the mold opening process.
  • the metering step may occur during the cooling step of the previous molding cycle and may occur during the clamping step.
  • the mold closing process may be performed at the beginning of the molding cycle.
  • the filling process may also be initiated during the mold closing process.
  • the ejecting process may be initiated during the mold opening process. If an on-off valve for opening and closing the flow path of the nozzle 320 is provided, the mold opening process may be initiated during the metering process. This is because the molding material does not leak from the nozzle 320 as long as the on-off valve closes the flow path of the nozzle 320 even if the mold opening process is started during the metering process.
  • One molding cycle includes processes other than the weighing process, mold closing process, pressurizing process, mold clamping process, filling process, holding pressure process, cooling process, depressurizing process, mold opening process, and ejecting process.
  • a pre-measuring suck-back process may be performed in which the screw 330 is retracted to a preset measuring start position before starting the measuring process. It is possible to reduce the pressure of molding material accumulated in front of the screw 330 before the start of the metering process, and to prevent the screw 330 from abrupt retraction at the start of the metering process.
  • a post-weighing suck-back process may be performed in which the screw 330 is retracted to a preset filling start position (also referred to as an "injection start position").
  • a preset filling start position also referred to as an "injection start position”
  • the pressure of the molding material accumulated in front of the screw 330 before the start of the filling process can be reduced, and leakage of the molding material from the nozzle 320 before the start of the filling process can be prevented.
  • the control device 700 is connected to an operation device 750 that receives user input operations and a display device 760 that displays screens.
  • the operation device 750 and the display device 760 may be configured by, for example, a touch panel 770 and integrated.
  • a touch panel 770 as a display device 760 displays a screen under the control of the control device 700 .
  • Information such as the settings of the injection molding machine 10 and the current state of the injection molding machine 10 may be displayed on the screen of the touch panel 770 .
  • an operation unit such as a button for receiving an input operation by the user or an input field may be displayed.
  • a touch panel 770 as the operation device 750 detects an input operation on the screen by the user and outputs a signal corresponding to the input operation to the control device 700 .
  • the user can operate the operation unit provided on the screen while confirming the information displayed on the screen to set the injection molding machine 10 (including input of set values). can.
  • the user can operate the operation unit provided on the screen to cause the injection molding machine 10 to operate corresponding to the operation unit.
  • the operation of the injection molding machine 10 may be, for example, the operation (including stopping) of the mold clamping device 100, the ejector device 200, the injection device 300, the moving device 400, and the like.
  • the operation of the injection molding machine 10 may be switching of screens displayed on the touch panel 770 as the display device 760 .
  • the operating device 750 and the display device 760 of the present embodiment are described as being integrated as the touch panel 770, they may be provided independently. Also, a plurality of operating devices 750 may be provided. The operating device 750 and the display device 760 are arranged on the operating side (Y-axis negative direction) of the mold clamping device 100 (more specifically, the stationary platen 110).
  • FIG. 3 is a diagram showing a state at the start of injection of the injection device according to one embodiment.
  • FIG. 4 is a diagram showing a state of the injection device according to one embodiment when injection is completed.
  • 5 is a partially enlarged view of FIG. 4.
  • FIG. The injection device 300 has an injection device main body 303 and a support frame 304 that supports the injection device main body 303 .
  • the injection device main body 303 includes, for example, a cylinder 310, a nozzle 320, a screw 330, a metering motor 340, an injection motor 350, and a load detector 360.
  • the injection device main body 303 further includes a bearing 361 that rotatably supports the screw 330, a drive shaft 362 that is moved forward and backward while being rotated by the injection motor 350, and a drive shaft 362 that is rotatably supported via the bearing 361. and a bearing holder 370 .
  • the support frame 304 is installed on the slide base 301 .
  • the slide base 301 advances and retreats along two guides 302 (only one guide is shown in FIGS. 3 and 4).
  • Two guides 302 are laid on the injection unit frame 920 .
  • the two guides 302 each extend in the X-axis direction.
  • the two guides 302 are spaced apart in the Y-axis direction.
  • the support frame 304 is installed on the slide base 301 so as to be rotatable around a vertical pivot 304Z.
  • the injection device main body 303 can be pivoted together with the support frame 304 .
  • the support frame 304 has a front pivot plate 305 and a rear pivot plate 306 .
  • the front swivel plate 305 and the rear swivel plate 306 are slidably mounted on the upper surface of the slide base 301 .
  • a swivel shaft 304Z is arranged at a predetermined position of the front swivel plate 305 .
  • a rear pivot plate 306 is arranged behind the front pivot plate 305 .
  • the support frame 304 has a front flange 307 , a rear flange 308 and multiple connecting rods 309 .
  • a front flange 307 is attached to the front pivot plate 305 .
  • a rear flange 308 is attached to the rear pivot plate 306 .
  • a connecting rod 309 connects the front flange 307 and the rear flange 308 with a space therebetween.
  • a cylinder 310 and a metering motor 340 are attached to the front flange 307 .
  • Cylinder 310 is arranged in front of front flange 307 and attached to front flange 307 via cylinder 315 .
  • a metering motor 340 is located behind the front flange 307 and forward of the rear flange 308 .
  • an injection motor 350 is attached to the rear flange 308 .
  • the injection motor 350 is arranged behind the rear flange 308 and attached to the rear flange 308 via a load detector 360 which will be described later.
  • the metering motor 340 rotates the screw 330 .
  • the metering motor 340 has a stator 342 fixed to the front flange 307, a rotor 343 rotating inside the stator 342, and bearings 349 supporting the rotor 343 for rotation.
  • Stator 342 includes a front flange 342a holding bearing 349, a rear flange 342b holding bearing 349, and a housing 342c connecting front flange 342a and rear flange 342b. Rotational motion of metering motor 340 is transmitted to bearing holder 370 and from bearing holder 370 to screw 330 .
  • the bearing holder 370 has a screw mounting portion 372 to which the screw 330 is mounted, and a metering spline shaft 371 to which the rotor 343 of the metering motor 340 is splined.
  • the metering spline shaft 371 is arranged inside the rotor 343 of the metering motor 340 .
  • a metering spline nut 344 is provided on the rotor 343 .
  • the metering spline nut 344 has a plurality of key grooves arranged at equal intervals in the circumferential direction on its inner peripheral surface.
  • the metering spline shaft 371 has a plurality of keys arranged at equal intervals in the circumferential direction on its outer peripheral surface.
  • the metering spline shaft 371 and the metering spline nut 344 are splined together. Note that the number of key grooves and the number of keys may be one.
  • the injection motor 350 moves the screw 330 forward and backward.
  • the injection motor 350 includes a stator 352 fixed to the rear flange 308 via a load detector 360, a rotor 353 rotating inside the stator 352, and bearings 359 rotatably supporting the rotor 353. and have The rotary motion of the injection motor 350 is converted into rotary linear motion of the drive shaft 362 and further into linear motion of the bearing holder 370 . As the bearing holder 370 advances and retreats, the screw 330 advances and retreats.
  • the drive shaft 362 has an injection spline shaft 363, a screw shaft 364, and a rotary shaft 365 in this order on the same straight line from the rear side toward the front.
  • the injection spline shaft 363 is arranged inside the rotor 353 of the injection motor 350 .
  • the rotor 353 is provided with an injection spline nut 354 .
  • the injection spline nut 354 has a plurality of key grooves arranged at equal intervals in the circumferential direction on its inner peripheral surface.
  • the injection spline shaft 363 has a plurality of keys arranged at equal intervals in the circumferential direction on its outer peripheral surface.
  • the injection spline shaft 363 and the injection spline nut 354 are spline-coupled. Note that the number of key grooves and the number of keys may be one.
  • the screw shaft 364 is screwed with a screw nut 366 .
  • Balls or rollers may be interposed between the threaded shaft 364 and the threaded nut 366 .
  • the threaded nut 366 is fixed to the rear flange 308 via the load detector 360 so that it does not rotate with the threaded shaft 364 . Therefore, the screw shaft 364 advances and retreats while rotating.
  • the injection spline shaft 363 and the injection spline nut 354 are spline-coupled so that the screw shaft 364 can advance and retreat while rotating.
  • a rotating shaft 365 is held by a bearing holder 370 via a bearing 361 .
  • the bearing holder 370 has a cylindrical metering spline shaft 371 , and a bearing 361 is fixed to the inner peripheral surface of the metering spline shaft 371 .
  • Bearing 361 has an inner ring that rotates with rotating shaft 365 and an outer ring that is fixed relative to metering spline shaft 371 .
  • the bearing 361 prevents transmission of rotational driving force from the rotating shaft 365 to the bearing holder 370 .
  • the bearing holder 370 advances and retreats, and the screw 330 advances and retreats.
  • the metering motor 340 does not advance or retreat when the screw 330 advances or retreats. This is because the metering spline nut 344 of the metering motor 340 and the metering spline shaft 371 of the bearing holder 370 are spline-coupled. Since the metering motor 340 is not included in the driving target of the injection motor 350, the inertia of the driving target of the injection motor 350 is small, and the acceleration of the screw 330 when starting to move forward is fast.
  • the structure of the injection device 300 is not limited to the structure shown in FIGS. 3 and 4.
  • the arrangement of the drive source (for example, the metering motor 340 and the injection motor 350) that drives the screw 330 is not limited to the arrangement shown in FIGS.
  • the rotation center line of the screw 330, the rotation center line of the metering motor 340, and the rotation center line of the injection motor 350 are arranged on the same straight line, but they are arranged on the same straight line. It doesn't have to be.
  • the structure of the transmission mechanism that transmits the driving force of the drive source to the screw 330 is not limited to the structure shown in FIGS.
  • the structure of the transmission mechanism is changed as appropriate according to the arrangement of the drive source that drives the screw 330 .
  • a timing belt may be used when the parallel centerline of rotation of the metering motor 340 and the centerline of rotation of the screw 330 are offset in a direction orthogonal to these centerlines.
  • a timing belt may be used when the rotation centerlines of the injection motor 350 and the screw 330, which are parallel to each other, are offset in a direction orthogonal to these rotation centerlines.
  • a coupling 375 connects the screw 330 and the bearing holder 370 .
  • the coupling 375 has a spline nut 376 to which the spline shaft 332 formed at the rear end of the screw 330 is spline-coupled, and a flange 377 that presses the spline shaft 332 from the front.
  • Flange 377 fits into groove 333 of screw 330 .
  • a groove 333 is formed in front of the spline shaft 332 .
  • the flange 377 is divided into two arc-shaped split bodies, which are fitted into the grooves 333 and press the spline shaft 332 from the front.
  • the flange 377 is fastened to the spline nut 376 with a first bolt 378.
  • the spline nut 376 is fastened to the bearing holder 370 by a second bolt 379 and presses the load detector 360 from the front.
  • the operation of tightening and loosening the first bolt 378 and the second bolt 379 is performed through the window 316 of the cylinder 315 located between the front flange 307 and the cooler 312 .
  • the tubular body 315 includes a tubular portion 315a protruding forward from the front flange 307 and an inner flange portion 315b protruding inside the tubular portion 315a from the front end surface of the tubular portion 315a.
  • a window 316 is formed in the cylindrical portion 315a.
  • the outer edge of the cylinder 310 is fixed to the inner edge of the inner flange portion 315b.
  • annular groove into which the annular packing 381 is fitted and an annular groove into which the slide ring 382 is fitted are formed on the outer peripheral surface of the bearing holder 370 .
  • the annular packing 381 is held by, for example, the bearing holder 370, slidably contacts the rotor 343 of the metering motor 340, and seals the gap between the rotor 343 and the bearing holder 370. This can prevent the lubricant supplied to the metering spline shaft 371 from leaking to the screw 330 side.
  • the annular packing 381 may be attached to the metering spline shaft 371 in front of the key 371a of the metering spline shaft 371, and may be attached to the metering spline shaft 371. However, as shown in FIGS. good.
  • annular packing 38 for example, an O-ring having a circular cross-sectional shape is used, and is used after being moderately compressed.
  • the annular packing 381 is made of a softer material than the slide ring 382 in order to ensure sealing performance. Examples of the material of the annular packing 381 include rubber such as butyl rubber.
  • annular packing 381 is held by the bearing holder 370 in this embodiment, the annular packing 381 is held by the rotor 343 of the metering motor 340 and slidably contacts the bearing holder 370 so that the rotor 343 and the screw mounting portion 372 are held. You may seal the gap between
  • the slide ring 382 is held by, for example, the screw mounting portion 372 and slidably contacts the rotor 343 of the metering motor 340 to align the center line of the rotor 343 with the center line of the screw mounting portion 372 .
  • galling between the rotor 343 and the screw mounting portion 372 can be suppressed. Also, it is possible to suppress the application of an unbalanced load to the annular packing 381 .
  • the slide ring 382 is made of a harder material than the annular packing 381 in order to suppress eccentricity between the rotor 343 and the screw mounting portion 372 .
  • a crystalline resin or the like having high self-lubricating properties is used.
  • crystalline resins include polytetrafluoroethylene (PTFE), polyamide (PA), polyesters (PEs), and polyethylene (PE). The greater the degree of crystallinity, the greater the self-lubricating properties.
  • the slide ring 382 may be made of resin other than crystalline resin, for example, it may be made of cloth-filled phenolic resin.
  • the slide ring 382 does not ensure sealing performance, so it has a cut partly in the circumferential direction. The cut is formed for attachment and detachment of the slide ring 382 , is widened during attachment and detachment, and then restored by the elastic restoring force of the slide ring 382 .
  • slide ring 382 is held by the screw mounting portion 372 in this embodiment, it is held by the rotor 343 of the weighing motor 340 and is slidably brought into contact with the screw mounting portion 372 to move the center line of the rotor 343. and the center line of the screw mounting portion 372 may be aligned. Also, the number of slide rings 382 may be plural.
  • a slide ring 382 and an annular packing 381 are arranged in this order from the key 371a side (rear side) of the metering spline shaft 371 toward the screw 330 side (front side).
  • the annular packing 381 prevents the lubricant supplied to the metering spline shaft 371 and passed through the slide ring 382 from leaking to the screw 330 side.
  • the lubricant supplied to the metering spline shaft 371 is formed between the slide ring 382 and the rotor 343 of the metering motor 340, between the slide ring 382 and the screw mounting portion 372, and in the slide ring 382. pass through gaps, etc.
  • the injection molding machine 10 includes a load detector 360.
  • Load detector 360 detects the load transmitted between injection motor 350 and screw 330 .
  • a load detector 360 detects a load behind the bearing 361 .
  • a load detector 360 for example of the washer type, is located between the rear flange 308 and the injection motor 350 .
  • the load detected by the load detector 360 includes the sliding resistance of mechanical elements and the like.
  • the sliding resistance of the mechanical elements includes, for example, the sliding resistance between the outer ring and the inner ring of the bearing 361, the sliding resistance between the screw shaft 364 and the screw nut 366, and the sliding resistance between the injection spline shaft 363 and the injection spline nut 354. resistance and sliding resistance between metering spline shaft 371 and metering spline nut 344 .
  • FIG. 6 is a diagram showing functional blocks of components of the control device 700 according to one embodiment.
  • Each functional block illustrated in FIG. 6 is conceptual and does not necessarily need to be physically configured as illustrated. All or part of each functional block can be functionally or physically distributed and integrated in arbitrary units.
  • Each processing function performed by each functional block is implemented by a program executed by the CPU 701, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic.
  • the control device 700 includes a correction information storage unit 601, an acquisition unit 602, a registration unit 603, a correction control unit 604, a display control unit 605, and a pressure control unit 606.
  • the correction information storage unit 601 stores information for correcting the pressure detection value detected by the load detector 360 based on the speed of the screw 330, the axial phase of the screw 330, and the phase of the weighing motor 340. .
  • the acquisition unit 602 acquires various information such as the pressure detection value detected by the load detector 360 .
  • the registration unit 603 registers information for correction in the correction information storage unit 601 based on the information acquired by the acquisition unit 602 .
  • the correction control unit 604 corrects the detection value detected by the load detector 360 based on the information stored in the correction information storage unit 601 and corrects the pressure set value used for pressure control of the screw 330 .
  • the display control unit 605 displays the corrected pressure value on the display device 760 .
  • a pressure control unit 606 performs pressure control based on the corrected pressure set value. A specific description of each configuration will be given later.
  • the weighing motor 340 rotates and the screw 330 rotates. Then, the flight (thread) of the screw 330 moves, and the resin pellets (solid molding material) filled in the thread groove of the screw 330 are sent forward.
  • the resin pellets are gradually melted by being heated by heat from heaters 313_1 to 313_5 via cylinder 310 while moving forward in cylinder 310 . Then, the resin pellets are completely melted at the tip of the cylinder 310 . Then, as the liquid molding material (resin) is fed forward of the screw 330 and accumulated in the front portion of the cylinder 310, the screw 330 retreats.
  • the weighing motor encoder 341 detects rotation of the weighing motor 340 and transmits a signal indicating the detection result to the control device 700 .
  • the screw rotation speed detector that detects the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used.
  • the friction and unbalanced load inside the injection device 300 acted on the load detector 360.
  • the pressure detected by the load detector 360 was tested when the screw 330 was not mounted. It was found that there was a change in the detected value of
  • the actual pressure applied to the resin may change from moment to moment or may vary from shot to shot.
  • FIG. 7 is a conceptual diagram showing the pressure detected by the load detector 360 during weighing in this embodiment.
  • the forces applied during weighing are indicated by arrows.
  • the detected value 1701 is the pressure detected by the load detector 360 .
  • the load detector 360 is desired to detect the force 1702 due to the resin pressure.
  • friction and uneven load inside the injection molding machine 10 affect the load detector 360 . Therefore, the detected value 1701 is expressed by the following formula (1).
  • Detected value 1701 Force due to resin pressure 1702 - First sliding resistance 1703 - Second sliding resistance 1706 + Moment 1704 of metering spline shaft 371 + Moment 1705 of injection spline shaft 363 ... (1)
  • the moment 1704 of the metering spline shaft 371 and the moment 1704 of the metering spline shaft 371 shown in equation (1) are included in the detected value 1701 because the load detector 360 also detects a torsional force. .
  • the first sliding resistance 1703 is, for example, sliding resistance due to the metering spline shaft 371, the annular packing 381, and the slide ring 382.
  • the sliding resistance of the metering spline shaft 371 is generated at the spline joint between the metering spline nut 344 and the metering spline shaft 371 .
  • the contact area of the metering spline shaft 371 with the metering spline nut 344 changes according to the phase of the metering spline shaft 371 . Therefore, the sliding resistance changes according to the phase of the metering spline shaft 371 .
  • the metering spline shaft 371 is coupled with the screw 330 via the bearing holder 370 . Therefore, in other words, the first sliding resistance 1703 changes according to the circumferential position (rotational angle) of the screw 330 .
  • a second sliding resistance 1706 is a sliding resistance due to the injection spline shaft 363 .
  • the sliding resistance of the second sliding resistance 1706 is generated at the spline-connected locations among the metering spline nut 344 , injection spline shaft 363 , and injection spline nut 354 .
  • the injection spline shaft 363 is eccentric, the area of the injection spline shaft 363 in contact with the injection spline nut 354 changes according to the phase of the injection spline shaft 363 . Therefore, the second sliding resistance 1706 changes according to the phase of the injection spline shaft 363 .
  • the injection spline shaft 363 is connected to the injection motor 350 .
  • the injection motor 350 is used for movement control of the position of the screw 330 in the axial direction. Therefore, in other words, the second sliding resistance 1706 changes according to the axial position of the screw 330 (the phase of the injection motor 350).
  • FIG. 8 is a diagram illustrating the relationship between the value detected by the load detector 360 and the force due to the resin pressure according to the first embodiment.
  • the value 1801 detected by the load detector 360 during weighing and the resistance 1802 due to mechanical friction or the like during weighing are used.
  • the resistance force 1802 includes, in addition to the sliding resistances described above (eg, the first sliding resistance 1703 and the second sliding resistance 1706), a moment (eg, the moment 1704 of the metering spline shaft 371 and the injection spline The moment 1704) of axis 363 is also included.
  • the screw 330 retreats during weighing, when the direction of the detection value 1801 detected by the load detector 360 (for example, the direction of the detection value 1701) is set to the positive direction, the resistance 1802 due to mechanical friction or the like during weighing acts in the negative direction. Then, the force 1803 due to the resin pressure during weighing can be derived from the detection value 1801 - resistance force 1802 .
  • the value 1804 detected by the load detector 360 during filling/holding pressure is taken as the resistance force 1805 due to mechanical friction or the like during filling/holding pressure.
  • the resistance force 1805 includes a moment in addition to the sliding resistance described above.
  • the screw 330 advances during filling and holding pressure, when the direction of the detection value 1801 detected by the load detector 360 is positive, the resistance 1805 due to mechanical friction and the like during filling and holding pressure is positive. direction. A force 1806 due to the resin pressure during filling/holding can be derived from the detection value 1804 - resistance force 1805 .
  • the force 1803 due to the resin pressure during metering is smaller than the force 1806 due to the resin pressure during filling/holding. In other words, fluctuations such as mechanical friction act greatly.
  • the control device 700 of the present embodiment achieves highly accurate detection even of the force 1803 due to the resin pressure during measurement.
  • the correction information storage unit 601 stores in advance a table for identifying a correction value from a combination of the variables of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw. back. Then, the correction control unit 604 acquires the correction value from the table in real time and corrects the pressure detection value detected by the load detector 360 . Since it is considered that there are individual differences for each injection apparatus 300, it is conceivable that the correction values are registered in the table during an inspection process before shipment or when the user starts molding.
  • the acquisition unit 602 acquires the pressure detection value detected by the load detector 360 .
  • the registration unit 603 registers a correction value (an example of correction information) obtained by correcting the detection value of the load detector 360 in the correction information storage unit 601 based on the acquired pressure detection value.
  • the correction value of the present embodiment is a value representing a force (resisting force) generated by disturbance due to mechanical friction or the like. Then, in this embodiment, the force due to the resin pressure can be derived by subtracting the correction value from the detected value.
  • FIG. 9 is a diagram showing detection values detected by the load detector 360 when the position of the screw 330 (the phase of the injection spline shaft 363) is moved while the position of the screw 330 in the circumferential direction is fixed.
  • the detected pressure values change periodically according to the position of the screw 330 .
  • a change in this detected value corresponds to a change in the phase (rotational angle) of the injection spline shaft 363 .
  • the detected pressure value changes according to the circumferential position (rotational angle) of the screw 330 . Furthermore, the detected pressure value changes according to the speed of the screw 330 .
  • a method is used in which a table in which correction values are stored is created in advance.
  • the pressure is detected by the load detector 360 in the injection apparatus 300 in a state where the assembly of the screw 330 is not mounted.
  • the assembly of the screw 330 may include, for example, the screw 330 , the cylindrical body 315 , the cylinder 310 and the nozzle 320 .
  • the environment in which the pressure is detected is not limited to when the screw 330 is not mounted on the assembly.
  • the registration unit 603 registers the pressure detection value detected by the load detector 360 in the correction information storage unit 601 as a correction value.
  • FIG. 10 is a diagram exemplifying a table of the correction information storage unit 601 registered in the registration unit 603 according to this embodiment.
  • the table of the correction information storage unit 601 of the present embodiment includes the axial position of the screw 330 (the phase of the injection spline shaft 363), the circumferential position (rotation angle) of the screw 330, and the A correction value (force due to resin pressure) can be specified by a combination of the speeds of the screws 330 .
  • a table is created for each speed of the screw 330, and the speed of the screw 330 is V 1 ⁇ V 2 ⁇ V 3 ⁇ maximum speed.
  • the correction control unit 604 refers to the correction information storage unit 601 to obtain a correction value based on the circumferential position of the screw 330, the axial position of the screw 330, and the speed of the screw. is corrected based on the correction value, and the corrected detection value is specified.
  • the display control unit 605 displays the detected value corrected by the correction control unit 604 on the display device 760 as a force due to the resin pressure.
  • the pressure control unit 606 performs pressure control so that the detected value corrected by the correction control unit 604 becomes a preset pressure setting value for filling the injection device 300 with the molding material when the mold is closed. .
  • the influence of disturbances such as sliding resistance and moment can be eliminated, so the accuracy of pressure control can be improved.
  • FIG. 11 is a flowchart for registering correction values in the correction information storage unit 601 in the control device 700 according to this embodiment. When the correction values shown in FIG. 11 are registered, the assembly of the screw 330 is not mounted.
  • the registration unit 603 of the control device 700 performs initial settings (S1101).
  • the initial setting the axial position of the screw 330 (the phase of the injection spline shaft 363) and the circumferential position (rotational angle) of the screw 330 are set to initial positions (for example, "0"), and the speed of the screw 330 is set to Set to initial speed.
  • the registration unit 603 performs stroke control of the screw 330 from the initial position (for example, "0") to the maximum value at the set speed (S1102).
  • the acquisition unit 602 acquires the detection value detected by the load detector 360 during stroke control (S1103).
  • the registration unit 603 associates the correction value corresponding to the detection value acquired by the acquisition unit 602 with the axial position of the screw 330, the speed of the screw 330, and the circumferential position when the detection value is detected. are registered in the correction information storage unit 601 (S1104).
  • the registration unit 603 determines whether correction values have been registered for all positions of the screw 330 in the circumferential direction at the current speed of the screw 330 (S1105).
  • the registration unit 603 determines that correction values have not been registered for all positions of the screw 330 in the circumferential direction (S1105: No)
  • the position of the screw 330 in the circumferential direction is changed (S1106).
  • the position of the screw 330 in the circumferential direction is changed in order of 0°, 90°, 180° and 270°. After that, the process is performed again from S1102.
  • the registration unit 603 determines that correction values have been registered for all circumferential positions of the screw 330 (S1105: Yes), has the registration unit 603 registered correction values for all velocities of the screw 330? It is determined whether or not (S1107).
  • the registration unit 603 determines that correction values have not been registered for all the speeds of the screw 330 (S1107: No), it changes the speed of the screw 330 (S1108). Note that the speed of the screw 330 is changed based on the operation of the injection motor 350 .
  • Registration of the correction value in the correction information storage unit 601 is completed by the above-described processing procedure.
  • FIG. 12 is a flowchart of display processing during weighing in the control device 700 according to the present embodiment.
  • the acquisition unit 602 acquires the pressure value detected by the load detector 360 during stroke control (S1201). Furthermore, the acquisition unit 602 obtains the current speed of the screw 330, the circumferential position , and the axial position of the screw 330 (S1202).
  • the correction control unit 604 refers to the correction information storage unit 601 to obtain correction values associated with the speed of the screw 330, the circumferential position of the screw 330, and the axial position of the screw 330. (S1203).
  • the correction control unit 604 derives a corrected detection value by subtracting the correction value from the detection value.
  • the display control unit 605 displays the corrected detection value on the display device 760 as the force due to the resin pressure (S1204).
  • the method of detecting the force due to the resin pressure based on the value detected by the load detector 360 during weighing has been described.
  • the detection of force due to resin pressure is not limited to weighing.
  • the force due to the resin pressure may be detected based on the value 804 detected by the load detector 360 during filling/holding.
  • the pressure control unit 606 performs pressure control so that the correction value acquired by the correction control unit 604 becomes a preset pressure set value for filling the injection device 300 with the molding material. I do.
  • this embodiment does not limit the correction target to the detected value, and may correct the pressure setting for performing pressure control.
  • the correction information storage unit 601 stores pressure setting values associated with the speed of the screw 330, the position of the screw 330 in the circumferential direction, and the position of the screw 330 in the axial direction. Then, the pressure control unit 606 performs pressure control so that the detection value acquired by the acquisition unit 602 becomes a pressure setting value set in consideration of disturbance such as mechanical resistance.
  • the force caused by the disturbance changes periodically.
  • the detected pressure value periodically changes according to the position of the screw 330 .
  • a change in this detected value corresponds to a change in the phase (rotational angle) of the injection spline shaft 363 .
  • the change in detected value occurs in response to the phase change of the metering spline shaft 371 . Therefore, by forming a mathematical model of the periodic change of each element, a correction value corresponding to the disturbance element can be specified from the mathematical model.
  • FIG. 13 is a diagram illustrating the resistance (including friction) that changes according to the circumferential position (rotation angle) of the screw 330 or the axial position of the screw 330 (phase of the injection spline shaft 363).
  • the resistance fluctuation 1301 changes periodically according to the circumferential position (rotational angle) of the screw 330 or the axial position of the screw 330 (phase of the injection spline shaft 363).
  • a sine function 1002 corresponding to the resistance variation 1301 including friction and the like can be derived.
  • the following formula (2) can be derived.
  • the phase ⁇ offset is a phase offset corresponding to the actual friction fluctuation of the injection device 300 .
  • the variable k is assumed to be a coefficient corresponding to the variation width of the actual injection device 300 .
  • the phase ⁇ is the circumferential position (rotational angle) of the screw 330 or the phase of the injection spline shaft 363 that moves the position of the screw 330 .
  • a formula model for calculating the correction value can be realized by combining a formula capable of calculating the correction value for the position and a correction value corresponding to the speed of the screw 330 (hereinafter referred to as speed correction value).
  • the registration unit 603 registers each value (k, ⁇ ij_offset , ⁇ rt_offset , and a table of speed correction values Pv) of Equation (3) below in the correction information storage unit 601 .
  • the variable k is assumed to be a coefficient corresponding to the variation width of the actual injection device 300 .
  • the phase ⁇ ij is the phase of the injection motor 350 (injection spline shaft 363) that moves the screw 330 in the axial direction.
  • the correspondence relationship between the phase ⁇ ij (angle) of the injection motor 350 and the position of the screw 330 can be derived from the correspondence relationship between the rotation angle of the injection motor 350 and the amount of movement of the screw 330, and the description thereof is omitted.
  • the phase ⁇ rt is the circumferential position (rotational angle) of the screw 330 .
  • the phase ⁇ ij_offset is a phase offset according to the variation of the actual axial position of the screw 330 (the phase of the injection motor 350).
  • the phase ⁇ rt_offset is a phase offset that corresponds to the variation of the actual circumferential position (rotational angle) of the screw 330 .
  • a table of speed correction values Pv corresponding to the speed of the screw 330 will be described later.
  • FIG. 14 is a diagram showing the structure of the speed correction value storage table held by the correction information storage unit 601 according to this embodiment. As shown in FIG. 14, the speed correction value Pv is stored in association with the axial speed of the screw 330 .
  • the speed correction value Pv and the variable k are set to the axial position of the screw 330 while varying the speed and circumferential position of the screw 330 as shown in the flowchart of FIG. 11 of the first embodiment. The description is omitted as it is specified by acquiring the detection value for each.
  • the period of the phase ⁇ ij and the phase ⁇ ij_offset can be derived from the period and phase of the injection motor 350 .
  • the period of phase ⁇ rt and phase ⁇ rt_offset can be derived from the period and phase of metering motor 340 .
  • the correction value can be derived based on the equation (3).
  • FIG. 15 is a diagram exemplifying variations in correction values calculated by the correction control unit 604 using equation (3). Cycles 1551 , 1552 , 1553 , 1554 , and 1555 in FIG. 15 indicate rotation cycles of the injection motor 350 .
  • the correction value variation 1501 corresponds to the detected value variation 901 when the circumferential position (rotational angle) of the screw 330 is the initial position.
  • the correction value variation 1502 corresponds to the detection value variation 902 when the circumferential position (rotation angle) of the screw 330 is +90°.
  • the correction value variation 1503 corresponds to the detection value variation 903 when the circumferential position (rotational angle) of the screw 330 is +180°.
  • the correction value variation 1504 corresponds to the detection value variation 904 when the circumferential position (rotational angle) of the screw 330 is +270°.
  • the correction control unit 604 of the present embodiment stores the parameter and speed correction value storage table stored in the correction information storage unit 601, the circumferential position of the screw 330, the axial position of the screw 330, and the A correction value is calculated from equation (3) using the velocity and .
  • the correction control unit 604 subtracts the calculated correction value from the detection value acquired by the acquisition unit 602 to derive a corrected detection value. Subsequent processing is the same as in the above-described embodiment, and description thereof is omitted.
  • the speed correction value storage table is used. By applying it to the correction value Pv, the correction value can be calculated using only the mathematical model.
  • the resistance value such as mechanical friction, in other words, the speed correction value is the largest. correction value
  • the speed of the screw 330 reaches a predetermined value
  • the relationship between speed and friction may be assumed to transition linearly, and the speed correction value may be changed linearly with respect to the speed. Since the variation is small, it may be treated as constant.
  • a correction value can be calculated using only a mathematical model by applying such a change in speed correction value as a formula to formula (3).
  • the combination of the table and the mathematical model shall differ according to the implementation.
  • the method of specifying the correction value is explained in the state where the assembly of the screw 330 is not mounted, but the method of specifying the correction value is not limited.
  • the correction value may be specified by filling the cylinder 310 with resin and increasing the temperature, and then operating the screw 330 at a low speed. In this case, only the correction value based on the resistance at low speed can be identified. However, since the resistance value tends to decrease as the speed of the screw 330 increases, a correction value corresponding to the speed can be estimated.
  • the embodiment described above is an example in which the correction control unit 604 corrects the detection value output from the load detector 360 based on the combination of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw. explained. However, the embodiments described above are not limited to the method of specifying the correction value based on the combination of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw.
  • the correction control section 604 may specify the correction value based on a combination of the circumferential position of the screw 330 and the position of the screw 330 . Furthermore, the correction control unit 604 identifies the specified pressure setting value based on the combination of the circumferential position of the screw 330 and the position of the screw 330, and the pressure control unit 606 operates according to the specified pressure setting value. Pressure control may be performed.
  • the method of specifying the correction value or the pressure setting value based on the combination of the circumferential position of the screw 330 and the position of the screw 330 may use a table or a mathematical model.
  • the correction control unit 604 may specify the correction value based on a combination of the circumferential position of the screw 330 and the speed of the screw 330 . Furthermore, the correction control unit 604 identifies the specified pressure setpoint based on the combination of the circumferential position of the screw 330 and the speed of the screw 330, and the pressure control unit 606 operates according to the specified pressure setpoint. Pressure control may be performed.
  • correction control section 604 may specify a correction value based on a combination of the axial position of the screw 330 and the speed of the screw 330 . Further, correction control 604 identifies the identified pressure set point based on a combination of the axial position of screw 330 and the speed of screw 330, and pressure control 606 operates according to the identified pressure set point. Pressure control may be performed.
  • the correction value or the pressure setting value is specified based on a combination of two elements of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw, the specified Since the detected value can be corrected with the corrected correction value and the pressure can be controlled with the corrected pressure setting value, it is possible to improve the detection accuracy and the accuracy of the pressure control.
  • the method is not limited to the method of specifying the correction value by combining two or more elements, and the correction value may be specified from one element.
  • the correction value and the pressure setting value may be specified based on the circumferential position of the screw 330 . Further, the correction value and the pressure setting value may be specified based on the axial position of the screw 330 . Also, based on the speed of the screw 330, the correction value and the pressure setting value may be specified.

Abstract

An injection molding machine according to the present invention comprises an injection device that fills a molding material into a die device, and a control device that controls the injection device. The injection device comprises a cylinder that heats the molding material, a screw disposed inside of the cylinder, and a metering motor that rotates the screw. The control device has a correction control unit which, on the basis of the circumferential directional position of the screw which varies on the basis of the operation of the metering motor, corrects a pressure setting value used in pressure control of the screw, or corrects a detection value output from a pressure detector that detects the pressure acting on the screw.

Description

射出成形機Injection molding machine
 本発明は、射出成形機に関する。 The present invention relates to an injection molding machine.
 射出成形機は、成形材料としての樹脂ペレットが供給されるシリンダと、樹脂ペレットを溶融させるためにシリンダを加熱するヒータと、を備えている。射出成形機は、シリンダ内で樹脂ペレットを溶融させ、溶融させた樹脂を金型装置内のキャビティ空間に充填させることで、成形品を製造する。 An injection molding machine is equipped with a cylinder to which resin pellets are supplied as a molding material, and a heater that heats the cylinder to melt the resin pellets. An injection molding machine manufactures a molded product by melting resin pellets in a cylinder and filling a cavity space in a mold device with the melted resin.
 射出成形機には、様々なセンサが設けられている。そして、センサで検出された値から、正確なトルクや応力を認識することが好まれている。 Various sensors are installed in the injection molding machine. And it is preferred to recognize the exact torque and stress from the values detected by the sensors.
特開2009-045904号公報JP 2009-045904 A
 特許文献1は、計量中の回転トルクを計測、記憶して、予め想定した関数に入力することで、スクリュの回転トルクの許容上限値を設定しているので、複雑な材料力学的強度計算をせずとも、許容上限値に基づいたトルク監視を実現している。 Patent Document 1 measures and stores the rotational torque during weighing, and inputs it into a function assumed in advance to set the allowable upper limit of the rotational torque of the screw, so complicated material mechanical strength calculations are not required. Even without it, torque monitoring based on the allowable upper limit is realized.
 一方、射出成形機を適切な制御や監視を行うために、回転トルクだけではなく、正確な樹脂圧の検出が望まれている。しかしながら、駆動部品の摩擦や姿勢変化による偏荷重が、荷重検出器の検出値に影響を与えていた。 On the other hand, in order to properly control and monitor injection molding machines, it is desired to detect not only rotational torque but also accurate resin pressure. However, unbalanced loads due to friction of drive parts and changes in attitude affect the detected values of load detectors.
 本発明の一態様は、成形材料を充填させるための圧力制御や、スクリュに作用する圧力の検出の精度を向上させる技術を提供する。 One aspect of the present invention provides a technique for improving the accuracy of pressure control for filling the molding material and detection of the pressure acting on the screw.
 本発明の一態様に係る射出成形機は、金型装置に成形材料を充填する射出装置と、射出装置を制御する制御装置と、を有する。射出装置は、成形材料を加熱するシリンダと、シリンダ内に配置されたスクリュと、スクリュを回転させる計量モータと、を有する。制御装置は、計量モータの動作に基づいて変化する、スクリュの周方向の位置に基づいて、スクリュの圧力制御に用いる圧力設定値を補正する、又は、スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する。 An injection molding machine according to one aspect of the present invention has an injection device that fills a mold device with molding material, and a control device that controls the injection device. The injection device has a cylinder that heats the molding material, a screw that is arranged in the cylinder, and a metering motor that rotates the screw. The control device corrects the pressure set value used for the screw pressure control based on the circumferential position of the screw, which changes based on the operation of the metering motor, or a pressure detector that detects the pressure acting on the screw. It has a correction control section for correcting the detection value output from.
 本発明の一態様に係る射出成形機は、金型装置に成形材料を充填する射出装置と、射出装置を制御する制御装置と、を有する。射出装置は、成形材料を加熱するシリンダと、シリンダ内に配置されたスクリュと、シリンダに沿ってスクリュを移動させる射出モータと、を有する。制御装置は、射出モータの動作に基づいて変化する、スクリュの軸方向の位置に基づいて、スクリュの圧力制御に用いる圧力設定値を補正する、又は、スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する。 An injection molding machine according to one aspect of the present invention has an injection device that fills a mold device with molding material, and a control device that controls the injection device. The injection device has a cylinder that heats the molding material, a screw that is arranged in the cylinder, and an injection motor that moves the screw along the cylinder. The control device corrects the pressure set value used for the screw pressure control based on the axial position of the screw, which changes based on the operation of the injection motor, or a pressure detector that detects the pressure acting on the screw. It has a correction control section for correcting the detection value output from.
 本発明の一態様に係る射出成形機は、金型装置に成形材料を充填する射出装置と、射出装置を制御する制御装置と、を有する。射出装置は、成形材料を加熱するシリンダと、シリンダ内に配置されたスクリュと、スクリュを移動させる射出モータと、を有する。制御装置は、射出モータの動作に基づいて変化する、スクリュの速度に基づいて、スクリュの圧力制御に用いる圧力設定値を補正する、又は、スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する。 An injection molding machine according to one aspect of the present invention has an injection device that fills a mold device with molding material, and a control device that controls the injection device. The injection device has a cylinder that heats the molding material, a screw arranged in the cylinder, and an injection motor that moves the screw. The controller corrects the pressure setpoint used to control the screw pressure based on the speed of the screw, which varies based on the operation of the injection motor, or the pressure output from the pressure detector that detects the pressure acting on the screw. and a correction control section for correcting the detected value.
 本発明の一態様によれば、外乱の影響を抑止して、成形材料を充填させるための圧力制御や、スクリュに作用する圧力の検出の精度を向上させる。 According to one aspect of the present invention, the influence of disturbance is suppressed, and the precision of the pressure control for filling the molding material and the detection of the pressure acting on the screw is improved.
図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。FIG. 1 is a diagram showing a state of an injection molding machine according to one embodiment when mold opening is completed. 図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping. 図3は、一実施形態に係る射出装置の射出開始時の状態を示す図である。FIG. 3 is a diagram showing a state at the start of injection of the injection device according to one embodiment. 図4は、一実施形態に係る射出装置の射出完了時の状態を示す図である。FIG. 4 is a diagram showing a state of the injection device according to one embodiment when injection is completed. 図5は、一実施形態に係る射出装置の射出完了時の状態の一部拡大図である。FIG. 5 is a partially enlarged view of the injection completion state of the injection device according to one embodiment. 図6は、一実施形態に係る制御装置の構成要素を機能ブロックで示す図である。FIG. 6 is a diagram showing functional blocks of components of a control device according to an embodiment. 図7は、第1の実施形態の計量時における、荷重検出器において検出される圧力を表した概念図である。FIG. 7 is a conceptual diagram showing the pressure detected by the load detector during weighing according to the first embodiment. 図8は、第1の実施形態に係る荷重検出器による検出値と、樹脂圧による力と、の関係を例示した図である。FIG. 8 is a diagram illustrating the relationship between the value detected by the load detector and the force due to the resin pressure according to the first embodiment. 図9は、第1の実施形態に係るスクリュの周方向の位置を固定した上で、射出スプライン軸を動かした場合に荷重検出器が検出する検出値を表した図である。FIG. 9 is a diagram showing detection values detected by the load detector when the injection spline shaft is moved while the position of the screw in the circumferential direction is fixed according to the first embodiment. 図10は、第1の実施形態に係る登録部に登録された補正情報記憶部のテーブルを例示した図である。10 is a diagram exemplifying a table in a correction information storage unit registered in a registration unit according to the first embodiment; FIG. 図11は、第1の実施形態に係る制御装置における補正情報記憶部に補正値を登録するフローチャートを示した図である。FIG. 11 is a diagram showing a flowchart for registering correction values in a correction information storage unit in the control device according to the first embodiment. 図12は、第1の実施形態に係る制御装置における、計量時における表示処理を行うフローチャートである。FIG. 12 is a flowchart for performing display processing during weighing in the control device according to the first embodiment. 図13は、スクリュの周方向の位置(回転角)、又はスクリュの位置(射出スプライン軸の位相)に応じて変化する抵抗力(摩擦含む)を例示した図である。FIG. 13 is a diagram illustrating resistance (including friction) that changes according to the circumferential position (rotational angle) of the screw or the position of the screw (phase of injection spline shaft). 図14は、第2の実施形態に係る補正情報記憶部が保持する速度補正値記憶テーブルの構造を示した図である。FIG. 14 is a diagram showing the structure of a speed correction value storage table held by a correction information storage unit according to the second embodiment. 図15は、第2の実施形態に係る補正制御部が式(3)を用いて算出した補正値の変動を例示した図である。FIG. 15 is a diagram exemplifying variations in correction values calculated by the correction control unit according to the second embodiment using equation (3).
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の又は対応する符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same or corresponding configurations are denoted by the same or corresponding reference numerals, and description thereof may be omitted.
 図1は、一実施形態に係る射出成形機の型開完了時の状態を示す図である。図2は、一実施形態に係る射出成形機の型締時の状態を示す図である。本明細書において、X軸方向、Y軸方向およびZ軸方向は互いに垂直な方向である。X軸方向およびY軸方向は水平方向を表し、Z軸方向は鉛直方向を表す。型締装置100が横型である場合、X軸方向は型開閉方向であり、Y軸方向は射出成形機10の幅方向である。Y軸方向負側を操作側と呼び、Y軸方向正側を反操作側と呼ぶ。 FIG. 1 is a diagram showing a state of the injection molding machine according to one embodiment when mold opening is completed. FIG. 2 is a diagram showing a state of the injection molding machine according to the embodiment at the time of mold clamping. In this specification, the X-axis direction, Y-axis direction and Z-axis direction are directions perpendicular to each other. The X-axis direction and Y-axis direction represent the horizontal direction, and the Z-axis direction represents the vertical direction. When the mold clamping device 100 is of a horizontal type, the X-axis direction is the mold opening/closing direction, and the Y-axis direction is the width direction of the injection molding machine 10 . The Y-axis direction negative side is called the operating side, and the Y-axis direction positive side is called the non-operating side.
 図1~図2に示すように、射出成形機10は、金型装置800を開閉する型締装置100と、金型装置800で成形された成形品を突き出すエジェクタ装置200と、金型装置800に成形材料を射出する射出装置300と、金型装置800に対し射出装置300を進退させる移動装置400と、射出成形機10の各構成要素を制御する制御装置700と、射出成形機10の各構成要素を支持するフレーム900とを有する。フレーム900は、型締装置100を支持する型締装置フレーム910と、射出装置300を支持する射出装置フレーム920とを含む。型締装置フレーム910および射出装置フレーム920は、それぞれ、レベリングアジャスタ930を介して床2に設置される。射出装置フレーム920の内部空間に、制御装置700が配置される。以下、射出成形機10の各構成要素について説明する。 As shown in FIGS. 1 and 2, the injection molding machine 10 includes a mold clamping device 100 that opens and closes a mold device 800, an ejector device 200 that ejects a molded product molded by the mold device 800, and the mold device 800. a moving device 400 for moving the injection device 300 forward and backward with respect to the mold device 800; a control device 700 for controlling each component of the injection molding machine 10; and a frame 900 that supports the components. The frame 900 includes a mold clamping device frame 910 that supports the mold clamping device 100 and an injection device frame 920 that supports the injection device 300 . The mold clamping device frame 910 and the injection device frame 920 are each installed on the floor 2 via leveling adjusters 930 . A control device 700 is arranged in the inner space of the injection device frame 920 . Each component of the injection molding machine 10 will be described below.
 (型締装置)
 型締装置100の説明では、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
(mold clamping device)
In the description of the mold clamping device 100, the moving direction of the movable platen 120 when the mold is closed (for example, the X-axis positive direction) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened is defined as the rear (for example, the X-axis negative direction). do.
 型締装置100は、金型装置800の型閉、昇圧、型締、脱圧および型開を行う。金型装置800は、固定金型810と可動金型820とを含む。 The mold clamping device 100 performs mold closing, pressure increase, mold clamping, depressurization, and mold opening of the mold device 800 . Mold apparatus 800 includes a fixed mold 810 and a movable mold 820 .
 型締装置100は例えば横型であって、型開閉方向が水平方向である。型締装置100は、固定金型810が取付けられる固定プラテン110と、可動金型820が取付けられる可動プラテン120と、固定プラテン110に対し可動プラテン120を型開閉方向に移動させる移動機構102と、を有する。 The mold clamping device 100 is, for example, a horizontal type, and the mold opening/closing direction is horizontal. The mold clamping device 100 includes a stationary platen 110 to which a stationary mold 810 is attached, a movable platen 120 to which a movable mold 820 is attached, a moving mechanism 102 that moves the movable platen 120 in the mold opening/closing direction with respect to the stationary platen 110, have
 固定プラテン110は、型締装置フレーム910に対し固定される。固定プラテン110における可動プラテン120との対向面に固定金型810が取付けられる。 The fixed platen 110 is fixed to the mold clamping device frame 910 . A stationary mold 810 is attached to the surface of the stationary platen 110 facing the movable platen 120 .
 可動プラテン120は、型締装置フレーム910に対し型開閉方向に移動自在に配置される。型締装置フレーム910上には、可動プラテン120を案内するガイド101が敷設される。可動プラテン120における固定プラテン110との対向面に可動金型820が取付けられる。 The movable platen 120 is arranged movably in the mold opening/closing direction with respect to the mold clamping device frame 910 . A guide 101 for guiding the movable platen 120 is laid on the mold clamping device frame 910 . A movable die 820 is attached to the surface of the movable platen 120 facing the fixed platen 110 .
 移動機構102は、固定プラテン110に対し可動プラテン120を進退させることにより、金型装置800の型閉、昇圧、型締、脱圧、および型開を行う。移動機構102は、固定プラテン110と間隔をおいて配置されるトグルサポート130と、固定プラテン110とトグルサポート130を連結するタイバー140と、トグルサポート130に対して可動プラテン120を型開閉方向に移動させるトグル機構150と、トグル機構150を作動させる型締モータ160と、型締モータ160の回転運動を直線運動に変換する運動変換機構170と、固定プラテン110とトグルサポート130の間隔を調整する型厚調整機構180と、を有する。 The moving mechanism 102 moves the movable platen 120 back and forth with respect to the fixed platen 110 to perform mold closing, pressure increase, mold clamping, pressure release, and mold opening of the mold device 800 . The moving mechanism 102 includes a toggle support 130 spaced apart from the stationary platen 110 , tie bars 140 connecting the stationary platen 110 and the toggle support 130 , and moving the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction. a toggle mechanism 150 that operates the toggle mechanism 150, a mold clamping motor 160 that operates the toggle mechanism 150, a motion conversion mechanism 170 that converts the rotary motion of the mold clamping motor 160 into a linear motion, and a mold that adjusts the interval between the stationary platen 110 and the toggle support 130. and a thickness adjustment mechanism 180 .
 トグルサポート130は、固定プラテン110と間隔をおいて配設され、型締装置フレーム910上に型開閉方向に移動自在に載置される。なお、トグルサポート130は、型締装置フレーム910上に敷設されるガイドに沿って移動自在に配置されてもよい。トグルサポート130のガイドは、可動プラテン120のガイド101と共通のものでもよい。 The toggle support 130 is spaced apart from the fixed platen 110 and mounted on the mold clamping device frame 910 so as to be movable in the mold opening/closing direction. In addition, the toggle support 130 may be arranged so as to be movable along a guide laid on the mold clamping device frame 910 . The guides of the toggle support 130 may be common with the guides 101 of the movable platen 120 .
 なお、本実施形態では、固定プラテン110が型締装置フレーム910に対し固定され、トグルサポート130が型締装置フレーム910に対し型開閉方向に移動自在に配置されるが、トグルサポート130が型締装置フレーム910に対し固定され、固定プラテン110が型締装置フレーム910に対し型開閉方向に移動自在に配置されてもよい。 In this embodiment, the fixed platen 110 is fixed to the mold clamping device frame 910, and the toggle support 130 is arranged to be movable in the mold opening/closing direction with respect to the mold clamping device frame 910. Fixed to the device frame 910 , the stationary platen 110 may be arranged to be movable relative to the mold clamping device frame 910 in the mold opening/closing direction.
 タイバー140は、固定プラテン110とトグルサポート130とを型開閉方向に間隔Lをおいて連結する。タイバー140は、複数本(例えば4本)用いられてよい。複数本のタイバー140は、型開閉方向に平行に配置され、型締力に応じて伸びる。少なくとも1本のタイバー140には、タイバー140の歪を検出するタイバー歪検出器141が設けられてよい。タイバー歪検出器141は、その検出結果を示す信号を制御装置700に送る。タイバー歪検出器141の検出結果は、型締力の検出などに用いられる。 The tie bar 140 connects the stationary platen 110 and the toggle support 130 with a gap L in the mold opening/closing direction. A plurality of (for example, four) tie bars 140 may be used. The multiple tie bars 140 are arranged parallel to the mold opening/closing direction and extend according to the mold clamping force. At least one tie bar 140 may be provided with a tie bar strain detector 141 that detects strain of the tie bar 140 . Tie-bar distortion detector 141 sends a signal indicating the detection result to control device 700 . The detection result of the tie bar strain detector 141 is used for detection of mold clamping force and the like.
 なお、本実施形態では、型締力を検出する型締力検出器として、タイバー歪検出器141が用いられるが、本発明はこれに限定されない。型締力検出器は、歪ゲージ式に限定されず、圧電式、容量式、油圧式、電磁式などでもよく、その取付け位置もタイバー140に限定されない。 In this embodiment, the tie bar strain detector 141 is used as a mold clamping force detector that detects the mold clamping force, but the present invention is not limited to this. The mold clamping force detector is not limited to the strain gauge type, but may be of piezoelectric type, capacitive type, hydraulic type, electromagnetic type, etc., and its mounting position is not limited to the tie bar 140 either.
 トグル機構150は、可動プラテン120とトグルサポート130との間に配置され、トグルサポート130に対し可動プラテン120を型開閉方向に移動させる。トグル機構150は、型開閉方向に移動するクロスヘッド151と、クロスヘッド151の移動によって屈伸する一対のリンク群と、を有する。一対のリンク群は、それぞれ、ピンなどで屈伸自在に連結される第1リンク152と第2リンク153とを有する。第1リンク152は可動プラテン120に対しピンなどで揺動自在に取付けられる。第2リンク153はトグルサポート130に対しピンなどで揺動自在に取付けられる。第2リンク153は、第3リンク154を介してクロスヘッド151に取付けられる。トグルサポート130に対しクロスヘッド151を進退させると、第1リンク152と第2リンク153とが屈伸し、トグルサポート130に対し可動プラテン120が進退する。 The toggle mechanism 150 is arranged between the movable platen 120 and the toggle support 130 and moves the movable platen 120 relative to the toggle support 130 in the mold opening/closing direction. The toggle mechanism 150 has a crosshead 151 that moves in the mold opening/closing direction, and a pair of link groups that bend and stretch as the crosshead 151 moves. A pair of link groups each has a first link 152 and a second link 153 that are connected by a pin or the like so as to be bendable and stretchable. The first link 152 is swingably attached to the movable platen 120 with a pin or the like. The second link 153 is swingably attached to the toggle support 130 with a pin or the like. A second link 153 is attached to the crosshead 151 via a third link 154 . When the crosshead 151 advances and retreats with respect to the toggle support 130 , the first link 152 and the second link 153 bend and stretch, and the movable platen 120 advances and retreats with respect to the toggle support 130 .
 なお、トグル機構150の構成は、図1および図2に示す構成に限定されない。例えば図1および図2では、各リンク群の節点の数が5つであるが、4つでもよく、第3リンク154の一端部が、第1リンク152と第2リンク153との節点に結合されてもよい。 The configuration of the toggle mechanism 150 is not limited to the configurations shown in FIGS. 1 and 2. For example, in FIGS. 1 and 2, the number of nodes in each link group is five, but the number may be four, and one end of the third link 154 is coupled to the node between the first link 152 and the second link 153. may be
 型締モータ160は、トグルサポート130に取付けられており、トグル機構150を作動させる。型締モータ160は、トグルサポート130に対しクロスヘッド151を進退させることにより、第1リンク152と第2リンク153とを屈伸させ、トグルサポート130に対し可動プラテン120を進退させる。型締モータ160は、運動変換機構170に直結されるが、ベルトやプーリなどを介して運動変換機構170に連結されてもよい。 The mold clamping motor 160 is attached to the toggle support 130 and operates the toggle mechanism 150 . The mold clamping motor 160 advances and retreats the crosshead 151 with respect to the toggle support 130 , thereby bending and stretching the first link 152 and the second link 153 to advance and retreat the movable platen 120 with respect to the toggle support 130 . The mold clamping motor 160 is directly connected to the motion conversion mechanism 170, but may be connected to the motion conversion mechanism 170 via a belt, pulley, or the like.
 運動変換機構170は、型締モータ160の回転運動をクロスヘッド151の直線運動に変換する。運動変換機構170は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。 The motion conversion mechanism 170 converts rotary motion of the mold clamping motor 160 into linear motion of the crosshead 151 . The motion conversion mechanism 170 includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
 型締装置100は、制御装置700による制御下で、型閉工程、昇圧工程、型締工程、脱圧工程、および型開工程などを行う。 Under the control of the control device 700, the mold clamping device 100 performs a mold closing process, a pressure increasing process, a mold clamping process, a depressurizing process, a mold opening process, and the like.
 型閉工程では、型締モータ160を駆動してクロスヘッド151を設定移動速度で型閉完了位置まで前進させることにより、可動プラテン120を前進させ、可動金型820を固定金型810にタッチさせる。クロスヘッド151の位置や移動速度は、例えば型締モータエンコーダ161などを用いて検出する。型締モータエンコーダ161は、型締モータ160の回転を検出し、その検出結果を示す信号を制御装置700に送る。 In the mold closing process, the mold clamping motor 160 is driven to advance the crosshead 151 to the mold closing completion position at the set movement speed, thereby advancing the movable platen 120 and bringing the movable mold 820 into contact with the fixed mold 810. . The position and moving speed of the crosshead 151 are detected using, for example, a mold clamping motor encoder 161 or the like. The mold clamping motor encoder 161 detects rotation of the mold clamping motor 160 and sends a signal indicating the detection result to the control device 700 .
 なお、クロスヘッド151の位置を検出するクロスヘッド位置検出器、およびクロスヘッド151の移動速度を検出するクロスヘッド移動速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。また、可動プラテン120の位置を検出する可動プラテン位置検出器、および可動プラテン120の移動速度を検出する可動プラテン移動速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。 The crosshead position detector for detecting the position of the crosshead 151 and the crosshead movement speed detector for detecting the movement speed of the crosshead 151 are not limited to the mold clamping motor encoder 161, and general ones are used. can. Further, the movable platen position detector for detecting the position of the movable platen 120 and the movable platen moving speed detector for detecting the moving speed of the movable platen 120 are not limited to the mold clamping motor encoder 161, and general ones are used. can.
 昇圧工程では、型締モータ160をさらに駆動してクロスヘッド151を型閉完了位置から型締位置までさらに前進させることで型締力を生じさせる。 In the pressurization step, the mold clamping motor 160 is further driven to further advance the crosshead 151 from the mold closing completion position to the mold clamping position, thereby generating mold clamping force.
 型締工程では、型締モータ160を駆動して、クロスヘッド151の位置を型締位置に維持する。型締工程では、昇圧工程で発生させた型締力が維持される。型締工程では、可動金型820と固定金型810との間にキャビティ空間801(図2参照)が形成され、射出装置300がキャビティ空間801に液状の成形材料を充填する。充填された成形材料が固化されることで、成形品が得られる。 In the mold clamping process, the mold clamping motor 160 is driven to maintain the position of the crosshead 151 at the mold clamping position. In the mold clamping process, the mold clamping force generated in the pressurizing process is maintained. In the mold clamping process, a cavity space 801 (see FIG. 2) is formed between the movable mold 820 and the fixed mold 810, and the injection device 300 fills the cavity space 801 with a liquid molding material. A molded product is obtained by solidifying the filled molding material.
 キャビティ空間801の数は、1つでもよいし、複数でもよい。後者の場合、複数の成形品が同時に得られる。キャビティ空間801の一部にインサート材が配置され、キャビティ空間801の他の一部に成形材料が充填されてもよい。インサート材と成形材料とが一体化した成形品が得られる。 The number of cavity spaces 801 may be one or plural. In the latter case, multiple moldings are obtained simultaneously. The insert material may be arranged in part of the cavity space 801 and the other part of the cavity space 801 may be filled with the molding material. A molded product in which the insert material and the molding material are integrated is obtained.
 脱圧工程では、型締モータ160を駆動してクロスヘッド151を型締位置から型開開始位置まで後退させることにより、可動プラテン120を後退させ、型締力を減少させる。型開開始位置と、型閉完了位置とは、同じ位置であってよい。 In the depressurization process, the mold clamping motor 160 is driven to retract the crosshead 151 from the mold clamping position to the mold opening start position, thereby retracting the movable platen 120 and reducing the mold clamping force. The mold opening start position and the mold closing completion position may be the same position.
 型開工程では、型締モータ160を駆動してクロスヘッド151を設定移動速度で型開開始位置から型開完了位置まで後退させることにより、可動プラテン120を後退させ、可動金型820を固定金型810から離間させる。その後、エジェクタ装置200が可動金型820から成形品を突き出す。 In the mold opening step, the mold clamping motor 160 is driven to retract the crosshead 151 from the mold opening start position to the mold opening completion position at a set moving speed, thereby retracting the movable platen 120 and moving the movable mold 820 to the fixed metal. away from the mold 810; After that, the ejector device 200 ejects the molded product from the movable mold 820 .
 型閉工程、昇圧工程および型締工程における設定条件は、一連の設定条件として、まとめて設定される。例えば、型閉工程および昇圧工程におけるクロスヘッド151の移動速度や位置(型閉開始位置、移動速度切換位置、型閉完了位置、および型締位置を含む)、型締力は、一連の設定条件として、まとめて設定される。型閉開始位置、移動速度切換位置、型閉完了位置、および型締位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型締位置と型締力とは、いずれか一方のみが設定されてもよい。 The setting conditions in the mold closing process, pressure rising process, and mold clamping process are collectively set as a series of setting conditions. For example, the moving speed and position of the crosshead 151 (including the mold closing start position, the moving speed switching position, the mold closing completion position, and the mold clamping position) and the mold clamping force in the mold closing process and the pressurizing process are set as a series of setting conditions. are collectively set as The mold closing start position, the movement speed switching position, the mold closing completion position, and the mold clamping position are arranged in this order from the rear side to the front side, and represent the start point and end point of the section in which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set. Only one of the mold clamping position and the mold clamping force may be set.
 脱圧工程および型開工程における設定条件も同様に設定される。例えば、脱圧工程および型開工程におけるクロスヘッド151の移動速度や位置(型開開始位置、移動速度切換位置、および型開完了位置)は、一連の設定条件として、まとめて設定される。型開開始位置、移動速度切換位置、および型開完了位置は、前側から後方に向けて、この順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。型開開始位置と型閉完了位置とは同じ位置であってよい。また、型開完了位置と型閉開始位置とは同じ位置であってよい。 The setting conditions in the depressurization process and the mold opening process are set in the same way. For example, the moving speed and position of the crosshead 151 (mold opening start position, moving speed switching position, and mold opening completion position) in the depressurizing process and the mold opening process are collectively set as a series of setting conditions. The mold opening start position, the movement speed switching position, and the mold opening completion position are arranged in this order from the front side to the rear side, and represent the start point and end point of the section for which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set. The mold opening start position and the mold closing completion position may be the same position. Also, the mold opening completion position and the mold closing start position may be the same position.
 なお、クロスヘッド151の移動速度や位置などの代わりに、可動プラテン120の移動速度や位置などが設定されてもよい。また、クロスヘッドの位置(例えば型締位置)や可動プラテンの位置の代わりに、型締力が設定されてもよい。 Note that instead of the moving speed, position, etc. of the crosshead 151, the moving speed, position, etc. of the movable platen 120 may be set. Also, the mold clamping force may be set instead of the position of the crosshead (for example, mold clamping position) or the position of the movable platen.
 ところで、トグル機構150は、型締モータ160の駆動力を増幅して可動プラテン120に伝える。その増幅倍率は、トグル倍率とも呼ばれる。トグル倍率は、第1リンク152と第2リンク153とのなす角θ(以下、「リンク角度θ」とも呼ぶ)に応じて変化する。リンク角度θは、クロスヘッド151の位置から求められる。リンク角度θが180°のとき、トグル倍率が最大になる。 By the way, the toggle mechanism 150 amplifies the driving force of the mold clamping motor 160 and transmits it to the movable platen 120 . The amplification factor is also called toggle factor. The toggle magnification changes according to the angle θ formed between the first link 152 and the second link 153 (hereinafter also referred to as “link angle θ”). The link angle θ is obtained from the position of the crosshead 151 . When the link angle θ is 180°, the toggle magnification becomes maximum.
 金型装置800の交換や金型装置800の温度変化などにより金型装置800の厚さが変化した場合、型締時に所定の型締力が得られるように、型厚調整が行われる。型厚調整では、例えば可動金型820が固定金型810にタッチする型タッチの時点でトグル機構150のリンク角度θが所定の角度になるように、固定プラテン110とトグルサポート130との間隔Lを調整する。 When the thickness of the mold device 800 changes due to replacement of the mold device 800 or temperature change of the mold device 800, the mold thickness is adjusted so that a predetermined mold clamping force can be obtained during mold clamping. In the mold thickness adjustment, for example, the distance L between the fixed platen 110 and the toggle support 130 is adjusted so that the link angle θ of the toggle mechanism 150 becomes a predetermined angle when the movable mold 820 touches the fixed mold 810 . to adjust.
 型締装置100は、型厚調整機構180を有する。型厚調整機構180は、固定プラテン110とトグルサポート130との間隔Lを調整することで、型厚調整を行う。なお、型厚調整のタイミングは、例えば成形サイクル終了から次の成形サイクル開始までの間に行われる。型厚調整機構180は、例えば、タイバー140の後端部に形成されるねじ軸181と、トグルサポート130に回転自在に且つ進退不能に保持されるねじナット182と、ねじ軸181に螺合するねじナット182を回転させる型厚調整モータ183とを有する。 The mold clamping device 100 has a mold thickness adjusting mechanism 180. The mold thickness adjustment mechanism 180 adjusts the mold thickness by adjusting the distance L between the stationary platen 110 and the toggle support 130 . The timing of mold thickness adjustment is, for example, between the end of a molding cycle and the start of the next molding cycle. The mold thickness adjusting mechanism 180 is, for example, a threaded shaft 181 formed at the rear end of the tie bar 140, a screw nut 182 held by the toggle support 130 so as to be rotatable and non-retractable, and screwed to the threaded shaft 181. and a mold thickness adjusting motor 183 that rotates the screw nut 182 .
 ねじ軸181およびねじナット182は、タイバー140ごとに設けられる。型厚調整モータ183の回転駆動力は、回転駆動力伝達部185を介して複数のねじナット182に伝達されてよい。複数のねじナット182を同期して回転できる。なお、回転駆動力伝達部185の伝達経路を変更することで、複数のねじナット182を個別に回転することも可能である。 A threaded shaft 181 and a threaded nut 182 are provided for each tie bar 140 . The rotational driving force of the mold thickness adjusting motor 183 may be transmitted to the multiple screw nuts 182 via the rotational driving force transmission portion 185 . Multiple screw nuts 182 can be rotated synchronously. By changing the transmission path of the rotational driving force transmission portion 185, it is also possible to rotate the plurality of screw nuts 182 individually.
 回転駆動力伝達部185は、例えば歯車などで構成される。この場合、各ねじナット182の外周に従動歯車が形成され、型厚調整モータ183の出力軸には駆動歯車が取付けられ、複数の従動歯車および駆動歯車と噛み合う中間歯車がトグルサポート130の中央部に回転自在に保持される。なお、回転駆動力伝達部185は、歯車の代わりに、ベルトやプーリなどで構成されてもよい。 The rotational driving force transmission section 185 is configured by, for example, gears. In this case, a driven gear is formed on the outer circumference of each screw nut 182, a driving gear is attached to the output shaft of the mold thickness adjusting motor 183, and an intermediate gear that meshes with a plurality of driven gears and the driving gear is formed in the central portion of the toggle support 130. rotatably held. Note that the rotational driving force transmission section 185 may be configured by a belt, a pulley, or the like instead of the gear.
 型厚調整機構180の動作は、制御装置700によって制御される。制御装置700は、型厚調整モータ183を駆動して、ねじナット182を回転させる。その結果、トグルサポート130のタイバー140に対する位置が調整され、固定プラテン110とトグルサポート130との間隔Lが調整される。なお、複数の型厚調整機構が組合わせて用いられてもよい。 The operation of the mold thickness adjusting mechanism 180 is controlled by the control device 700. The control device 700 drives the mold thickness adjusting motor 183 to rotate the screw nut 182 . As a result, the position of toggle support 130 with respect to tie bar 140 is adjusted, and the distance L between stationary platen 110 and toggle support 130 is adjusted. A plurality of mold thickness adjusting mechanisms may be used in combination.
 間隔Lは、型厚調整モータエンコーダ184を用いて検出する。型厚調整モータエンコーダ184は、型厚調整モータ183の回転量や回転方向を検出し、その検出結果を示す信号を制御装置700に送る。型厚調整モータエンコーダ184の検出結果は、トグルサポート130の位置や間隔Lの監視や制御に用いられる。なお、トグルサポート130の位置を検出するトグルサポート位置検出器、および間隔Lを検出する間隔検出器は、型厚調整モータエンコーダ184に限定されず、一般的なものを使用できる。 The interval L is detected using the mold thickness adjustment motor encoder 184. The mold thickness adjusting motor encoder 184 detects the amount and direction of rotation of the mold thickness adjusting motor 183 and sends a signal indicating the detection result to the control device 700 . The detection result of the mold thickness adjustment motor encoder 184 is used for monitoring and controlling the position and interval L of the toggle support 130 . The toggle support position detector that detects the position of the toggle support 130 and the gap detector that detects the gap L are not limited to the mold thickness adjustment motor encoder 184, and general ones can be used.
 型締装置100は、金型装置800の温度を調節する金型温調器を有してもよい。金型装置800は、その内部に、温調媒体の流路を有する。金型温調器は、金型装置800の流路に供給する温調媒体の温度を調節することで、金型装置800の温度を調節する。 The mold clamping device 100 may have a mold temperature controller that adjusts the temperature of the mold device 800 . The mold device 800 has a flow path for a temperature control medium inside. The mold temperature controller adjusts the temperature of the mold device 800 by adjusting the temperature of the temperature control medium supplied to the flow path of the mold device 800 .
 なお、本実施形態の型締装置100は、型開閉方向が水平方向である横型であるが、型開閉方向が上下方向である竪型でもよい。 Although the mold clamping device 100 of this embodiment is a horizontal type in which the mold opening/closing direction is horizontal, it may be a vertical type in which the mold opening/closing direction is a vertical direction.
 なお、本実施形態の型締装置100は、駆動源として、型締モータ160を有するが、型締モータ160の代わりに、油圧シリンダを有してもよい。また、型締装置100は、型開閉用にリニアモータを有し、型締用に電磁石を有してもよい。 Although the mold clamping device 100 of this embodiment has the mold clamping motor 160 as a drive source, the mold clamping motor 160 may be replaced by a hydraulic cylinder. Further, the mold clamping device 100 may have a linear motor for mold opening and closing and an electromagnet for mold clamping.
 (エジェクタ装置)
 エジェクタ装置200の説明では、型締装置100の説明と同様に、型閉時の可動プラテン120の移動方向(例えばX軸正方向)を前方とし、型開時の可動プラテン120の移動方向(例えばX軸負方向)を後方として説明する。
(ejector device)
In the description of the ejector device 200, as in the description of the mold clamping device 100, the moving direction of the movable platen 120 when the mold is closed (for example, the positive direction of the X axis) is defined as the front, and the moving direction of the movable platen 120 when the mold is opened (for example, X-axis negative direction) will be described as the rear.
 エジェクタ装置200は、可動プラテン120に取付けられ、可動プラテン120と共に進退する。エジェクタ装置200は、金型装置800から成形品を突き出すエジェクタロッド210と、エジェクタロッド210を可動プラテン120の移動方向(X軸方向)に移動させる駆動機構220とを有する。 The ejector device 200 is attached to the movable platen 120 and advances and retreats together with the movable platen 120 . The ejector device 200 has an ejector rod 210 that ejects a molded product from the mold device 800 and a drive mechanism 220 that moves the ejector rod 210 in the moving direction of the movable platen 120 (X-axis direction).
 エジェクタロッド210は、可動プラテン120の貫通穴に進退自在に配置される。エジェクタロッド210の前端部は、可動金型820のエジェクタプレート826と接触する。エジェクタロッド210の前端部は、エジェクタプレート826と連結されていても、連結されていなくてもよい。 The ejector rod 210 is disposed in a through hole of the movable platen 120 so that it can move back and forth. The front end of ejector rod 210 contacts ejector plate 826 of movable mold 820 . The front end of ejector rod 210 may or may not be connected to ejector plate 826 .
 駆動機構220は、例えば、エジェクタモータと、エジェクタモータの回転運動をエジェクタロッド210の直線運動に変換する運動変換機構とを有する。運動変換機構は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。 The drive mechanism 220 has, for example, an ejector motor and a motion conversion mechanism that converts the rotary motion of the ejector motor into the linear motion of the ejector rod 210 . The motion conversion mechanism includes a threaded shaft and a threaded nut that screws onto the threaded shaft. Balls or rollers may be interposed between the screw shaft and the screw nut.
 エジェクタ装置200は、制御装置700による制御下で、突き出し工程を行う。突き出し工程では、エジェクタロッド210を設定移動速度で待機位置から突き出し位置まで前進させることにより、エジェクタプレート826を前進させ、成形品を突き出す。その後、エジェクタモータを駆動してエジェクタロッド210を設定移動速度で後退させ、エジェクタプレート826を元の待機位置まで後退させる。 The ejector device 200 performs an ejecting process under the control of the control device 700 . In the ejecting step, the ejector plate 826 is moved forward by advancing the ejector rod 210 from the standby position to the ejecting position at a set moving speed to eject the molded product. After that, the ejector motor is driven to retract the ejector rod 210 at the set movement speed, and the ejector plate 826 is retracted to the original standby position.
 エジェクタロッド210の位置や移動速度は、例えばエジェクタモータエンコーダを用いて検出する。エジェクタモータエンコーダは、エジェクタモータの回転を検出し、その検出結果を示す信号を制御装置700に送る。なお、エジェクタロッド210の位置を検出するエジェクタロッド位置検出器、およびエジェクタロッド210の移動速度を検出するエジェクタロッド移動速度検出器は、エジェクタモータエンコーダに限定されず、一般的なものを使用できる。 The position and moving speed of the ejector rod 210 are detected using, for example, an ejector motor encoder. The ejector motor encoder detects rotation of the ejector motor and sends a signal indicating the detection result to the control device 700 . The ejector rod position detector for detecting the position of the ejector rod 210 and the ejector rod moving speed detector for detecting the moving speed of the ejector rod 210 are not limited to ejector motor encoders, and general ones can be used.
 (射出装置)
 射出装置300の説明では、型締装置100の説明やエジェクタ装置200の説明とは異なり、充填時のスクリュ330の軸方向(例えば、スクリュ330が移動可能な方向のうち、X軸負方向)を前方とし、計量時のスクリュ330の軸方向(例えば、スクリュ330が移動可能な方向のうち、X軸正方向)を後方として説明する。
(Injection device)
In the description of the injection device 300, unlike the description of the mold clamping device 100 and the description of the ejector device 200, the axial direction of the screw 330 during filling (for example, the negative direction of the X axis among the directions in which the screw 330 can move) is The description will be made with the forward direction and the axial direction of the screw 330 during weighing (for example, the positive direction of the X-axis among the directions in which the screw 330 can move) as the rearward direction.
 射出装置300はスライドベース301に設置され、スライドベース301は射出装置フレーム920に対し進退自在に配置される。射出装置300は、金型装置800に対し進退自在に配置される。射出装置300は、金型装置800にタッチし、金型装置800内のキャビティ空間801に成形材料を充填する。射出装置300は、例えば、成形材料を加熱するシリンダ310と、シリンダ310の前端部に設けられるノズル320と、シリンダ310内に進退自在に且つ回転自在に配置されるスクリュ330と、スクリュ330を回転させる計量モータ340と、スクリュ330を進退させる射出モータ350と、射出モータ350とスクリュ330の間で伝達される荷重を検出する荷重検出器360と、を有する。 The injection device 300 is installed on a slide base 301 , and the slide base 301 is arranged to move forward and backward relative to the injection device frame 920 . The injection device 300 is arranged to move back and forth with respect to the mold device 800 . The injection device 300 touches the mold device 800 and fills the cavity space 801 in the mold device 800 with the molding material. The injection device 300 includes, for example, a cylinder 310 that heats the molding material, a nozzle 320 that is provided at the front end of the cylinder 310, a screw 330 that is rotatably arranged in the cylinder 310 so that it can move back and forth, and a screw that rotates. , an injection motor 350 for advancing and retreating the screw 330 , and a load detector 360 for detecting the load transmitted between the injection motor 350 and the screw 330 .
 シリンダ310は、供給口311から内部に供給された成形材料を加熱する。成形材料は、例えば樹脂などを含む。成形材料は、例えばペレット状に形成され、固体の状態で供給口311に供給される。供給口311はシリンダ310の後部に形成される。シリンダ310の後部の外周には、水冷シリンダなどの冷却器312が設けられる。冷却器312よりも前方において、シリンダ310の外周には、バンドヒータなどの加熱器313と温度検出器314とが設けられる。 The cylinder 310 heats the molding material supplied inside from the supply port 311 . The molding material includes, for example, resin. The molding material is formed into, for example, a pellet shape and supplied to the supply port 311 in a solid state. A supply port 311 is formed in the rear portion of the cylinder 310 . A cooler 312 such as a water-cooled cylinder is provided on the outer circumference of the rear portion of the cylinder 310 . A heater 313 such as a band heater and a temperature detector 314 are provided on the outer periphery of the cylinder 310 ahead of the cooler 312 .
 シリンダ310は、シリンダ310の軸方向(例えばX軸方向)に複数のゾーンに区分される。複数のゾーンのそれぞれに加熱器313と温度検出器314とが設けられる。複数のゾーンのそれぞれに設定温度が設定され、温度検出器314の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。 The cylinder 310 is divided into a plurality of zones in the axial direction of the cylinder 310 (for example, the X-axis direction). A heater 313 and a temperature detector 314 are provided in each of the plurality of zones. A set temperature is set for each of the plurality of zones, and the controller 700 controls the heater 313 so that the temperature detected by the temperature detector 314 becomes the set temperature.
 ノズル320は、シリンダ310の前端部に設けられ、金型装置800に対し押し付けられる。ノズル320の外周には、加熱器313と温度検出器314とが設けられる。ノズル320の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。 The nozzle 320 is provided at the front end of the cylinder 310 and pressed against the mold device 800 . A heater 313 and a temperature detector 314 are provided around the nozzle 320 . The controller 700 controls the heater 313 so that the detected temperature of the nozzle 320 becomes the set temperature.
 スクリュ330は、シリンダ310内に回転自在に且つ進退自在に配置される。スクリュ330を回転させると、スクリュ330の螺旋状の溝に沿って成形材料が前方に送られる。成形材料は、前方に送られながら、シリンダ310からの熱によって徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。その後、スクリュ330を前進させると、スクリュ330前方に蓄積された液状の成形材料がノズル320から射出され、金型装置800内に充填される。 The screw 330 is arranged in the cylinder 310 so as to be rotatable and advanceable. When the screw 330 is rotated, the molding material is sent forward along the helical groove of the screw 330 . The molding material is gradually melted by the heat from the cylinder 310 while being fed forward. The screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . After that, when the screw 330 is advanced, the liquid molding material accumulated in front of the screw 330 is injected from the nozzle 320 and filled in the mold device 800 .
 スクリュ330の前部には、スクリュ330を前方に押すときにスクリュ330の前方から後方に向かう成形材料の逆流を防止する逆流防止弁として、逆流防止リング331が進退自在に取付けられる。 A backflow prevention ring 331 is movably attached to the front of the screw 330 as a backflow prevention valve that prevents backflow of the molding material from the front to the rear of the screw 330 when the screw 330 is pushed forward.
 逆流防止リング331は、スクリュ330を前進させるときに、スクリュ330前方の成形材料の圧力によって後方に押され、成形材料の流路を塞ぐ閉塞位置(図2参照)までスクリュ330に対し相対的に後退する。これにより、スクリュ330前方に蓄積された成形材料が後方に逆流するのを防止する。 The anti-backflow ring 331 is pushed backward by the pressure of the molding material in front of the screw 330 when the screw 330 is advanced, and is relatively to the screw 330 until it reaches a closed position (see FIG. 2) that blocks the flow path of the molding material. fall back. This prevents the molding material accumulated in front of the screw 330 from flowing backward.
 一方、逆流防止リング331は、スクリュ330を回転させるときに、スクリュ330の螺旋状の溝に沿って前方に送られる成形材料の圧力によって前方に押され、成形材料の流路を開放する開放位置(図1参照)までスクリュ330に対し相対的に前進する。これにより、スクリュ330の前方に成形材料が送られる。 On the other hand, the anti-backflow ring 331 is pushed forward by the pressure of the molding material sent forward along the helical groove of the screw 330 when the screw 330 is rotated, and is in an open position where the flow path of the molding material is opened. (see FIG. 1) relative to the screw 330. Thereby, the molding material is sent forward of the screw 330 .
 逆流防止リング331は、スクリュ330と共に回転する共回りタイプと、スクリュ330と共に回転しない非共回りタイプのいずれでもよい。 The anti-backflow ring 331 may be either a co-rotating type that rotates together with the screw 330 or a non-co-rotating type that does not rotate together with the screw 330 .
 なお、射出装置300は、スクリュ330に対し逆流防止リング331を開放位置と閉塞位置との間で進退させる駆動源を有していてもよい。 It should be noted that the injection device 300 may have a drive source that advances and retracts the backflow prevention ring 331 with respect to the screw 330 between the open position and the closed position.
 計量モータ340は、スクリュ330を回転させる。スクリュ330を回転させる駆動源は、計量モータ340には限定されず、例えば油圧ポンプなどでもよい。 The metering motor 340 rotates the screw 330 . The drive source for rotating the screw 330 is not limited to the metering motor 340, and may be, for example, a hydraulic pump.
 射出モータ350は、スクリュ330を進退させる。射出モータ350とスクリュ330との間には、射出モータ350の回転運動をスクリュ330の直線運動に変換する運動変換機構などが設けられる。運動変換機構は、例えばねじ軸と、ねじ軸に螺合するねじナットとを有する。ねじ軸とねじナットの間には、ボールやローラなどが設けられてよい。スクリュ330を進退させる駆動源は、射出モータ350には限定されず、例えば油圧シリンダなどでもよい。 The injection motor 350 moves the screw 330 forward and backward. Between the injection motor 350 and the screw 330, a motion conversion mechanism or the like that converts the rotary motion of the injection motor 350 into the linear motion of the screw 330 is provided. The motion conversion mechanism has, for example, a screw shaft and a screw nut screwed onto the screw shaft. Balls, rollers, or the like may be provided between the screw shaft and the screw nut. The drive source for advancing and retreating the screw 330 is not limited to the injection motor 350, and may be, for example, a hydraulic cylinder.
 荷重検出器360は、射出モータ350とスクリュ330との間で伝達される荷重を検出する。検出した荷重は、制御装置700で圧力に換算される。荷重検出器360は、射出モータ350とスクリュ330との間の荷重の伝達経路に設けられ、荷重検出器360に作用する荷重を検出する。 A load detector 360 detects the load transmitted between the injection motor 350 and the screw 330 . The detected load is converted into pressure by the control device 700 . The load detector 360 is provided in a load transmission path between the injection motor 350 and the screw 330 and detects the load acting on the load detector 360 .
 荷重検出器360は、検出した荷重の信号を制御装置700に送る。荷重検出器360によって検出される荷重は、スクリュ330と成形材料との間で作用する圧力に換算され、スクリュ330が成形材料から受ける圧力、スクリュ330に対する背圧、スクリュ330から成形材料に作用する圧力などの制御や監視に用いられる。 The load detector 360 sends a detected load signal to the control device 700 . The load detected by the load detector 360 is converted into the pressure acting between the screw 330 and the molding material, the pressure received by the screw 330 from the molding material, the back pressure on the screw 330, and the pressure acting on the molding material from the screw 330. Used for control and monitoring of pressure, etc.
 なお、成形材料の圧力を検出する圧力検出器は、荷重検出器360に限定されず、一般的なものを使用できる。例えば、ノズル圧センサ、又は型内圧センサが用いられてもよい。ノズル圧センサは、ノズル320に設置される。型内圧センサは、金型装置800の内部に設置される。 Note that the pressure detector that detects the pressure of the molding material is not limited to the load detector 360, and a general one can be used. For example, a nozzle pressure sensor or a mold internal pressure sensor may be used. A nozzle pressure sensor is installed at the nozzle 320 . The mold internal pressure sensor is installed inside the mold apparatus 800 .
 射出装置300は、制御装置700による制御下で、計量工程、充填工程および保圧工程などを行う。充填工程と保圧工程とをまとめて射出工程と呼んでもよい。 Under the control of the control device 700, the injection device 300 performs a weighing process, a filling process, a holding pressure process, and the like. The filling process and the holding pressure process may collectively be called an injection process.
 計量工程では、計量モータ340を駆動してスクリュ330を設定回転速度で回転させ、スクリュ330の螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。スクリュ330の回転速度は、例えば計量モータエンコーダ341を用いて検出する。計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送る。なお、スクリュ330の回転速度を検出するスクリュ回転速度検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。 In the weighing process, the weighing motor 340 is driven to rotate the screw 330 at a set rotation speed, and the molding material is fed forward along the helical groove of the screw 330. Along with this, the molding material is gradually melted. The screw 330 is retracted as liquid molding material is fed forward of the screw 330 and accumulated at the front of the cylinder 310 . The rotation speed of the screw 330 is detected using a metering motor encoder 341, for example. Weighing motor encoder 341 detects the rotation of weighing motor 340 and sends a signal indicating the detection result to control device 700 . Note that the screw rotation speed detector for detecting the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used.
 計量工程では、スクリュ330の急激な後退を制限すべく、射出モータ350を駆動してスクリュ330に対して設定背圧を加えてよい。スクリュ330に対する背圧は、例えば荷重検出器360を用いて検出する。スクリュ330が計量完了位置まで後退し、スクリュ330の前方に所定量の成形材料が蓄積されると、計量工程が完了する。 In the metering process, the injection motor 350 may be driven to apply a set back pressure to the screw 330 in order to limit rapid retraction of the screw 330 . The back pressure on the screw 330 is detected using a load detector 360, for example. The metering process is completed when the screw 330 is retracted to the metering completion position and a predetermined amount of molding material is accumulated in front of the screw 330 .
 計量工程におけるスクリュ330の軸方向の位置および回転速度は、一連の設定条件として、まとめて設定される。例えば、計量開始位置、回転速度切換位置および計量完了位置が設定される。これらの位置は、前側から後方に向けてこの順で並び、回転速度が設定される区間の始点や終点を表す。区間毎に、回転速度が設定される。回転速度切換位置は、1つでもよいし、複数でもよい。回転速度切換位置は、設定されなくてもよい。また、区間毎に背圧が設定される。 The axial position and rotational speed of the screw 330 in the weighing process are collectively set as a series of setting conditions. For example, a weighing start position, rotation speed switching position, and weighing completion position are set. These positions are arranged in this order from the front side to the rear side, and represent the start point and end point of the section in which the rotational speed is set. A rotation speed is set for each section. The rotational speed switching position may be one or plural. The rotation speed switching position does not have to be set. Also, the back pressure is set for each section.
 充填工程では、射出モータ350を駆動してスクリュ330を設定移動速度で前進させ、スクリュ330の前方に蓄積された液状の成形材料を金型装置800内のキャビティ空間801に充填させる。スクリュ330の位置や移動速度は、例えば射出モータエンコーダ351を用いて検出する。射出モータエンコーダ351は、射出モータ350の回転を検出し、その検出結果を示す信号を制御装置700に送る。スクリュ330の位置が設定位置に達すると、充填工程から保圧工程への切換(所謂、V/P切換)が行われる。V/P切換が行われる位置をV/P切換位置とも呼ぶ。スクリュ330の設定移動速度は、スクリュ330の位置や時間などに応じて変更されてもよい。 In the filling process, the injection motor 350 is driven to advance the screw 330 at a set movement speed, and the liquid molding material accumulated in front of the screw 330 is filled into the cavity space 801 in the mold device 800 . The position and moving speed of the screw 330 are detected using an injection motor encoder 351, for example. The injection motor encoder 351 detects rotation of the injection motor 350 and sends a signal indicating the detection result to the control device 700 . When the position of the screw 330 reaches the set position, switching from the filling process to the holding pressure process (so-called V/P switching) is performed. The position at which V/P switching takes place is also called the V/P switching position. The set moving speed of the screw 330 may be changed according to the position of the screw 330, time, and the like.
 充填工程におけるスクリュ330の位置および移動速度は、一連の設定条件として、まとめて設定される。例えば、充填開始位置(「射出開始位置」とも呼ぶ。)、移動速度切換位置およびV/P切換位置が設定される。これらの位置は、後側から前方に向けてこの順で並び、移動速度が設定される区間の始点や終点を表す。区間毎に、移動速度が設定される。移動速度切換位置は、1つでもよいし、複数でもよい。移動速度切換位置は、設定されなくてもよい。 The position and movement speed of the screw 330 in the filling process are collectively set as a series of setting conditions. For example, a filling start position (also called an “injection start position”), a moving speed switching position, and a V/P switching position are set. These positions are arranged in this order from the rear side to the front side, and represent the start point and end point of the section for which the movement speed is set. A moving speed is set for each section. The moving speed switching position may be one or plural. The moving speed switching position does not have to be set.
 スクリュ330の移動速度が設定される区間毎に、スクリュ330の圧力の上限値が設定される。スクリュ330の圧力は、荷重検出器360によって検出される。スクリュ330の圧力が設定圧力以下である場合、スクリュ330は設定移動速度で前進される。一方、スクリュ330の圧力が設定圧力を超える場合、金型保護を目的として、スクリュ330の圧力が設定圧力以下となるように、スクリュ330は設定移動速度よりも遅い移動速度で前進される。 The upper limit value of the pressure of the screw 330 is set for each section in which the moving speed of the screw 330 is set. The pressure of screw 330 is detected by load detector 360 . When the pressure of the screw 330 is below the set pressure, the screw 330 is advanced at the set travel speed. On the other hand, when the pressure of the screw 330 exceeds the set pressure, the screw 330 is advanced at a moving speed slower than the set moving speed so that the pressure of the screw 330 is equal to or less than the set pressure for the purpose of mold protection.
 なお、充填工程においてスクリュ330の位置がV/P切換位置に達した後、V/P切換位置にスクリュ330を一時停止させ、その後にV/P切換が行われてもよい。V/P切換の直前において、スクリュ330の停止の代わりに、スクリュ330の微速前進または微速後退が行われてもよい。また、スクリュ330の位置を検出するスクリュ位置検出器、およびスクリュ330の移動速度を検出するスクリュ移動速度検出器は、射出モータエンコーダ351に限定されず、一般的なものを使用できる。 It should be noted that after the position of the screw 330 reaches the V/P switching position in the filling process, the screw 330 may be temporarily stopped at the V/P switching position, and then the V/P switching may be performed. Immediately before the V/P switching, instead of stopping the screw 330, the screw 330 may be slowly advanced or slowly retracted. Further, the screw position detector for detecting the position of the screw 330 and the screw moving speed detector for detecting the moving speed of the screw 330 are not limited to the injection motor encoder 351, and general ones can be used.
 保圧工程では、射出モータ350を駆動してスクリュ330を前方に押し、スクリュ330の前端部における成形材料の圧力(以下、「保持圧力」とも呼ぶ。)を設定圧に保ち、シリンダ310内に残る成形材料を金型装置800に向けて押す。金型装置800内での冷却収縮による不足分の成形材料を補充できる。保持圧力は、例えば荷重検出器360を用いて検出する。保持圧力の設定値は、保圧工程の開始からの経過時間などに応じて変更されてもよい。保圧工程における保持圧力および保持圧力を保持する保持時間は、それぞれ複数設定されてよく、一連の設定条件として、まとめて設定されてよい。 In the holding pressure process, the injection motor 350 is driven to push the screw 330 forward, and the pressure of the molding material at the front end of the screw 330 (hereinafter also referred to as “holding pressure”) is maintained at the set pressure. The remaining molding material is pushed toward the mold device 800 . A shortage of molding material due to cooling shrinkage in the mold apparatus 800 can be replenished. The holding pressure is detected using the load detector 360, for example. The set value of the holding pressure may be changed according to the elapsed time from the start of the holding pressure process. A plurality of holding pressures and holding times for holding the holding pressure in the holding pressure step may be set respectively, and may be collectively set as a series of setting conditions.
 保圧工程では金型装置800内のキャビティ空間801の成形材料が徐々に冷却され、保圧工程完了時にはキャビティ空間801の入口が固化した成形材料で塞がれる。この状態はゲートシールと呼ばれ、キャビティ空間801からの成形材料の逆流が防止される。保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間801内の成形材料の固化が行われる。成形サイクル時間の短縮を目的として、冷却工程中に計量工程が行われてよい。 In the holding pressure process, the molding material in the cavity space 801 inside the mold device 800 is gradually cooled, and when the holding pressure process is completed, the entrance of the cavity space 801 is closed with the solidified molding material. This state is called a gate seal, and prevents the molding material from flowing back from the cavity space 801 . After the holding pressure process, the cooling process is started. In the cooling process, the molding material inside the cavity space 801 is solidified. A metering step may be performed during the cooling step for the purpose of shortening the molding cycle time.
 なお、本実施形態の射出装置300は、インライン・スクリュ方式であるが、プリプラ方式などでもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。可塑化シリンダ内には、スクリュが回転自在に且つ進退不能に配置され、またはスクリュが回転自在に且つ進退自在に配置される。一方、射出シリンダ内には、プランジャが進退自在に配置される。 Although the injection device 300 of the present embodiment is of the in-line screw method, it may be of the pre-plastic method or the like. A pre-plastic injection apparatus supplies molding material melted in a plasticizing cylinder to an injection cylinder, and injects the molding material from the injection cylinder into a mold apparatus. Inside the plasticizing cylinder, a screw is arranged to be rotatable and non-retractable, or a screw is arranged to be rotatable and reciprocal. On the other hand, a plunger is arranged in the injection cylinder so that it can move back and forth.
 また、本実施形態の射出装置300は、シリンダ310の軸方向が水平方向である横型であるが、シリンダ310の軸方向が上下方向である竪型であってもよい。竪型の射出装置300と組み合わされる型締装置は、竪型でも横型でもよい。同様に、横型の射出装置300と組み合わされる型締装置は、横型でも竪型でもよい。 Further, the injection device 300 of the present embodiment is a horizontal type in which the axial direction of the cylinder 310 is horizontal, but may be a vertical type in which the axial direction of the cylinder 310 is vertical. The mold clamping device combined with the vertical injection device 300 may be either vertical or horizontal. Similarly, the mold clamping device combined with the horizontal injection device 300 may be horizontal or vertical.
 (移動装置)
 移動装置400の説明では、射出装置300の説明と同様に、充填時のスクリュ330の軸方向(例えばX軸負方向)を前方とし、計量時のスクリュ330の軸方向(例えばX軸正方向)を後方として説明する。
(moving device)
In the description of the moving device 400, as in the description of the injection device 300, the axial direction of the screw 330 during filling (for example, the negative direction of the X-axis) is defined as the front, and the axial direction of the screw 330 during weighing (eg, the positive direction of the X-axis). is described as backward.
 移動装置400は、金型装置800に対し射出装置300を進退させる。また、移動装置400は、金型装置800に対しノズル320を押し付け、ノズルタッチ圧力を生じさせる。移動装置400は、液圧ポンプ410、駆動源としてのモータ420、液圧アクチュエータとしての液圧シリンダ430などを含む。 The moving device 400 advances and retreats the injection device 300 with respect to the mold device 800 . Further, the moving device 400 presses the nozzle 320 against the mold device 800 to generate nozzle touch pressure. The moving device 400 includes a hydraulic pump 410, a motor 420 as a drive source, a hydraulic cylinder 430 as a hydraulic actuator, and the like.
 液圧ポンプ410は、第1ポート411と、第2ポート412とを有する。液圧ポンプ410は、両方向回転可能なポンプであり、モータ420の回転方向を切換えることにより、第1ポート411および第2ポート412のいずれか一方から作動液(例えば油)を吸入し他方から吐出して液圧を発生させる。なお、液圧ポンプ410はタンクから作動液を吸引して第1ポート411および第2ポート412のいずれか一方から作動液を吐出することもできる。 The hydraulic pump 410 has a first port 411 and a second port 412 . Hydraulic pump 410 is a pump that can rotate in both directions, and by switching the rotation direction of motor 420, hydraulic fluid (for example, oil) is sucked from one of first port 411 and second port 412 and discharged from the other. to generate hydraulic pressure. Note that the hydraulic pump 410 can also suck the working fluid from the tank and discharge the working fluid from either the first port 411 or the second port 412 .
 モータ420は、液圧ポンプ410を作動させる。モータ420は、制御装置700からの制御信号に応じた回転方向および回転トルクで液圧ポンプ410を駆動する。モータ420は、電動モータであってよく、電動サーボモータであってよい。 The motor 420 operates the hydraulic pump 410 . Motor 420 drives hydraulic pump 410 with a rotational direction and rotational torque according to a control signal from control device 700 . Motor 420 may be an electric motor or may be an electric servomotor.
 液圧シリンダ430は、シリンダ本体431、ピストン432、およびピストンロッド433を有する。シリンダ本体431は、射出装置300に対して固定される。ピストン432は、シリンダ本体431の内部を、第1室としての前室435と、第2室としての後室436とに区画する。ピストンロッド433は、固定プラテン110に対して固定される。 The hydraulic cylinder 430 has a cylinder body 431 , a piston 432 and a piston rod 433 . The cylinder body 431 is fixed with respect to the injection device 300 . The piston 432 partitions the inside of the cylinder body 431 into a front chamber 435 as a first chamber and a rear chamber 436 as a second chamber. Piston rod 433 is fixed relative to stationary platen 110 .
 液圧シリンダ430の前室435は、第1流路401を介して、液圧ポンプ410の第1ポート411と接続される。第1ポート411から吐出された作動液が第1流路401を介して前室435に供給されることで、射出装置300が前方に押される。射出装置300が前進され、ノズル320が固定金型810に押し付けられる。前室435は、液圧ポンプ410から供給される作動液の圧力によってノズル320のノズルタッチ圧力を生じさせる圧力室として機能する。 The front chamber 435 of the hydraulic cylinder 430 is connected to the first port 411 of the hydraulic pump 410 via the first flow path 401 . The hydraulic fluid discharged from the first port 411 is supplied to the front chamber 435 through the first flow path 401, thereby pushing the injection device 300 forward. The injection device 300 is advanced and the nozzle 320 is pressed against the stationary mold 810 . The front chamber 435 functions as a pressure chamber that generates nozzle touch pressure of the nozzle 320 by the pressure of the hydraulic fluid supplied from the hydraulic pump 410 .
 一方、液圧シリンダ430の後室436は、第2流路402を介して液圧ポンプ410の第2ポート412と接続される。第2ポート412から吐出された作動液が第2流路402を介して液圧シリンダ430の後室436に供給されることで、射出装置300が後方に押される。射出装置300が後退され、ノズル320が固定金型810から離間される。 On the other hand, the rear chamber 436 of the hydraulic cylinder 430 is connected to the second port 412 of the hydraulic pump 410 via the second flow path 402 . The hydraulic fluid discharged from the second port 412 is supplied to the rear chamber 436 of the hydraulic cylinder 430 through the second flow path 402, thereby pushing the injection device 300 rearward. The injection device 300 is retracted and the nozzle 320 is separated from the stationary mold 810 .
 なお、本実施形態では移動装置400は液圧シリンダ430を含むが、本発明はこれに限定されない。例えば、液圧シリンダ430の代わりに、電動モータと、その電動モータの回転運動を射出装置300の直線運動に変換する運動変換機構とが用いられてもよい。 Although the moving device 400 includes the hydraulic cylinder 430 in this embodiment, the present invention is not limited to this. For example, instead of the hydraulic cylinder 430, an electric motor and a motion conversion mechanism that converts the rotary motion of the electric motor to the linear motion of the injection device 300 may be used.
 (制御装置)
 制御装置700は、例えばコンピュータで構成され、図1~図2に示すようにCPU(Central Processing Unit)701と、メモリなどの記憶媒体702と、入力インターフェース703と、出力インターフェース704とを有する。制御装置700は、記憶媒体702に記憶されたプログラムをCPU701に実行させることにより、各種の制御を行う。また、制御装置700は、入力インターフェース703で外部からの信号を受信し、出力インターフェース704で外部に信号を送信する。
(Control device)
The control device 700 is composed of, for example, a computer, and has a CPU (Central Processing Unit) 701, a storage medium 702 such as a memory, an input interface 703, and an output interface 704, as shown in FIGS. The control device 700 performs various controls by causing the CPU 701 to execute programs stored in the storage medium 702 . The control device 700 also receives signals from the outside through an input interface 703 and transmits signals to the outside through an output interface 704 .
 制御装置700は、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程などを繰り返し行うことにより、成形品を繰り返し製造する。成形品を得るための一連の動作、例えば計量工程の開始から次の計量工程の開始までの動作を「ショット」または「成形サイクル」とも呼ぶ。また、1回のショットに要する時間を「成形サイクル時間」または「サイクル時間」とも呼ぶ。 The control device 700 repeatedly performs a weighing process, a mold closing process, a pressurizing process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurizing process, a mold opening process, and an ejecting process, thereby producing a molded product. Repeat production. A series of operations for obtaining a molded product, for example, the operation from the start of the weighing process to the start of the next weighing process, is also called "shot" or "molding cycle". The time required for one shot is also called "molding cycle time" or "cycle time".
 一回の成形サイクルは、例えば、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程をこの順で有する。ここでの順番は、各工程の開始の順番である。充填工程、保圧工程、および冷却工程は、型締工程の間に行われる。型締工程の開始は充填工程の開始と一致してもよい。脱圧工程の完了は型開工程の開始と一致する。 A single molding cycle has, for example, a weighing process, a mold closing process, a pressurization process, a mold clamping process, a filling process, a holding pressure process, a cooling process, a depressurization process, a mold opening process, and an ejection process in this order. The order here is the order of the start of each step. The filling process, holding pressure process, and cooling process are performed during the clamping process. The start of the clamping process may coincide with the start of the filling process. Completion of the depressurization process coincides with the start of the mold opening process.
 なお、成形サイクル時間の短縮を目的として、同時に複数の工程を行ってもよい。例えば、計量工程は、前回の成形サイクルの冷却工程中に行われてもよく、型締工程の間に行われてよい。この場合、型閉工程が成形サイクルの最初に行われることとしてもよい。また、充填工程は、型閉工程中に開始されてもよい。また、突き出し工程は、型開工程中に開始されてもよい。ノズル320の流路を開閉する開閉弁が設けられる場合、型開工程は、計量工程中に開始されてもよい。計量工程中に型開工程が開始されても、開閉弁がノズル320の流路を閉じていれば、ノズル320から成形材料が漏れないためである。 In addition, multiple processes may be performed at the same time for the purpose of shortening the molding cycle time. For example, the metering step may occur during the cooling step of the previous molding cycle and may occur during the clamping step. In this case, the mold closing process may be performed at the beginning of the molding cycle. The filling process may also be initiated during the mold closing process. Also, the ejecting process may be initiated during the mold opening process. If an on-off valve for opening and closing the flow path of the nozzle 320 is provided, the mold opening process may be initiated during the metering process. This is because the molding material does not leak from the nozzle 320 as long as the on-off valve closes the flow path of the nozzle 320 even if the mold opening process is started during the metering process.
 なお、一回の成形サイクルは、計量工程、型閉工程、昇圧工程、型締工程、充填工程、保圧工程、冷却工程、脱圧工程、型開工程、および突き出し工程以外の工程を有してもよい。 One molding cycle includes processes other than the weighing process, mold closing process, pressurizing process, mold clamping process, filling process, holding pressure process, cooling process, depressurizing process, mold opening process, and ejecting process. may
 例えば、保圧工程の完了後、計量工程の開始前に、スクリュ330を予め設定された計量開始位置まで後退させる計量前サックバック工程が行われてもよい。計量工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を削減でき、計量工程の開始時のスクリュ330の急激な後退を防止できる。 For example, after the pressure holding process is completed, a pre-measuring suck-back process may be performed in which the screw 330 is retracted to a preset measuring start position before starting the measuring process. It is possible to reduce the pressure of molding material accumulated in front of the screw 330 before the start of the metering process, and to prevent the screw 330 from abrupt retraction at the start of the metering process.
 また、計量工程の完了後、充填工程の開始前に、スクリュ330を予め設定された充填開始位置(「射出開始位置」とも呼ぶ。)まで後退させる計量後サックバック工程が行われてもよい。充填工程の開始前にスクリュ330の前方に蓄積された成形材料の圧力を削減でき、充填工程の開始前のノズル320からの成形材料の漏出を防止できる。 Also, after the weighing process is completed and before the filling process starts, a post-weighing suck-back process may be performed in which the screw 330 is retracted to a preset filling start position (also referred to as an "injection start position"). The pressure of the molding material accumulated in front of the screw 330 before the start of the filling process can be reduced, and leakage of the molding material from the nozzle 320 before the start of the filling process can be prevented.
 制御装置700は、ユーザによる入力操作を受け付ける操作装置750や画面を表示する表示装置760と接続されている。操作装置750および表示装置760は、例えばタッチパネル770で構成され、一体化されてよい。表示装置760としてのタッチパネル770は、制御装置700による制御下で、画面を表示する。タッチパネル770の画面には、例えば、射出成形機10の設定、現在の射出成形機10の状態等の情報が表示されてもよい。また、タッチパネル770の画面には、例えば、ユーザによる入力操作を受け付けるボタン、入力欄等の操作部が表示されてもよい。操作装置750としてのタッチパネル770は、ユーザによる画面上の入力操作を検出し、入力操作に応じた信号を制御装置700に出力する。これにより、例えば、ユーザは、画面に表示される情報を確認しながら、画面に設けられた操作部を操作して、射出成形機10の設定(設定値の入力を含む)等を行うことができる。また、ユーザが画面に設けられた操作部を操作することにより、操作部に対応する射出成形機10の動作を行わせることができる。なお、射出成形機10の動作は、例えば、型締装置100、エジェクタ装置200、射出装置300、移動装置400等の動作(停止も含む)であってもよい。また、射出成形機10の動作は、表示装置760としてのタッチパネル770に表示される画面の切り替え等であってもよい。 The control device 700 is connected to an operation device 750 that receives user input operations and a display device 760 that displays screens. The operation device 750 and the display device 760 may be configured by, for example, a touch panel 770 and integrated. A touch panel 770 as a display device 760 displays a screen under the control of the control device 700 . Information such as the settings of the injection molding machine 10 and the current state of the injection molding machine 10 may be displayed on the screen of the touch panel 770 . Further, on the screen of the touch panel 770, for example, an operation unit such as a button for receiving an input operation by the user or an input field may be displayed. A touch panel 770 as the operation device 750 detects an input operation on the screen by the user and outputs a signal corresponding to the input operation to the control device 700 . As a result, for example, the user can operate the operation unit provided on the screen while confirming the information displayed on the screen to set the injection molding machine 10 (including input of set values). can. Further, the user can operate the operation unit provided on the screen to cause the injection molding machine 10 to operate corresponding to the operation unit. The operation of the injection molding machine 10 may be, for example, the operation (including stopping) of the mold clamping device 100, the ejector device 200, the injection device 300, the moving device 400, and the like. Also, the operation of the injection molding machine 10 may be switching of screens displayed on the touch panel 770 as the display device 760 .
 なお、本実施形態の操作装置750および表示装置760は、タッチパネル770として一体化されているものとして説明したが、独立に設けられてもよい。また、操作装置750は、複数設けられてもよい。操作装置750および表示装置760は、型締装置100(より詳細には固定プラテン110)の操作側(Y軸負方向)に配置される。 Although the operating device 750 and the display device 760 of the present embodiment are described as being integrated as the touch panel 770, they may be provided independently. Also, a plurality of operating devices 750 may be provided. The operating device 750 and the display device 760 are arranged on the operating side (Y-axis negative direction) of the mold clamping device 100 (more specifically, the stationary platen 110).
 (射出装置の詳細)
 図3は、一実施形態に係る射出装置の射出開始時の状態を示す図である。図4は、一実施形態に係る射出装置の射出完了時の状態を示す図である。図5は、図4の一部拡大図である。射出装置300は、射出装置本体303と、射出装置本体303を支持する支持フレーム304とを有する。射出装置本体303は、例えば、シリンダ310と、ノズル320と、スクリュ330と、計量モータ340と、射出モータ350と、荷重検出器360と、を含む。射出装置本体303は、更に、スクリュ330を回転自在に支持する軸受361と、射出モータ350によって回転させられながら進退させられる駆動軸362と、軸受361を介して駆動軸362を回転自在に支持する軸受ホルダ370と、を含む。
(details of injection unit)
FIG. 3 is a diagram showing a state at the start of injection of the injection device according to one embodiment. FIG. 4 is a diagram showing a state of the injection device according to one embodiment when injection is completed. 5 is a partially enlarged view of FIG. 4. FIG. The injection device 300 has an injection device main body 303 and a support frame 304 that supports the injection device main body 303 . The injection device main body 303 includes, for example, a cylinder 310, a nozzle 320, a screw 330, a metering motor 340, an injection motor 350, and a load detector 360. The injection device main body 303 further includes a bearing 361 that rotatably supports the screw 330, a drive shaft 362 that is moved forward and backward while being rotated by the injection motor 350, and a drive shaft 362 that is rotatably supported via the bearing 361. and a bearing holder 370 .
 支持フレーム304は、スライドベース301に設置される。スライドベース301は2本(図3及び図4には1本のみ図示)のガイド302に沿って進退する。2本のガイド302は、射出装置フレーム920に敷設される。2本のガイド302は、それぞれ、X軸方向に延びている。2本のガイド302は、Y軸方向に間隔をおいて配置される。支持フレーム304は、鉛直な旋回軸304Zを中心に旋回自在に、スライドベース301に設置される。支持フレーム304と共に射出装置本体303を旋回できる。 The support frame 304 is installed on the slide base 301 . The slide base 301 advances and retreats along two guides 302 (only one guide is shown in FIGS. 3 and 4). Two guides 302 are laid on the injection unit frame 920 . The two guides 302 each extend in the X-axis direction. The two guides 302 are spaced apart in the Y-axis direction. The support frame 304 is installed on the slide base 301 so as to be rotatable around a vertical pivot 304Z. The injection device main body 303 can be pivoted together with the support frame 304 .
 支持フレーム304は、前旋回プレート305と、後旋回プレート306とを有する。前旋回プレート305と後旋回プレート306とは、スライドベース301の上面に摺動自在に載置される。前旋回プレート305の予め定められた位置に、旋回軸304Zが配置される。前旋回プレート305の後方に、後旋回プレート306が配置される。 The support frame 304 has a front pivot plate 305 and a rear pivot plate 306 . The front swivel plate 305 and the rear swivel plate 306 are slidably mounted on the upper surface of the slide base 301 . A swivel shaft 304Z is arranged at a predetermined position of the front swivel plate 305 . A rear pivot plate 306 is arranged behind the front pivot plate 305 .
 支持フレーム304は、前フランジ307と、後フランジ308と、複数本の連結ロッド309とを有する。前フランジ307は、前旋回プレート305に取付けられる。後フランジ308は、後旋回プレート306に取付けられる。連結ロッド309は、前フランジ307と後フランジ308とを間隔をおいて連結する。 The support frame 304 has a front flange 307 , a rear flange 308 and multiple connecting rods 309 . A front flange 307 is attached to the front pivot plate 305 . A rear flange 308 is attached to the rear pivot plate 306 . A connecting rod 309 connects the front flange 307 and the rear flange 308 with a space therebetween.
 前フランジ307には、シリンダ310と、計量モータ340とが取付けられる。シリンダ310は、前フランジ307の前方に配置され、筒体315を介して前フランジ307に取付けられる。計量モータ340は、前フランジ307の後方であって且つ後フランジ308の前方に配置される。 A cylinder 310 and a metering motor 340 are attached to the front flange 307 . Cylinder 310 is arranged in front of front flange 307 and attached to front flange 307 via cylinder 315 . A metering motor 340 is located behind the front flange 307 and forward of the rear flange 308 .
 一方、後フランジ308には、射出モータ350が取付けられる。射出モータ350は、後フランジ308の後方に配置され、後述の荷重検出器360を介して後フランジ308に取付けられる。 On the other hand, an injection motor 350 is attached to the rear flange 308 . The injection motor 350 is arranged behind the rear flange 308 and attached to the rear flange 308 via a load detector 360 which will be described later.
 計量モータ340は、スクリュ330を回転させる。計量モータ340は、前フランジ307に対して固定される固定子342と、固定子342の内側において回転する回転子343と、回転子343を回転自在に支持する軸受349と、を有する。固定子342は、軸受349を保持する前フランジ342aと、軸受349を保持する後フランジ342bと、前フランジ342aと後フランジ342bを接続するハウジング342cと、を含む。計量モータ340の回転運動は、軸受ホルダ370に伝達され、更に軸受ホルダ370からスクリュ330に伝達される。 The metering motor 340 rotates the screw 330 . The metering motor 340 has a stator 342 fixed to the front flange 307, a rotor 343 rotating inside the stator 342, and bearings 349 supporting the rotor 343 for rotation. Stator 342 includes a front flange 342a holding bearing 349, a rear flange 342b holding bearing 349, and a housing 342c connecting front flange 342a and rear flange 342b. Rotational motion of metering motor 340 is transmitted to bearing holder 370 and from bearing holder 370 to screw 330 .
 軸受ホルダ370は、スクリュ330が取付けられるスクリュ取付部372と、計量モータ340の回転子343がスプライン結合される計量スプライン軸371とを有する。計量スプライン軸371は、計量モータ340の回転子343の内部に配置される。回転子343には、計量スプラインナット344が設けられる。 The bearing holder 370 has a screw mounting portion 372 to which the screw 330 is mounted, and a metering spline shaft 371 to which the rotor 343 of the metering motor 340 is splined. The metering spline shaft 371 is arranged inside the rotor 343 of the metering motor 340 . A metering spline nut 344 is provided on the rotor 343 .
 計量スプラインナット344は、その内周面に、周方向に等間隔で配置される複数のキー溝を有する。一方、計量スプライン軸371は、その外周面に、周方向に等間隔で配置される複数のキーを有する。計量スプライン軸371と計量スプラインナット344とは、スプライン結合される。なお、キー溝の数、及びキーの数は1つでもよい。 The metering spline nut 344 has a plurality of key grooves arranged at equal intervals in the circumferential direction on its inner peripheral surface. On the other hand, the metering spline shaft 371 has a plurality of keys arranged at equal intervals in the circumferential direction on its outer peripheral surface. The metering spline shaft 371 and the metering spline nut 344 are splined together. Note that the number of key grooves and the number of keys may be one.
 射出モータ350は、スクリュ330を進退させる。射出モータ350は、荷重検出器360を介して後フランジ308に対して固定される固定子352と、固定子352の内側において回転する回転子353と、回転子353を回転自在に支持する軸受359と、を有する。射出モータ350の回転運動は、駆動軸362の回転直線運動に変換され、更に軸受ホルダ370の直線運動に変換される。軸受ホルダ370の進退に伴い、スクリュ330が進退する。 The injection motor 350 moves the screw 330 forward and backward. The injection motor 350 includes a stator 352 fixed to the rear flange 308 via a load detector 360, a rotor 353 rotating inside the stator 352, and bearings 359 rotatably supporting the rotor 353. and have The rotary motion of the injection motor 350 is converted into rotary linear motion of the drive shaft 362 and further into linear motion of the bearing holder 370 . As the bearing holder 370 advances and retreats, the screw 330 advances and retreats.
 駆動軸362は、後側から前方に向けて、射出スプライン軸363と、ねじ軸364と、回転軸365とをこの順で同一直線上に有する。 The drive shaft 362 has an injection spline shaft 363, a screw shaft 364, and a rotary shaft 365 in this order on the same straight line from the rear side toward the front.
 射出スプライン軸363は、射出モータ350の回転子353の内部に配置される。回転子353には、射出スプラインナット354が設けられる。射出スプラインナット354は、その内周面に、周方向に等間隔で配置される複数のキー溝を有する。一方、射出スプライン軸363は、その外周面に、周方向に等間隔で配置される複数のキーを有する。射出スプライン軸363と射出スプラインナット354とは、スプライン結合される。なお、キー溝の数、及びキーの数は1つでもよい。 The injection spline shaft 363 is arranged inside the rotor 353 of the injection motor 350 . The rotor 353 is provided with an injection spline nut 354 . The injection spline nut 354 has a plurality of key grooves arranged at equal intervals in the circumferential direction on its inner peripheral surface. On the other hand, the injection spline shaft 363 has a plurality of keys arranged at equal intervals in the circumferential direction on its outer peripheral surface. The injection spline shaft 363 and the injection spline nut 354 are spline-coupled. Note that the number of key grooves and the number of keys may be one.
 ねじ軸364は、ねじナット366と螺合される。ねじ軸364とねじナット366の間には、ボール又はローラが介在してよい。ねじナット366は、荷重検出器360を介して後フランジ308に対して固定されるので、ねじ軸364と共に回転しない。従って、ねじ軸364は、回転しながら進退する。ねじ軸364が回転しながら進退できるように、射出スプライン軸363と、射出スプラインナット354とが、スプライン結合される。 The screw shaft 364 is screwed with a screw nut 366 . Balls or rollers may be interposed between the threaded shaft 364 and the threaded nut 366 . The threaded nut 366 is fixed to the rear flange 308 via the load detector 360 so that it does not rotate with the threaded shaft 364 . Therefore, the screw shaft 364 advances and retreats while rotating. The injection spline shaft 363 and the injection spline nut 354 are spline-coupled so that the screw shaft 364 can advance and retreat while rotating.
 回転軸365は、軸受361を介して軸受ホルダ370に保持される。軸受ホルダ370は筒状の計量スプライン軸371を有し、計量スプライン軸371の内周面に軸受361が固定される。軸受361は、回転軸365と共に回転する内輪と、計量スプライン軸371に対し固定される外輪とを有する。軸受361は、回転軸365から軸受ホルダ370への回転駆動力の伝達を防止する。 A rotating shaft 365 is held by a bearing holder 370 via a bearing 361 . The bearing holder 370 has a cylindrical metering spline shaft 371 , and a bearing 361 is fixed to the inner peripheral surface of the metering spline shaft 371 . Bearing 361 has an inner ring that rotates with rotating shaft 365 and an outer ring that is fixed relative to metering spline shaft 371 . The bearing 361 prevents transmission of rotational driving force from the rotating shaft 365 to the bearing holder 370 .
 回転軸365が回転しながら進退することにより、軸受ホルダ370が進退し、スクリュ330が進退する。スクリュ330が進退する時、計量モータ340は進退しない。計量モータ340の計量スプラインナット344と、軸受ホルダ370の計量スプライン軸371とは、スプライン結合されるからである。射出モータ350の駆動対象に計量モータ340が含まれないので、射出モータ350の駆動対象のイナーシャが小さく、スクリュ330の前進開始時の加速が速い。 As the rotating shaft 365 advances and retreats while rotating, the bearing holder 370 advances and retreats, and the screw 330 advances and retreats. The metering motor 340 does not advance or retreat when the screw 330 advances or retreats. This is because the metering spline nut 344 of the metering motor 340 and the metering spline shaft 371 of the bearing holder 370 are spline-coupled. Since the metering motor 340 is not included in the driving target of the injection motor 350, the inertia of the driving target of the injection motor 350 is small, and the acceleration of the screw 330 when starting to move forward is fast.
 なお、射出装置300の構造は、図3及び図4に示す構造には限定されない。例えば、スクリュ330を駆動する駆動源(例えば計量モータ340及び射出モータ350)の配置は、図3及び図4に示す配置には限定されない。具体的には、本実施形態ではスクリュ330の回転中心線と、計量モータ340の回転中心線と、射出モータ350の回転中心線とは同一直線上に配置されるが、同一直線上に配置されなくてもよい。 The structure of the injection device 300 is not limited to the structure shown in FIGS. 3 and 4. For example, the arrangement of the drive source (for example, the metering motor 340 and the injection motor 350) that drives the screw 330 is not limited to the arrangement shown in FIGS. Specifically, in this embodiment, the rotation center line of the screw 330, the rotation center line of the metering motor 340, and the rotation center line of the injection motor 350 are arranged on the same straight line, but they are arranged on the same straight line. It doesn't have to be.
 また、駆動源の駆動力をスクリュ330に伝達する伝達機構の構造は、図3及び図4に示す構造には限定されない。伝達機構の構造は、スクリュ330を駆動する駆動源の配置に応じて適宜変更される。例えば、互いに平行な計量モータ340の回転中心線とスクリュ330の回転中心線とがこれらの回転中心線と直交する方向にずらして配置される場合、タイミングベルトが用いられてもよい。同様に、互いに平行な射出モータ350の回転中心線とスクリュ330の回転中心線とがこれらの回転中心線と直交する方向にずらして配置される場合、タイミングベルトが用いられてもよい。 Also, the structure of the transmission mechanism that transmits the driving force of the drive source to the screw 330 is not limited to the structure shown in FIGS. The structure of the transmission mechanism is changed as appropriate according to the arrangement of the drive source that drives the screw 330 . For example, a timing belt may be used when the parallel centerline of rotation of the metering motor 340 and the centerline of rotation of the screw 330 are offset in a direction orthogonal to these centerlines. Similarly, when the rotation centerlines of the injection motor 350 and the screw 330, which are parallel to each other, are offset in a direction orthogonal to these rotation centerlines, a timing belt may be used.
 カップリング375は、スクリュ330と軸受ホルダ370とを結合する。カップリング375は、スクリュ330の後端部に形成されるスプライン軸332がスプライン結合されるスプラインナット376と、スプライン軸332を前方から押さえるフランジ377と、を有する。フランジ377は、スクリュ330の溝333に嵌合される。溝333は、スプライン軸332の前方に形成される。フランジ377は、2つの円弧状の分割体に分割され、溝333に嵌め込まれ、スプライン軸332を前方から押さえる。 A coupling 375 connects the screw 330 and the bearing holder 370 . The coupling 375 has a spline nut 376 to which the spline shaft 332 formed at the rear end of the screw 330 is spline-coupled, and a flange 377 that presses the spline shaft 332 from the front. Flange 377 fits into groove 333 of screw 330 . A groove 333 is formed in front of the spline shaft 332 . The flange 377 is divided into two arc-shaped split bodies, which are fitted into the grooves 333 and press the spline shaft 332 from the front.
 フランジ377は、第1ボルト378によって、スプラインナット376に締結される。スプラインナット376は、第2ボルト379によって、軸受ホルダ370に締結され、荷重検出器360を前方から押さえる。第1ボルト378及び第2ボルト379を締めたり緩めたりする作業は、前フランジ307と冷却器312との間に配置される筒体315の窓316から行われる。 The flange 377 is fastened to the spline nut 376 with a first bolt 378. The spline nut 376 is fastened to the bearing holder 370 by a second bolt 379 and presses the load detector 360 from the front. The operation of tightening and loosening the first bolt 378 and the second bolt 379 is performed through the window 316 of the cylinder 315 located between the front flange 307 and the cooler 312 .
 筒体315は、前フランジ307から前方に突出する筒部315aと、筒部315aの前端面から筒部315aの内側に突出する内フランジ部315bと、を含む。筒部315aには、窓316が形成される。内フランジ部315bの内縁には、シリンダ310の外縁が固定される。 The tubular body 315 includes a tubular portion 315a protruding forward from the front flange 307 and an inner flange portion 315b protruding inside the tubular portion 315a from the front end surface of the tubular portion 315a. A window 316 is formed in the cylindrical portion 315a. The outer edge of the cylinder 310 is fixed to the inner edge of the inner flange portion 315b.
 軸受ホルダ370の外周面には、環状パッキン381が嵌め込まれる環状溝、スライドリング382が嵌め込まれる環状溝が形成されている。 An annular groove into which the annular packing 381 is fitted and an annular groove into which the slide ring 382 is fitted are formed on the outer peripheral surface of the bearing holder 370 .
 環状パッキン381は、例えば軸受ホルダ370に保持され、計量モータ340の回転子343に摺動自在に接触し、回転子343と軸受ホルダ370との隙間をシールする。これにより、計量スプライン軸371に供給された潤滑剤がスクリュ330側に漏れるのを防止できる。 The annular packing 381 is held by, for example, the bearing holder 370, slidably contacts the rotor 343 of the metering motor 340, and seals the gap between the rotor 343 and the bearing holder 370. This can prevent the lubricant supplied to the metering spline shaft 371 from leaking to the screw 330 side.
 環状パッキン381は、計量スプライン軸371のキー371aよりも前方に取付けられればよく、計量スプライン軸371に取付けられてもよいが、図3~図5に示すようにスクリュ取付部372に取付けられてよい。 The annular packing 381 may be attached to the metering spline shaft 371 in front of the key 371a of the metering spline shaft 371, and may be attached to the metering spline shaft 371. However, as shown in FIGS. good.
 環状パッキン381としては、例えば断面形状が円形のOリングなどが用いられ、適度に圧縮して使用される。環状パッキン381は、シール性を確保するため、スライドリング382よりも柔らかい材料で形成されている。環状パッキン381の材料としては、例えばブチルゴムなどのゴムが挙げられる。 As the annular packing 381, for example, an O-ring having a circular cross-sectional shape is used, and is used after being moderately compressed. The annular packing 381 is made of a softer material than the slide ring 382 in order to ensure sealing performance. Examples of the material of the annular packing 381 include rubber such as butyl rubber.
 なお、環状パッキン381は、本実施形態では軸受ホルダ370に保持されるが、計量モータ340の回転子343に保持され、軸受ホルダ370に摺動自在に接触し、回転子343とスクリュ取付部372との隙間をシールしてもよい。 Although the annular packing 381 is held by the bearing holder 370 in this embodiment, the annular packing 381 is held by the rotor 343 of the metering motor 340 and slidably contacts the bearing holder 370 so that the rotor 343 and the screw mounting portion 372 are held. You may seal the gap between
 スライドリング382は、例えばスクリュ取付部372に保持され、計量モータ340の回転子343に摺動自在に接触し、回転子343の中心線とスクリュ取付部372の中心線とを合わせる。これにより、回転子343とスクリュ取付部372とのかじりを抑制できる。また、環状パッキン381に偏荷重が加わることを抑制できる。 The slide ring 382 is held by, for example, the screw mounting portion 372 and slidably contacts the rotor 343 of the metering motor 340 to align the center line of the rotor 343 with the center line of the screw mounting portion 372 . As a result, galling between the rotor 343 and the screw mounting portion 372 can be suppressed. Also, it is possible to suppress the application of an unbalanced load to the annular packing 381 .
 スライドリング382は、回転子343とスクリュ取付部372との偏心を抑制するため、環状パッキン381よりも硬い材料で形成されている。スライドリング382の材料としては、自己潤滑性に富む、結晶性樹脂などが用いられる。結晶性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリエステル(PEs)、ポリエチレン(PE)などが挙げられる。結晶性の度合いが大きいほど、自己潤滑性が大きくなる。スライドリング382は、結晶性樹脂以外の樹脂で形成されてもよく、例えば布入りのフェノール樹脂で形成されてもよい。 The slide ring 382 is made of a harder material than the annular packing 381 in order to suppress eccentricity between the rotor 343 and the screw mounting portion 372 . As a material for the slide ring 382, a crystalline resin or the like having high self-lubricating properties is used. Examples of crystalline resins include polytetrafluoroethylene (PTFE), polyamide (PA), polyesters (PEs), and polyethylene (PE). The greater the degree of crystallinity, the greater the self-lubricating properties. The slide ring 382 may be made of resin other than crystalline resin, for example, it may be made of cloth-filled phenolic resin.
 スライドリング382は、環状パッキン381とは異なり、シール性を確保するものではないので、周方向一部に切れ目を有している。当該切れ目は、スライドリング382の取付けや取外しのために形成されており、取付け時や取外し時に広げられ、その後、スライドリング382の弾性復元力によって元に戻る。 Unlike the annular packing 381, the slide ring 382 does not ensure sealing performance, so it has a cut partly in the circumferential direction. The cut is formed for attachment and detachment of the slide ring 382 , is widened during attachment and detachment, and then restored by the elastic restoring force of the slide ring 382 .
 なお、スライドリング382は、本実施形態ではスクリュ取付部372に保持されるが、計量モータ340の回転子343に保持され、スクリュ取付部372に摺動自在に接触し、回転子343の中心線とスクリュ取付部372の中心線とを合わせてもよい。また、スライドリング382の数は複数でもよい。 Although the slide ring 382 is held by the screw mounting portion 372 in this embodiment, it is held by the rotor 343 of the weighing motor 340 and is slidably brought into contact with the screw mounting portion 372 to move the center line of the rotor 343. and the center line of the screw mounting portion 372 may be aligned. Also, the number of slide rings 382 may be plural.
 図3~図5に示すように、計量スプライン軸371のキー371a側(後側)からスクリュ330の側(前側)に向けて、スライドリング382と環状パッキン381とがこの順で配設されている。環状パッキン381は、計量スプライン軸371に供給されスライドリング382を通過した潤滑剤の、スクリュ330の側への漏れを防止する。潤滑剤をスライドリング382に供給してスライドリング382の摺動抵抗を低減でき、かつ、スクリュ330の側への潤滑剤の漏れを抑制できる。ここで、計量スプライン軸371に供給された潤滑剤は、スライドリング382と計量モータ340の回転子343との間、スライドリング382とスクリュ取付部372との間、スライドリング382に形成されている切れ目などを通過する。 As shown in FIGS. 3 to 5, a slide ring 382 and an annular packing 381 are arranged in this order from the key 371a side (rear side) of the metering spline shaft 371 toward the screw 330 side (front side). there is The annular packing 381 prevents the lubricant supplied to the metering spline shaft 371 and passed through the slide ring 382 from leaking to the screw 330 side. By supplying the lubricant to the slide ring 382, the sliding resistance of the slide ring 382 can be reduced, and leakage of the lubricant to the screw 330 side can be suppressed. Here, the lubricant supplied to the metering spline shaft 371 is formed between the slide ring 382 and the rotor 343 of the metering motor 340, between the slide ring 382 and the screw mounting portion 372, and in the slide ring 382. pass through gaps, etc.
 射出成形機10は、荷重検出器360を備える。荷重検出器360は、射出モータ350とスクリュ330との間で伝達される荷重を検出する。荷重検出器360は、軸受361よりも後方にて荷重を検出する。荷重検出器360は、例えばワッシャ型であって、後フランジ308と射出モータ350との間に配置される。 The injection molding machine 10 includes a load detector 360. Load detector 360 detects the load transmitted between injection motor 350 and screw 330 . A load detector 360 detects a load behind the bearing 361 . A load detector 360 , for example of the washer type, is located between the rear flange 308 and the injection motor 350 .
 荷重検出器360によって検出される荷重は、機械要素の摺動抵抗等を含む。機械要素の摺動抵抗は、例えば、軸受361の外輪と内輪との摺動抵抗と、ねじ軸364とねじナット366との摺動抵抗と、射出スプライン軸363と射出スプラインナット354との摺動抵抗と、計量スプライン軸371と計量スプラインナット344との摺動抵抗と、を含む。 The load detected by the load detector 360 includes the sliding resistance of mechanical elements and the like. The sliding resistance of the mechanical elements includes, for example, the sliding resistance between the outer ring and the inner ring of the bearing 361, the sliding resistance between the screw shaft 364 and the screw nut 366, and the sliding resistance between the injection spline shaft 363 and the injection spline nut 354. resistance and sliding resistance between metering spline shaft 371 and metering spline nut 344 .
 図6は、一実施形態に係る制御装置700の構成要素を機能ブロックで示す図である。図6に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部または一部を、任意の単位で機能的または物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部または任意の一部が、CPU701にて実行されるプログラムにて実現される。または各機能ブロックをワイヤードロジックによるハードウェアとして実現してもよい。図6に示すように、制御装置700は、補正情報記憶部601と、取得部602と、登録部603と、補正制御部604と、表示制御部605と、圧力制御部606と、を備える。補正情報記憶部601は、スクリュ330の速度、スクリュ330の軸方向の位相、及び計量モータ340の位相に基づいて、荷重検出器360が検出した圧力の検出値を補正するための情報を記憶する。取得部602は、荷重検出器360が検出した圧力の検出値等の様々な情報を取得する。登録部603は、取得部602が取得した情報に基づいて、補正情報記憶部601に補正するための情報を登録する。補正制御部604は、補正情報記憶部601に記憶された情報に基づいて、荷重検出器360が検出した検出値を補正し、スクリュ330の圧力制御に用いる圧力設定値を補正する。表示制御部605は、補正した圧力値を表示装置760に表示する。圧力制御部606は、補正した圧力設定値に基づいて圧力制御を行う。なお、各構成の具体的な説明について後述する。 FIG. 6 is a diagram showing functional blocks of components of the control device 700 according to one embodiment. Each functional block illustrated in FIG. 6 is conceptual and does not necessarily need to be physically configured as illustrated. All or part of each functional block can be functionally or physically distributed and integrated in arbitrary units. Each processing function performed by each functional block is implemented by a program executed by the CPU 701, in whole or in part. Alternatively, each functional block may be implemented as hardware by wired logic. As shown in FIG. 6, the control device 700 includes a correction information storage unit 601, an acquisition unit 602, a registration unit 603, a correction control unit 604, a display control unit 605, and a pressure control unit 606. The correction information storage unit 601 stores information for correcting the pressure detection value detected by the load detector 360 based on the speed of the screw 330, the axial phase of the screw 330, and the phase of the weighing motor 340. . The acquisition unit 602 acquires various information such as the pressure detection value detected by the load detector 360 . The registration unit 603 registers information for correction in the correction information storage unit 601 based on the information acquired by the acquisition unit 602 . The correction control unit 604 corrects the detection value detected by the load detector 360 based on the information stored in the correction information storage unit 601 and corrects the pressure set value used for pressure control of the screw 330 . The display control unit 605 displays the corrected pressure value on the display device 760 . A pressure control unit 606 performs pressure control based on the corrected pressure set value. A specific description of each configuration will be given later.
 次に、射出成形機10の動作について説明する。 Next, the operation of the injection molding machine 10 will be explained.
 計量工程では、計量モータ340が回転駆動し、スクリュ330が回転する。そうすると、スクリュ330のフライト(ねじ山)が動き、スクリュ330のねじ溝内に充填された樹脂ペレット(固体状の成形材料)が前方に送られる。樹脂ペレットは、シリンダ310内を前方に移動しながら、シリンダ310を介した加熱器313_1~313_5からの熱などで加熱されることで、徐々に溶融される。そして、樹脂ペレットは、シリンダ310の先端部において完全に溶融した状態となる。そして、液状の成形材料(樹脂)がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330は後退する。 In the weighing process, the weighing motor 340 rotates and the screw 330 rotates. Then, the flight (thread) of the screw 330 moves, and the resin pellets (solid molding material) filled in the thread groove of the screw 330 are sent forward. The resin pellets are gradually melted by being heated by heat from heaters 313_1 to 313_5 via cylinder 310 while moving forward in cylinder 310 . Then, the resin pellets are completely melted at the tip of the cylinder 310 . Then, as the liquid molding material (resin) is fed forward of the screw 330 and accumulated in the front portion of the cylinder 310, the screw 330 retreats.
 計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送信する。スクリュ330の回転速度を検出するスクリュ回転速度検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。 The weighing motor encoder 341 detects rotation of the weighing motor 340 and transmits a signal indicating the detection result to the control device 700 . The screw rotation speed detector that detects the rotation speed of the screw 330 is not limited to the weighing motor encoder 341, and a general one can be used.
 従来から、射出装置300内部の摩擦や偏荷重が荷重検出器360に作用していた。射出装置300において、スクリュ330の非搭載時に、荷重検出器360によって検出される圧力に関する試験を行った結果、計量スプライン軸371の位相、射出スプライン軸363の位置、射出スプライン軸363の速度によって圧力の検出値に変化があることが判明した。  Conventionally, the friction and unbalanced load inside the injection device 300 acted on the load detector 360. In the injection device 300, the pressure detected by the load detector 360 was tested when the screw 330 was not mounted. It was found that there was a change in the detected value of
 これらの要素によって、荷重検出器360が検出した検出値が同じであっても実際の樹脂にかかっている圧力が、時々刻々と変化したり、ショットごとにばらついたりする可能性がある。 Due to these factors, even if the detected value detected by the load detector 360 is the same, the actual pressure applied to the resin may change from moment to moment or may vary from shot to shot.
 図7は、本実施形態の計量時における、荷重検出器360において検出される圧力を表した概念図である。図7に示される例は、計量時に掛かる各力を矢印で示している。例えば、検出値1701は、荷重検出器360による圧力の検出値とする。ところで、荷重検出器360は、樹脂圧による力1702を検出することが望まれている。しかしながら、射出成形機10の内部の摩擦や偏荷重が、荷重検出器360に影響を与えている。このため、検出値1701は下記の式(1)の通りとなる。 FIG. 7 is a conceptual diagram showing the pressure detected by the load detector 360 during weighing in this embodiment. In the example shown in FIG. 7, the forces applied during weighing are indicated by arrows. For example, the detected value 1701 is the pressure detected by the load detector 360 . By the way, the load detector 360 is desired to detect the force 1702 due to the resin pressure. However, friction and uneven load inside the injection molding machine 10 affect the load detector 360 . Therefore, the detected value 1701 is expressed by the following formula (1).
 検出値1701=樹脂圧による力1702-第1の摺動抵抗1703-第2の摺動抵抗1706+計量スプライン軸371のモーメント1704+射出スプライン軸363のモーメント1705……(1) Detected value 1701 = Force due to resin pressure 1702 - First sliding resistance 1703 - Second sliding resistance 1706 + Moment 1704 of metering spline shaft 371 + Moment 1705 of injection spline shaft 363 ... (1)
 式(1)に示される、計量スプライン軸371のモーメント1704、及び計量スプライン軸371のモーメント1704が、検出値1701に含まれるのは、荷重検出器360が、ねじり方向の力も検出するためである。 The moment 1704 of the metering spline shaft 371 and the moment 1704 of the metering spline shaft 371 shown in equation (1) are included in the detected value 1701 because the load detector 360 also detects a torsional force. .
 第1の摺動抵抗1703は、例えば、計量スプライン軸371や、環状パッキン381、及びスライドリング382による摺動抵抗である。計量スプライン軸371の摺動抵抗は、計量スプラインナット344と、計量スプライン軸371と、の間のスプライン結合している箇所に生じている。計量スプライン軸371が偏芯している場合、計量スプライン軸371は、当該計量スプライン軸371の位相に応じて、計量スプラインナット344と接触している面積が変化する。このため、計量スプライン軸371の位相に応じて、摺動抵抗が変化する。ところで、計量スプライン軸371は、軸受ホルダ370を介してスクリュ330と結合している。このため、換言すれば、スクリュ330の周方向の位置(回転角)に応じて、第1の摺動抵抗1703が変化している。 The first sliding resistance 1703 is, for example, sliding resistance due to the metering spline shaft 371, the annular packing 381, and the slide ring 382. The sliding resistance of the metering spline shaft 371 is generated at the spline joint between the metering spline nut 344 and the metering spline shaft 371 . When the metering spline shaft 371 is eccentric, the contact area of the metering spline shaft 371 with the metering spline nut 344 changes according to the phase of the metering spline shaft 371 . Therefore, the sliding resistance changes according to the phase of the metering spline shaft 371 . By the way, the metering spline shaft 371 is coupled with the screw 330 via the bearing holder 370 . Therefore, in other words, the first sliding resistance 1703 changes according to the circumferential position (rotational angle) of the screw 330 .
 第2の摺動抵抗1706は、射出スプライン軸363による摺動抵抗である。つまり、第2の摺動抵抗1706の摺動抵抗は、計量スプラインナット344と、射出スプライン軸363と、射出スプラインナット354と、の間のスプライン結合している箇所に生じている。射出スプライン軸363が偏芯している場合、射出スプライン軸363は、当該射出スプライン軸363の位相に応じて、射出スプラインナット354と接触している面積が変化する。このため、射出スプライン軸363の位相に応じて、第2の摺動抵抗1706が変化する。射出スプライン軸363は、射出モータ350に接続されている。射出モータ350は、スクリュ330の軸方向における位置の移動制御に用いられる。このため、換言すれば、スクリュ330の軸方向における位置(射出モータ350の位相)に応じて、第2の摺動抵抗1706が変化している。 A second sliding resistance 1706 is a sliding resistance due to the injection spline shaft 363 . In other words, the sliding resistance of the second sliding resistance 1706 is generated at the spline-connected locations among the metering spline nut 344 , injection spline shaft 363 , and injection spline nut 354 . When the injection spline shaft 363 is eccentric, the area of the injection spline shaft 363 in contact with the injection spline nut 354 changes according to the phase of the injection spline shaft 363 . Therefore, the second sliding resistance 1706 changes according to the phase of the injection spline shaft 363 . The injection spline shaft 363 is connected to the injection motor 350 . The injection motor 350 is used for movement control of the position of the screw 330 in the axial direction. Therefore, in other words, the second sliding resistance 1706 changes according to the axial position of the screw 330 (the phase of the injection motor 350).
 このように、樹脂圧による力1702を検出するための補正値を生成する場合、スクリュ330の周方向の位置(回転角)、及びスクリュ330の軸方向における位置に基づいて変化させる必要がある。なお、図7で示した例では、計量時の力を示しているが、充填・保圧時の力も同様の手法で算出可能として、説明を省略する。 Thus, when generating a correction value for detecting the force 1702 due to the resin pressure, it is necessary to change it based on the circumferential position (rotational angle) of the screw 330 and the axial position of the screw 330 . In the example shown in FIG. 7, the force at the time of weighing is shown, but the force at the time of filling and holding pressure can also be calculated by the same method, and the explanation is omitted.
 図8は、第1の実施形態に係る荷重検出器360による検出値と、樹脂圧による力と、の関係を例示した図である。図8に示される例では、計量時の荷重検出器360による検出値1801とし、計量時の機械摩擦等による抵抗力1802とする。抵抗力1802には、上述した摺動抵抗(例えば、第1の摺動抵抗1703、及び第2の摺動抵抗1706)に加えて、モーメント(例えば、計量スプライン軸371のモーメント1704、及び射出スプライン軸363のモーメント1704)も含まれている。 FIG. 8 is a diagram illustrating the relationship between the value detected by the load detector 360 and the force due to the resin pressure according to the first embodiment. In the example shown in FIG. 8, the value 1801 detected by the load detector 360 during weighing and the resistance 1802 due to mechanical friction or the like during weighing are used. The resistance force 1802 includes, in addition to the sliding resistances described above (eg, the first sliding resistance 1703 and the second sliding resistance 1706), a moment (eg, the moment 1704 of the metering spline shaft 371 and the injection spline The moment 1704) of axis 363 is also included.
 計量時はスクリュ330が後退するため、荷重検出器360が検出する検出値1801の向き(例えば、検出値1701の向き)を正の方向とした場合に、計量時の機械摩擦等による抵抗力1802は負の方向に作用する。そして、計量時の樹脂圧による力1803は、検出値1801-抵抗力1802により導き出せる。 Since the screw 330 retreats during weighing, when the direction of the detection value 1801 detected by the load detector 360 (for example, the direction of the detection value 1701) is set to the positive direction, the resistance 1802 due to mechanical friction or the like during weighing acts in the negative direction. Then, the force 1803 due to the resin pressure during weighing can be derived from the detection value 1801 - resistance force 1802 .
 図8に示される例では、充填・保圧時の荷重検出器360による検出値1804とし、充填・保圧時の機械摩擦等による抵抗力1805とする。抵抗力1805には、上述した摺動抵抗に加えて、モーメントも含まれている。 In the example shown in FIG. 8, the value 1804 detected by the load detector 360 during filling/holding pressure is taken as the resistance force 1805 due to mechanical friction or the like during filling/holding pressure. The resistance force 1805 includes a moment in addition to the sliding resistance described above.
 充填・保圧時のスクリュ330が前進するため、荷重検出器360が検出する検出値1801の向きを正の方向とした場合に、充填・保圧時の機械摩擦等による抵抗力1805は正の方向に作用する。充填・保圧時の樹脂圧による力1806は、検出値1804-抵抗力1805により導き出せる。 Since the screw 330 advances during filling and holding pressure, when the direction of the detection value 1801 detected by the load detector 360 is positive, the resistance 1805 due to mechanical friction and the like during filling and holding pressure is positive. direction. A force 1806 due to the resin pressure during filling/holding can be derived from the detection value 1804 - resistance force 1805 .
 図8に示されるように、計量時の樹脂圧による力1803は、充填・保圧時の樹脂圧による力1806と比べて小さい。換言すれば、機械摩擦等の変動が大きく作用する。本実施形態の制御装置700は、このような計量時の樹脂圧による力1803であっても精度の高い検出を実現する。 As shown in FIG. 8, the force 1803 due to the resin pressure during metering is smaller than the force 1806 due to the resin pressure during filling/holding. In other words, fluctuations such as mechanical friction act greatly. The control device 700 of the present embodiment achieves highly accurate detection even of the force 1803 due to the resin pressure during measurement.
 具体的には、スクリュ330の周方向の位置、スクリュ330の位置、及びスクリュの速度の各々を変数として、当該変数の組み合わせから補正値を特定するテーブルを補正情報記憶部601に予め記憶しておく。そして、補正制御部604が、リアルタイムでテーブルから補正値を取得し、荷重検出器360により検出された圧力の検出値を補正する。なお、射出装置300毎に個体差があると考えられるため、テーブルへの補正値の登録を、出荷前の検査工程、又はユーザの成形立ち上げ時に行うことが考えられる。 Specifically, the correction information storage unit 601 stores in advance a table for identifying a correction value from a combination of the variables of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw. back. Then, the correction control unit 604 acquires the correction value from the table in real time and corrects the pressure detection value detected by the load detector 360 . Since it is considered that there are individual differences for each injection apparatus 300, it is conceivable that the correction values are registered in the table during an inspection process before shipment or when the user starts molding.
 図6に戻り、取得部602は、荷重検出器360が検出した圧力の検出値を取得する。 Returning to FIG. 6, the acquisition unit 602 acquires the pressure detection value detected by the load detector 360 .
 登録部603は、取得した圧力の検出値に基づいて、荷重検出器360の検出値を補正した補正値(補正情報の一例)を、補正情報記憶部601に登録する。本実施形態の補正値は、機械摩擦等による外乱で生じた力(抵抗力)を表した値とする。そして、本実施形態では、検出値から補正値を減算することで、樹脂圧による力を導出できる。 The registration unit 603 registers a correction value (an example of correction information) obtained by correcting the detection value of the load detector 360 in the correction information storage unit 601 based on the acquired pressure detection value. The correction value of the present embodiment is a value representing a force (resisting force) generated by disturbance due to mechanical friction or the like. Then, in this embodiment, the force due to the resin pressure can be derived by subtracting the correction value from the detected value.
 図9は、スクリュ330の周方向の位置を固定した上で、スクリュ330の位置(射出スプライン軸363の位相)を動かした場合に荷重検出器360が検出する検出値を表した図である。図9で示される例では、スクリュ330の周方向の位置(回転角)が初期位置で固定した場合の検出値の変動901と、スクリュ330の周方向の位置(回転角)が+90°で固定した場合の検出値の変動902と、スクリュ330の周方向の位置(回転角)が+180°で固定した場合の検出値の変動903と、スクリュ330の周方向の位置(回転角)が+270°で固定した場合の検出値の変動904と、を表している。 FIG. 9 is a diagram showing detection values detected by the load detector 360 when the position of the screw 330 (the phase of the injection spline shaft 363) is moved while the position of the screw 330 in the circumferential direction is fixed. In the example shown in FIG. 9, the variation 901 of the detected value when the circumferential position (rotation angle) of the screw 330 is fixed at the initial position, and the circumferential position (rotation angle) of the screw 330 is fixed at +90°. variation 902 in the detected value when the position (rotation angle) of the screw 330 is fixed at +180°; variation 903 in the detection value when the position (rotation angle) of the screw 330 in the circumferential direction is fixed at +270°; and a variation 904 of the detected value when fixed at .
 そして、検出値の変動901、904等によると、圧力の検出値がスクリュ330の位置に応じて周期的に変化していることが確認できる。この検出値の変化は、射出スプライン軸363の位相(回転角)の変化に対応している。 Then, according to the fluctuations 901 and 904 of the detected values, it can be confirmed that the detected pressure values change periodically according to the position of the screw 330 . A change in this detected value corresponds to a change in the phase (rotational angle) of the injection spline shaft 363 .
 同様に、圧力の検出値は、スクリュ330の周方向の位置(回転角)に応じて変化する。さらには、圧力の検出値は、スクリュ330の速度に応じて変化する。 Similarly, the detected pressure value changes according to the circumferential position (rotational angle) of the screw 330 . Furthermore, the detected pressure value changes according to the speed of the screw 330 .
 そこで、本実施形態においては、スクリュ330の周方向の位置(回転角)、スクリュ330の軸方向の位置(射出スプライン軸363の位相)、及びスクリュ330の速度に基づいて、荷重検出器360の検出値を補正する。 Therefore, in the present embodiment, based on the circumferential position (rotation angle) of the screw 330, the axial position of the screw 330 (the phase of the injection spline shaft 363), and the speed of the screw 330, Correct the detected value.
 本実施形態においては、補正値が格納されたテーブルを予め作成する手法を用いる。本実施形態では補正値が格納された補正情報記憶部601を作成するために、射出装置300において、スクリュ330のアッセンブリが搭載されていない状態で、荷重検出器360による圧力の検出を行う。スクリュ330のアッセンブリとは、例えば、スクリュ330、筒体315、シリンダ310、及びノズル320を含む構成が考えられる。なお、圧力の検出を行うときの環境は、スクリュ330のアッセンブリ非搭載時に制限するものではなく、成形材料が充填されていない状態で、スクリュ330が金属接触しない状態であればよい。 In this embodiment, a method is used in which a table in which correction values are stored is created in advance. In this embodiment, in order to create the correction information storage unit 601 storing the correction values, the pressure is detected by the load detector 360 in the injection apparatus 300 in a state where the assembly of the screw 330 is not mounted. The assembly of the screw 330 may include, for example, the screw 330 , the cylindrical body 315 , the cylinder 310 and the nozzle 320 . The environment in which the pressure is detected is not limited to when the screw 330 is not mounted on the assembly.
 登録部603は、荷重検出器360によって検出された圧力の検出値を、補正情報記憶部601に補正値として登録する。 The registration unit 603 registers the pressure detection value detected by the load detector 360 in the correction information storage unit 601 as a correction value.
 図10は、本実施形態に係る登録部603に登録された補正情報記憶部601のテーブルを例示した図である。図10に示されるように、本実施形態の補正情報記憶部601のテーブルは、スクリュ330の軸方向の位置(射出スプライン軸363の位相)、スクリュ330の周方向の位置(回転角)、及びスクリュ330の速度の組み合わせによって、補正値(樹脂圧による力)を特定できる。図10で示される例では、スクリュ330の速度毎にテーブルが作成され、スクリュ330の速度はV1<V2<V3<最大速度とする。 FIG. 10 is a diagram exemplifying a table of the correction information storage unit 601 registered in the registration unit 603 according to this embodiment. As shown in FIG. 10, the table of the correction information storage unit 601 of the present embodiment includes the axial position of the screw 330 (the phase of the injection spline shaft 363), the circumferential position (rotation angle) of the screw 330, and the A correction value (force due to resin pressure) can be specified by a combination of the speeds of the screws 330 . In the example shown in FIG. 10, a table is created for each speed of the screw 330, and the speed of the screw 330 is V 1 <V 2 <V 3 <maximum speed.
 そして、補正制御部604は、補正情報記憶部601を参照し、スクリュ330の周方向の位置、スクリュ330の軸方向の位置、及びスクリュの速度に基づいて補正値を取得し、荷重検出器360から出力される検出値を、補正値に基づいて補正し、補正された検出値を特定する。 Then, the correction control unit 604 refers to the correction information storage unit 601 to obtain a correction value based on the circumferential position of the screw 330, the axial position of the screw 330, and the speed of the screw. is corrected based on the correction value, and the corrected detection value is specified.
 表示制御部605は、補正制御部604による補正された検出値を、樹脂圧による力として、表示装置760に表示する。 The display control unit 605 displays the detected value corrected by the correction control unit 604 on the display device 760 as a force due to the resin pressure.
 圧力制御部606は、補正制御部604により補正された検出値が、型締め時等に射出装置300が成形材料を充填させるために、予め設定された圧力設定値になるように圧力制御を行う。これにより、摺動抵抗やモーメントなどの外乱の影響を除くことができるので、圧力制御の精度を向上させることができる。 The pressure control unit 606 performs pressure control so that the detected value corrected by the correction control unit 604 becomes a preset pressure setting value for filling the injection device 300 with the molding material when the mold is closed. . As a result, the influence of disturbances such as sliding resistance and moment can be eliminated, so the accuracy of pressure control can be improved.
 図11は、本実施形態に係る制御装置700における、補正情報記憶部601に補正値を登録するフローチャートである。図11に示される補正値の登録を行う際には、スクリュ330のアッセンブリが搭載されていない状態とする。 FIG. 11 is a flowchart for registering correction values in the correction information storage unit 601 in the control device 700 according to this embodiment. When the correction values shown in FIG. 11 are registered, the assembly of the screw 330 is not mounted.
 まず、制御装置700の登録部603は、初期設定を行う(S1101)。初期設定では、スクリュ330の軸方向の位置(射出スプライン軸363の位相)や、スクリュ330の周方向の位置(回転角)を初期位置(例えば"0")に設定し、スクリュ330の速度を初期速度に設定する。 First, the registration unit 603 of the control device 700 performs initial settings (S1101). In the initial setting, the axial position of the screw 330 (the phase of the injection spline shaft 363) and the circumferential position (rotational angle) of the screw 330 are set to initial positions (for example, "0"), and the speed of the screw 330 is set to Set to initial speed.
 次に、登録部603は、設定された速度で、初期位置(例えば"0")から最大値までスクリュ330のストローク制御を行う(S1102)。 Next, the registration unit 603 performs stroke control of the screw 330 from the initial position (for example, "0") to the maximum value at the set speed (S1102).
 取得部602は、ストローク制御中に荷重検出器360によって検出された検出値を取得する(S1103)。 The acquisition unit 602 acquires the detection value detected by the load detector 360 during stroke control (S1103).
 登録部603は、取得部602が取得した検出値に対応する補正値を、当該検出値を検出したときの、スクリュ330の軸方向の位置、スクリュ330の速度、及び周方向の位置に対応付けて、補正情報記憶部601に登録する(S1104)。 The registration unit 603 associates the correction value corresponding to the detection value acquired by the acquisition unit 602 with the axial position of the screw 330, the speed of the screw 330, and the circumferential position when the detection value is detected. are registered in the correction information storage unit 601 (S1104).
 登録部603は、現在のスクリュ330の速度で、スクリュ330の周方向の全ての位置について補正値を登録したか否かを判定する(S1105)。 The registration unit 603 determines whether correction values have been registered for all positions of the screw 330 in the circumferential direction at the current speed of the screw 330 (S1105).
 登録部603が、スクリュ330の周方向の全ての位置について補正値を登録していないと判定した場合(S1105:No)、スクリュ330の周方向の位置を変更する(S1106)。本実施形態では、スクリュ330の周方向の位置として、0°、90°、180°270°の順に変更させる。その後、再びS1102から処理を行う。 When the registration unit 603 determines that correction values have not been registered for all positions of the screw 330 in the circumferential direction (S1105: No), the position of the screw 330 in the circumferential direction is changed (S1106). In this embodiment, the position of the screw 330 in the circumferential direction is changed in order of 0°, 90°, 180° and 270°. After that, the process is performed again from S1102.
 一方、登録部603が、スクリュ330の周方向の全ての位置について補正値を登録したと判定した場合(S1105:Yes)、登録部603が、スクリュ330の全ての速度について補正値を登録したか否かを判定する(S1107)。 On the other hand, if the registration unit 603 determines that correction values have been registered for all circumferential positions of the screw 330 (S1105: Yes), has the registration unit 603 registered correction values for all velocities of the screw 330? It is determined whether or not (S1107).
 登録部603が、スクリュ330の全ての速度について補正値を登録していないと判定した場合(S1107:No)、スクリュ330の速度を変更する(S1108)。なお、スクリュ330の速度は、射出モータ350の動作に基づいて変更される。 When the registration unit 603 determines that correction values have not been registered for all the speeds of the screw 330 (S1107: No), it changes the speed of the screw 330 (S1108). Note that the speed of the screw 330 is changed based on the operation of the injection motor 350 .
 一方、登録部603が、スクリュ330の全ての速度について補正値を登録したと判定した場合(S1108:Yes)、処理を終了する。 On the other hand, if the registration unit 603 determines that correction values have been registered for all velocities of the screw 330 (S1108: Yes), the process ends.
 上述した処理手順によって、補正情報記憶部601に対する補正値の登録が完了する。 Registration of the correction value in the correction information storage unit 601 is completed by the above-described processing procedure.
 次に、計量時における表示制御について説明する。図12は、本実施形態に係る制御装置700における、計量時における表示処理を行うフローチャートである。 Next, the display control during weighing will be explained. FIG. 12 is a flowchart of display processing during weighing in the control device 700 according to the present embodiment.
 まず、取得部602は、ストローク制御中に荷重検出器360によって検出された圧力の検出値を取得する(S1201)。さらに取得部602は、射出装置300に設けられた各種センサ(例えば、計量モータエンコーダ341、及び射出モータエンコーダ351)の検出結果に基づいて、現在のスクリュ330の速度、スクリュ330の周方向の位置、及びスクリュ330の軸方向における位置を取得する(S1202)。 First, the acquisition unit 602 acquires the pressure value detected by the load detector 360 during stroke control (S1201). Furthermore, the acquisition unit 602 obtains the current speed of the screw 330, the circumferential position , and the axial position of the screw 330 (S1202).
 次に、補正制御部604が、補正情報記憶部601を参照して、スクリュ330の速度、スクリュ330の周方向の位置、及びスクリュ330の軸方向における位置と対応付けられた、補正値を取得する(S1203)。 Next, the correction control unit 604 refers to the correction information storage unit 601 to obtain correction values associated with the speed of the screw 330, the circumferential position of the screw 330, and the axial position of the screw 330. (S1203).
 そして、補正制御部604は、検出値から補正値を減算して、補正された検出値を導出する。 Then, the correction control unit 604 derives a corrected detection value by subtracting the correction value from the detection value.
 表示制御部605が、補正された検出値を、樹脂圧による力として表示装置760に表示する(S1204)。 The display control unit 605 displays the corrected detection value on the display device 760 as the force due to the resin pressure (S1204).
 本実施形態においては、上述した処理手順を行うことで、計量時において、機械摩擦などの外乱の影響を抑止した上で、樹脂圧による力を検出できる。 In this embodiment, by performing the above-described processing procedure, it is possible to detect the force due to the resin pressure while suppressing the influence of disturbance such as mechanical friction during weighing.
 また、図12に示される例では、計量時において荷重検出器360による検出値に基づいて、樹脂圧による力の検出手法について説明した。しかしながら、樹脂圧による力の検出は、計量時に制限するものではない。例えば、充填・保圧時の荷重検出器360による検出値804に基づいて樹脂圧による力を検出してもよい。 Also, in the example shown in FIG. 12, the method of detecting the force due to the resin pressure based on the value detected by the load detector 360 during weighing has been described. However, the detection of force due to resin pressure is not limited to weighing. For example, the force due to the resin pressure may be detected based on the value 804 detected by the load detector 360 during filling/holding.
 充填・保圧時においては、圧力制御部606は、補正制御部604が取得した補正値が、射出装置300が成形材料を充填させるために、予め設定された圧力設定値になるように圧力制御を行う。 At the time of filling and holding pressure, the pressure control unit 606 performs pressure control so that the correction value acquired by the correction control unit 604 becomes a preset pressure set value for filling the injection device 300 with the molding material. I do.
 また、本実施形態においては、補正情報記憶部601を参照して、荷重検出器360による検出値を補正する例について説明した。しかしながら、本実施形態は、補正する対象を検出値に制限するものではなく、圧力制御を行うための圧力設定を補正してもよい。 Further, in the present embodiment, an example of correcting the detection value by the load detector 360 with reference to the correction information storage unit 601 has been described. However, this embodiment does not limit the correction target to the detected value, and may correct the pressure setting for performing pressure control.
 この場合、補正情報記憶部601には、スクリュ330の速度、スクリュ330の周方向の位置、及びスクリュ330の軸方向における位置と対応付けられた、圧力設定値が格納される。そして、圧力制御部606は、取得部602が取得した検出値が、機械抵抗などの外乱を考慮して設定された圧力設定値になるように圧力制御を行う。 In this case, the correction information storage unit 601 stores pressure setting values associated with the speed of the screw 330, the position of the screw 330 in the circumferential direction, and the position of the screw 330 in the axial direction. Then, the pressure control unit 606 performs pressure control so that the detection value acquired by the acquisition unit 602 becomes a pressure setting value set in consideration of disturbance such as mechanical resistance.
(第2の実施形態)
 上述した実施形態においては、補正情報記憶部601が保持するテーブルを参照して、補正値を特定する手法について説明した。しかしながら、第1の実施形態は、補正情報記憶部601が保持するテーブルのみで、補正値を特製する手法に制限するものではない。そこで第2の実施形態では、数式モデルと、テーブルと、を組み合わせて補正値を特定する手法について説明する。
(Second embodiment)
In the above-described embodiment, the method of identifying the correction value with reference to the table held by the correction information storage unit 601 has been described. However, the first embodiment is not limited to the method of customizing the correction values only with the table held by the correction information storage unit 601 . Therefore, in the second embodiment, a method of specifying a correction value by combining a mathematical model and a table will be described.
 図9等で示したように、外乱による力は周期的に変化している。例えば、検出値の変動901、904等によると、圧力の検出値がスクリュ330の位置に応じて周期的に変化している。この検出値の変化は、射出スプライン軸363の位相(回転角)の変化に対応している。同様に検出値の変化は、計量スプライン軸371の位相の変化に対応して生じている。したがって、各要素の周期的な変化を数式モデル化することで、数式モデルから、外乱の要素に対応する補正値を特定できる。 As shown in Figure 9, etc., the force caused by the disturbance changes periodically. For example, according to the detected value fluctuations 901 and 904 , the detected pressure value periodically changes according to the position of the screw 330 . A change in this detected value corresponds to a change in the phase (rotational angle) of the injection spline shaft 363 . Similarly, the change in detected value occurs in response to the phase change of the metering spline shaft 371 . Therefore, by forming a mathematical model of the periodic change of each element, a correction value corresponding to the disturbance element can be specified from the mathematical model.
 図13は、スクリュ330の周方向の位置(回転角)、又はスクリュ330の軸方向の位置(射出スプライン軸363の位相)に応じて変化する抵抗力(摩擦含む)を例示した図である。上述したように、スクリュ330の周方向の位置(回転角)、又はスクリュ330の軸方向の位置(射出スプライン軸363の位相)に応じて、抵抗の変動1301が周期的に変化している。 FIG. 13 is a diagram illustrating the resistance (including friction) that changes according to the circumferential position (rotation angle) of the screw 330 or the axial position of the screw 330 (phase of the injection spline shaft 363). As described above, the resistance fluctuation 1301 changes periodically according to the circumferential position (rotational angle) of the screw 330 or the axial position of the screw 330 (phase of the injection spline shaft 363).
 そこで、摩擦等を含めた抵抗の変動1301に対応するsin関数1002を導出できる。この場合、下記の式(2)が導出できる。なお、位相θoffsetは、実際の射出装置300の摩擦変動に応じた位相オフセットとする。変数kは、実際の射出装置300の変動幅に応じた係数とする。そして、位相θは、スクリュ330の周方向の位置(回転角)、又はスクリュ330の位置を移動させる射出スプライン軸363の位相とする。 Therefore, a sine function 1002 corresponding to the resistance variation 1301 including friction and the like can be derived. In this case, the following formula (2) can be derived. It should be noted that the phase θ offset is a phase offset corresponding to the actual friction fluctuation of the injection device 300 . The variable k is assumed to be a coefficient corresponding to the variation width of the actual injection device 300 . The phase θ is the circumferential position (rotational angle) of the screw 330 or the phase of the injection spline shaft 363 that moves the position of the screw 330 .
 要素ごとの補正値=k・sin2((θ-θoffset)/2)……(2) Correction value for each element = k·sin 2 ((θ-θ offset )/2)……(2)
 そして、スクリュ330の周方向の位置(回転角)に対応する補正値を示す数式と、スクリュ330の位置を移動させる射出スプライン軸363の位相に対応する補正値を示す数式と、を組み合わせることで、位置に関する補正値(以下、位置補正値とも称する)の算出可能な数式を導出できる。そして、位置に関する補正値を算出可能な数式と、スクリュ330の速度に対応する補正値(以下、速度補正値)と、を組み合わせることで、補正値を算出する数式モデルを実現できる。 Then, by combining a formula representing a correction value corresponding to the circumferential position (rotation angle) of the screw 330 and a formula representing a correction value corresponding to the phase of the injection spline shaft 363 that moves the position of the screw 330, , it is possible to derive a formula capable of calculating a correction value for the position (hereinafter also referred to as a position correction value). A formula model for calculating the correction value can be realized by combining a formula capable of calculating the correction value for the position and a correction value corresponding to the speed of the screw 330 (hereinafter referred to as speed correction value).
 具体的には、登録部603は、下記の式(3)の各値(k、θij_offset、θrt_offset、速度補正値Pvのテーブル)を、補正情報記憶部601に登録する。変数kは、実際の射出装置300の変動幅に応じた係数とする。そして、位相θijは、スクリュ330の軸方向に移動させる射出モータ350(射出スプライン軸363)の位相とする。射出モータ350の位相θij(角度)と、スクリュ330の位置との対応関係は、射出モータ350の回転角とスクリュ330の移動量との対応関係から導出できるものとして、説明を省略する。位相θrtは、スクリュ330の周方向の位置(回転角)とする。位相θij_offsetは、実際のスクリュ330の軸方向の位置(射出モータ350の位相)の変動に応じた位相オフセットとする。位相θrt_offsetは、実際のスクリュ330の周方向の位置(回転角)の変動に応じた位相オフセットとする。スクリュ330の速度に応じた速度補正値Pvのテーブルについては後述する。 Specifically, the registration unit 603 registers each value (k, θ ij_offset , θ rt_offset , and a table of speed correction values Pv) of Equation (3) below in the correction information storage unit 601 . The variable k is assumed to be a coefficient corresponding to the variation width of the actual injection device 300 . The phase θ ij is the phase of the injection motor 350 (injection spline shaft 363) that moves the screw 330 in the axial direction. The correspondence relationship between the phase θ ij (angle) of the injection motor 350 and the position of the screw 330 can be derived from the correspondence relationship between the rotation angle of the injection motor 350 and the amount of movement of the screw 330, and the description thereof is omitted. The phase θ rt is the circumferential position (rotational angle) of the screw 330 . The phase θ ij_offset is a phase offset according to the variation of the actual axial position of the screw 330 (the phase of the injection motor 350). The phase θ rt_offset is a phase offset that corresponds to the variation of the actual circumferential position (rotational angle) of the screw 330 . A table of speed correction values Pv corresponding to the speed of the screw 330 will be described later.
 補正値=Pv・k・sin2((θij-θij_offset)/2)・sin2((θrt-θrt_offset)/2)……(3) Correction value = Pv・k・sin 2 ((θ ij −θ ij_offset )/2)・sin 2 ((θ rt −θ rt_offset )/2)……(3)
 図14は、本実施形態に係る補正情報記憶部601が保持する速度補正値記憶テーブルの構造を示した図である。図14に示されるように、速度補正値Pvは、スクリュ330の軸方向の速度と対応付けて格納されている。 FIG. 14 is a diagram showing the structure of the speed correction value storage table held by the correction information storage unit 601 according to this embodiment. As shown in FIG. 14, the speed correction value Pv is stored in association with the axial speed of the screw 330 .
 なお、速度補正値Pv、及び変数kは、第1の実施形態の図11のフローチャートで示したように、スクリュ330の速度、及び周方向の位置を異ならせながら、スクリュ330の軸方向の位置毎の検出値を取得することで特定されるものとして、説明を省略する。なお、位相θijの周期及び位相θij_offsetは、射出モータ350の周期及び位相から導出できる。同様に、位相θrtの周期及び位相θrt_offsetは、計量モータ340の周期及び位相から導出できる。これにより、式(3)に基づいて補正値の導出が可能となる。 Note that the speed correction value Pv and the variable k are set to the axial position of the screw 330 while varying the speed and circumferential position of the screw 330 as shown in the flowchart of FIG. 11 of the first embodiment. The description is omitted as it is specified by acquiring the detection value for each. Note that the period of the phase θ ij and the phase θ ij_offset can be derived from the period and phase of the injection motor 350 . Similarly, the period of phase θ rt and phase θ rt_offset can be derived from the period and phase of metering motor 340 . Thereby, the correction value can be derived based on the equation (3).
 図15は、補正制御部604が式(3)を用いて算出した補正値の変動を例示した図である。図15の周期1551、1552、1553、1554、1555は、射出モータ350の回転周期を示している。 FIG. 15 is a diagram exemplifying variations in correction values calculated by the correction control unit 604 using equation (3). Cycles 1551 , 1552 , 1553 , 1554 , and 1555 in FIG. 15 indicate rotation cycles of the injection motor 350 .
 図15に示される例では、スクリュ330の周方向の位置(回転角)が初期位置の場合の検出値の変動901に対応する補正値の変動1501とする。また、スクリュ330の周方向の位置(回転角)が+90°の場合の検出値の変動902に対応する、補正値の変動1502とする。また、スクリュ330の周方向の位置(回転角)が+180°の場合の検出値の変動903に対応する、補正値の変動1503とする。また、スクリュ330の周方向の位置(回転角)が+270°の場合の検出値の変動904に対応する、補正値の変動1504とする。 In the example shown in FIG. 15, the correction value variation 1501 corresponds to the detected value variation 901 when the circumferential position (rotational angle) of the screw 330 is the initial position. Further, the correction value variation 1502 corresponds to the detection value variation 902 when the circumferential position (rotation angle) of the screw 330 is +90°. Further, the correction value variation 1503 corresponds to the detection value variation 903 when the circumferential position (rotational angle) of the screw 330 is +180°. Further, the correction value variation 1504 corresponds to the detection value variation 904 when the circumferential position (rotational angle) of the screw 330 is +270°.
 このように、本実施形態の補正制御部604は、補正情報記憶部601に格納されたパラメータ及び速度補正値記憶テーブル、スクリュ330の周方向の位置、スクリュ330の軸方向の位置、及びスクリュの速度と、を用いて、式(3)から補正値を算出する。 As described above, the correction control unit 604 of the present embodiment stores the parameter and speed correction value storage table stored in the correction information storage unit 601, the circumferential position of the screw 330, the axial position of the screw 330, and the A correction value is calculated from equation (3) using the velocity and .
 そして、補正制御部604は、取得部602が取得した検出値から、算出された補正値を減算して、補正された検出値を導出する。以降の処理については上述した実施形態と同様として説明を省略する。 Then, the correction control unit 604 subtracts the calculated correction value from the detection value acquired by the acquisition unit 602 to derive a corrected detection value. Subsequent processing is the same as in the above-described embodiment, and description thereof is omitted.
(第3の実施形態)
 上述した実施形態においては、補正値を特定する際に、テーブルを参照する例について説明した。しかしながら、上述した実施形態は、テーブルを参照する手法に限定するものではない。第3の実施形態では、数式モデルのみを用いて補正値を算出する手法とする。
(Third embodiment)
In the embodiment described above, an example of referring to a table when specifying a correction value has been described. However, the embodiments described above are not limited to the method of referring to the table. In the third embodiment, a method of calculating a correction value using only a mathematical model is employed.
 第2の実施形態では、速度補正値記憶テーブルを用いたが、速度補正値記憶テーブルから取得される速度補正値Pvの代わりに、速度から速度補正値を算出する数式を式(3)の速度補正値Pvの箇所に当てはめることで、数式モデルのみを用いて補正値を算出できる。 In the second embodiment, the speed correction value storage table is used. By applying it to the correction value Pv, the correction value can be calculated using only the mathematical model.
 例えば、一般的な射出装置では、スクリュ330の速度'0'の時が機械摩擦等の抵抗値、換言すれば速度補正値が最も大きくなり、スクリュ330の速度が大きくなるにしたがって抵抗値(速度補正値)が小さくなる。スクリュ330の速度が所定値に達すると、速度と摩擦の関係は線形に遷移するものとみなして、速度に対して速度補正値を線形に変化させるようにしても良いし、静止摩擦に比べて小さい変動であるため一定として扱うようにしても良い。このような速度補正値の変化を数式として、式(3)に当てはめることで数式モデルのみを用いた補正値の算出が可能となる。 For example, in a general injection device, when the speed of the screw 330 is 0, the resistance value such as mechanical friction, in other words, the speed correction value is the largest. correction value) becomes smaller. When the speed of the screw 330 reaches a predetermined value, the relationship between speed and friction may be assumed to transition linearly, and the speed correction value may be changed linearly with respect to the speed. Since the variation is small, it may be treated as constant. A correction value can be calculated using only a mathematical model by applying such a change in speed correction value as a formula to formula (3).
 上述した実施形態のように、テーブル及び数式モデルの組み合わせは、実施態様に応じて異なるものとする。例えば、演算に要する時間が長いと判断された場合にはテーブルを用いるようにしたり、記憶容量を削減したい場合には数式モデルを用いるようにしたりすることが考えられる。 As in the embodiment described above, the combination of the table and the mathematical model shall differ according to the implementation. For example, it is conceivable to use a table when it is judged that the time required for calculation is long, or to use a mathematical model when it is desired to reduce the storage capacity.
 上述した実施形態は、スクリュ330のアッセンブリ非搭載の状態で、補正値を特定する手法を説明したが、当該補正値を特定する手法を制限するものではない。例えば、スクリュ330を搭載している場合にはシリンダ310内に樹脂を充填し、及び昇温した後に、スクリュ330を低速で動作させることで補正値を特定してもよい。この場合、低速時における抵抗力に基づいた補正値のみ特定できる。しかしながら、スクリュ330の速度が速くなるに伴い、抵抗値が低減する傾向にあるため、速度に対応する補正値を推定できる。 In the above-described embodiment, the method of specifying the correction value is explained in the state where the assembly of the screw 330 is not mounted, but the method of specifying the correction value is not limited. For example, when the screw 330 is mounted, the correction value may be specified by filling the cylinder 310 with resin and increasing the temperature, and then operating the screw 330 at a low speed. In this case, only the correction value based on the resistance at low speed can be identified. However, since the resistance value tends to decrease as the speed of the screw 330 increases, a correction value corresponding to the speed can be estimated.
(変形例)
 上述した実施形態は、補正制御部604が、スクリュ330の周方向の位置、スクリュ330の位置、及びスクリュの速度の組み合わせに基づいて、荷重検出器360から出力される検出値を補正する例について説明した。しかしながら、上述した実施形態は、スクリュ330の周方向の位置、スクリュ330の位置、及びスクリュの速度の組み合わせに基づいて補正値を特定する手法に制限するものではない。
(Modification)
The embodiment described above is an example in which the correction control unit 604 corrects the detection value output from the load detector 360 based on the combination of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw. explained. However, the embodiments described above are not limited to the method of specifying the correction value based on the combination of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw.
 例えば、補正制御部604は、スクリュ330の周方向の位置、及びスクリュ330の位置の組み合わせに基づいて、補正値を特定してもよい。さらには、補正制御部604が、スクリュ330の周方向の位置、及びスクリュ330の位置の組み合わせに基づいて特定された圧力設定値を特定し、圧力制御部606が、特定された圧力設定値に従って圧力制御を行ってもよい。なお、スクリュ330の周方向の位置、及びスクリュ330の位置の組み合わせに基づいて補正値又は圧力設定値を特定する手法は、テーブルを用いてもよいし、数式モデルを用いてもよい。 For example, the correction control section 604 may specify the correction value based on a combination of the circumferential position of the screw 330 and the position of the screw 330 . Furthermore, the correction control unit 604 identifies the specified pressure setting value based on the combination of the circumferential position of the screw 330 and the position of the screw 330, and the pressure control unit 606 operates according to the specified pressure setting value. Pressure control may be performed. The method of specifying the correction value or the pressure setting value based on the combination of the circumferential position of the screw 330 and the position of the screw 330 may use a table or a mathematical model.
 他の例としては、例えば、補正制御部604は、スクリュ330の周方向の位置、及びスクリュ330の速度の組み合わせに基づいて、補正値を特定してもよい。さらには、補正制御部604が、スクリュ330の周方向の位置、及びスクリュ330の速度の組み合わせに基づいて特定された圧力設定値を特定し、圧力制御部606が、特定された圧力設定値に従って圧力制御を行ってもよい。 As another example, the correction control unit 604 may specify the correction value based on a combination of the circumferential position of the screw 330 and the speed of the screw 330 . Furthermore, the correction control unit 604 identifies the specified pressure setpoint based on the combination of the circumferential position of the screw 330 and the speed of the screw 330, and the pressure control unit 606 operates according to the specified pressure setpoint. Pressure control may be performed.
 他の例としては、補正制御部604は、スクリュ330の軸方向の位置、及びスクリュ330の速度の組み合わせに基づいて、補正値を特定してもよい。さらには、補正制御部604が、スクリュ330の軸方向の位置、及びスクリュ330の速度の組み合わせに基づいて特定された圧力設定値を特定し、圧力制御部606が、特定された圧力設定値に従って圧力制御を行ってもよい。 As another example, the correction control section 604 may specify a correction value based on a combination of the axial position of the screw 330 and the speed of the screw 330 . Further, correction control 604 identifies the identified pressure set point based on a combination of the axial position of screw 330 and the speed of screw 330, and pressure control 606 operates according to the identified pressure set point. Pressure control may be performed.
 このように、スクリュ330の周方向の位置、及びスクリュ330の位置、及びスクリュの速度のうち2つの要素の組み合わせに基づいて、補正値又は圧力設定値を特定する場合であっても、特定された補正値で検出値を補正したり、補正された圧力設定値で圧力制御したりできるので、検出精度の向上や圧力制御の精度向上を実現できる。 In this way, even if the correction value or the pressure setting value is specified based on a combination of two elements of the circumferential position of the screw 330, the position of the screw 330, and the speed of the screw, the specified Since the detected value can be corrected with the corrected correction value and the pressure can be controlled with the corrected pressure setting value, it is possible to improve the detection accuracy and the accuracy of the pressure control.
 さらには、2つ以上の要素の組み合わせで補正値を特定する手法に制限するものではなく、一つの要素から補正値を特定してもよい。例えば、スクリュ330の周方向の位置に基づいて、補正値や圧力設定値を特定してもよい。また、スクリュ330の軸方向の位置に基づいて、補正値や圧力設定値を特定してもよい。また、スクリュ330の速度に基づいて、補正値や圧力設定値を特定してもよい。 Furthermore, the method is not limited to the method of specifying the correction value by combining two or more elements, and the correction value may be specified from one element. For example, the correction value and the pressure setting value may be specified based on the circumferential position of the screw 330 . Further, the correction value and the pressure setting value may be specified based on the axial position of the screw 330 . Also, based on the speed of the screw 330, the correction value and the pressure setting value may be specified.
 上述した実施形態及び変形例においては、射出・計量工程で圧力制御の精度を向上するとともに、ショット間の樹脂圧による力の検出値のばらつきを低減できる。これにより、成形材料を充填させるための圧力制御や、樹脂圧による力の検出の精度を向上させることができる。 In the above-described embodiment and modification, it is possible to improve the accuracy of pressure control in the injection/metering process, and reduce variations in detected force values due to resin pressure between shots. As a result, it is possible to improve the accuracy of the pressure control for filling the molding material and the detection of the force due to the resin pressure.
 以上、本発明に係る射出成形機の実施形態について説明したが、本発明は上記実施形態などに限定されない。請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本発明の技術的範囲に属する。 Although the embodiments of the injection molding machine according to the present invention have been described above, the present invention is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present invention.
 本願は、2021年3月31日に出願した日本国特許出願2021-061135号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-061135 filed on March 31, 2021, and the entire contents of this Japanese Patent Application are incorporated herein by reference.
10・・・射出成形機 300・・・射出装置 330・・・スクリュ 340・・・計量モータ 350・・・射出モータ 700・・・制御装置 601・・・補正情報記憶部 602・・・取得部 603・・・登録部 604・・・補正制御部 605・・・表示制御部 606・・・圧力制御部 10... Injection molding machine 300... Injection device 330... Screw 340... Weighing motor 350... Injection motor 700... Control device 601... Correction information storage section 602... Acquisition section 603... Registration unit 604... Correction control unit 605... Display control unit 606... Pressure control unit

Claims (6)

  1.  金型装置に成形材料を充填する射出装置と、
     前記射出装置を制御する制御装置と、を有し、
     前記射出装置は、前記成形材料を加熱するシリンダと、前記シリンダ内に配置されたスクリュと、前記スクリュを回転させる計量モータと、を有し、
     前記制御装置は、
     前記計量モータの動作に基づいて変化する、前記スクリュの周方向の位置に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する、
     射出成形機。
    an injection device that fills the mold device with molding material;
    a control device that controls the injection device;
    The injection device has a cylinder for heating the molding material, a screw arranged in the cylinder, and a metering motor for rotating the screw,
    The control device is
    A pressure detector that corrects a pressure set value used for pressure control of the screw or detects the pressure acting on the screw based on the circumferential position of the screw that changes based on the operation of the metering motor. Having a correction control unit that corrects the detection value output from
    Injection molding machine.
  2.  前記制御装置は、
     前記スクリュの周方向の位置に対応する補正情報を記憶する記憶部を、さらに有し、
     前記補正制御部は、前記周方向の位置に対応する前記補正情報に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する、
     請求項1に記載の射出成形機。
    The control device is
    further comprising a storage unit that stores correction information corresponding to the circumferential position of the screw;
    The correction control unit corrects a pressure set value used for pressure control of the screw based on the correction information corresponding to the position in the circumferential direction, or a pressure detector that detects the pressure acting on the screw. Correct the output detection value,
    The injection molding machine according to claim 1.
  3.  金型装置に成形材料を充填する射出装置と、
     前記射出装置を制御する制御装置と、を有し、
     前記射出装置は、前記成形材料を加熱するシリンダと、前記シリンダ内に配置されたスクリュと、前記スクリュを移動させる射出モータと、を有し、
     前記制御装置は、
     前記射出モータの動作に基づいて変化する、前記スクリュの軸方向の位置に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する、
     射出成形機。
    an injection device that fills the mold device with molding material;
    a control device that controls the injection device;
    The injection device has a cylinder for heating the molding material, a screw arranged in the cylinder, and an injection motor for moving the screw,
    The control device is
    A pressure detector that corrects a pressure set value used for pressure control of the screw or detects the pressure acting on the screw based on the axial position of the screw that changes based on the operation of the injection motor. Having a correction control unit that corrects the detection value output from
    Injection molding machine.
  4.  前記制御装置は、
     前記スクリュの軸方向の位置に対応する補正情報を記憶する記憶部を、さらに有し、
     前記補正制御部は、前記軸方向の位置に対応する前記補正情報に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する、
     請求項3に記載の射出成形機。
    The control device is
    further comprising a storage unit that stores correction information corresponding to the axial position of the screw;
    The correction control unit corrects a pressure set value used for pressure control of the screw based on the correction information corresponding to the axial position, or a pressure detector that detects the pressure acting on the screw. Correct the output detection value,
    The injection molding machine according to claim 3.
  5.  金型装置に成形材料を充填する射出装置と、
     前記射出装置を制御する制御装置と、を有し、
     前記射出装置は、前記成形材料を加熱するシリンダと、前記シリンダ内に配置されたスクリュと、前記スクリュを移動させる射出モータと、を有し、
     前記制御装置は、
     前記射出モータの動作に基づいて変化する、前記スクリュの速度に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する補正制御部を有する、
     射出成形機。
    an injection device that fills the mold device with molding material;
    a control device that controls the injection device;
    The injection device has a cylinder for heating the molding material, a screw arranged in the cylinder, and an injection motor for moving the screw,
    The control device is
    Based on the speed of the screw, which changes based on the operation of the injection motor, the pressure set value used for pressure control of the screw is corrected, or the pressure is output from a pressure detector that detects the pressure acting on the screw. having a correction control unit that corrects the detected value,
    Injection molding machine.
  6.  前記制御装置は、
     前記スクリュの速度に対応する補正情報を記憶する記憶部を、さらに有し、
     前記補正制御部は、前記スクリュの速度に対応する前記補正情報に基づいて、前記スクリュの圧力制御に用いる圧力設定値を補正する、又は、前記スクリュに作用する圧力を検出する圧力検出器から出力される検出値を補正する、
     請求項5に記載の射出成形機。
    The control device is
    further comprising a storage unit that stores correction information corresponding to the speed of the screw;
    The correction control unit corrects a pressure setting value used for pressure control of the screw based on the correction information corresponding to the speed of the screw, or outputs from a pressure detector that detects the pressure acting on the screw. to correct the detected value,
    The injection molding machine according to claim 5.
PCT/JP2022/015678 2021-03-31 2022-03-29 Injection molding machine WO2022210778A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023511419A JPWO2022210778A1 (en) 2021-03-31 2022-03-29
DE112022001947.6T DE112022001947T5 (en) 2021-03-31 2022-03-29 INJECTION MOLDING MACHINE
CN202280009179.XA CN116745046A (en) 2021-03-31 2022-03-29 Injection molding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061135 2021-03-31
JP2021-061135 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210778A1 true WO2022210778A1 (en) 2022-10-06

Family

ID=83459490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015678 WO2022210778A1 (en) 2021-03-31 2022-03-29 Injection molding machine

Country Status (4)

Country Link
JP (1) JPWO2022210778A1 (en)
CN (1) CN116745046A (en)
DE (1) DE112022001947T5 (en)
WO (1) WO2022210778A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304976A (en) * 1993-04-22 1994-11-01 Toshiba Mach Co Ltd Method and device for sensing resin melting state of plastic molding machine and method and machine for plastic
JP2005335078A (en) * 2004-05-24 2005-12-08 Japan Steel Works Ltd:The Injection control method of injection molding machine and injection control device therefor
JP2012250528A (en) * 2011-05-09 2012-12-20 Fanuc Ltd Injection molding machine with resin material catch preventing function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237237B2 (en) 2007-08-22 2009-03-11 ファナック株式会社 Injection molding machine with screw rotation torque monitoring function
JP2021061135A (en) 2019-10-04 2021-04-15 株式会社フジクラ Oxide superconducting wire rod, superconductive coil and method for producing superconductive coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304976A (en) * 1993-04-22 1994-11-01 Toshiba Mach Co Ltd Method and device for sensing resin melting state of plastic molding machine and method and machine for plastic
JP2005335078A (en) * 2004-05-24 2005-12-08 Japan Steel Works Ltd:The Injection control method of injection molding machine and injection control device therefor
JP2012250528A (en) * 2011-05-09 2012-12-20 Fanuc Ltd Injection molding machine with resin material catch preventing function

Also Published As

Publication number Publication date
JPWO2022210778A1 (en) 2022-10-06
CN116745046A (en) 2023-09-12
DE112022001947T5 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
JP6938614B2 (en) Correction device, injection molding system and correction method
JP7321998B2 (en) Injection molding machine
JP6797723B2 (en) Injection molding machine
JP6970177B2 (en) Injection molding machine and injection molding method
JP6878047B2 (en) Injection molding machine and injection molding method
WO2022210778A1 (en) Injection molding machine
JP7317476B2 (en) Injection molding machine
JP7206091B2 (en) Injection molding machine
WO2022210979A1 (en) Control device for injection molding machine, injection molding machine, and control method
JP7396952B2 (en) Injection molding machine
WO2022210969A1 (en) Injection molding machine
WO2022210988A1 (en) Injection molding machine monitoring device
JP2020062813A (en) Injection molding machine
JP7326177B2 (en) Adjustment device for injection molding machine and injection molding machine
JP2023089677A (en) Control device of injection molding machine
JP2018122507A (en) Injection molding machine
JP7455639B2 (en) Injection molding machine
JP7297973B2 (en) Injection device
JP2022157837A (en) Manufacturing method of movable mold support device and movable mold support device
JP7009280B2 (en) Ejector device
JP2023084850A (en) Control unit of injection molding machine and control method of injection molding machine
JP6779802B2 (en) Injection molding machine
JP2022131756A (en) Injection molding machine
KR20170026106A (en) Injection molding machine
JP2022131751A (en) Injection molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511419

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009179.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001947

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780989

Country of ref document: EP

Kind code of ref document: A1