JPS61219201A - Dielectric resonance type band stopping filter - Google Patents

Dielectric resonance type band stopping filter

Info

Publication number
JPS61219201A
JPS61219201A JP6037185A JP6037185A JPS61219201A JP S61219201 A JPS61219201 A JP S61219201A JP 6037185 A JP6037185 A JP 6037185A JP 6037185 A JP6037185 A JP 6037185A JP S61219201 A JPS61219201 A JP S61219201A
Authority
JP
Japan
Prior art keywords
length
conductor pattern
dielectric
dielectric resonators
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6037185A
Other languages
Japanese (ja)
Inventor
Motoo Mizumura
水村 元夫
Toshikatsu Konishi
小西 敏克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6037185A priority Critical patent/JPS61219201A/en
Publication of JPS61219201A publication Critical patent/JPS61219201A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To use a metallic chassis and metallic cover which are relatively small in dimension and the same in a certain wavelength zone, by making a conductor pattern formed on a dielectric substrate to make a detour between dielectric resonators. CONSTITUTION:It can be said from a filter theory that, when the electric length, namely, conductor pattern (l) between dielectric resonators is l=l1+l2+l3+l4+l5=(2n-1)X(lambdag/4), the characteristic of a filter becomes the optimum. Therefore, the length L1 can be made smaller as compared with conventional ones at the same frequency and, as a result, the length L of a metallic chassis can be made smaller as compared with conventional ones. Moreover, if the l2 and l4 are appropriately selected when a frequency is fixed, the length L1 can be selected with a considerable degree of freedom. In addition, when this constitution is used, the length L1 can be made constant by selecting suitable values for the detouring widths l2a-l2c of the detouring path of a conductor pattern in a range of l2b>l2a>l2c, so that the electric length between dielectric resonators can become (2n-1)X(lambdag/4) against each of frequencies f2, f1, and f3. Accordingly, the distance L between dielectric resonators also becomes constant and the outer shape of the metallic chassis becomes a fixedly designed one.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数の誘電体共振器により構成された誘電体共
振型帯域阻止濾波器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a dielectric resonant band-elimination filter constituted by a plurality of dielectric resonators.

〔概 要〕〔overview〕

本発明は、導体パターンに生じる分布定数を利用する誘
電体濾波器において、 誘電体基板上の導体パターンを迂回させた形状とするこ
とによって、 外型寸法を小さくするのである。
The present invention reduces the external dimensions of a dielectric filter that utilizes a distributed constant generated in a conductor pattern by making the conductor pattern on the dielectric substrate detoured.

〔従来の技術〕[Conventional technology]

従来の誘電体共振型帯域阻止濾波器の構成例を第4図に
示す。第4図は2段の誘電体共振型帯域阻止濾波器の例
で、(a)は金属カバーを外した平面状態を、山)は側
断面状態を示す。本図において、符号1.2は誘電体共
振器、符号3.4はその支持台、符号5は金属シャーシ
、符号6は金属カバー、符号7.8は周波数調整ねじ、
符号9は誘電体基板、符号10は誘電体基板9上に形成
された導体パターン、符号11および12はそれぞれ入
力および出力のコネクタである。
FIG. 4 shows an example of the configuration of a conventional dielectric resonance type band-elimination filter. FIG. 4 shows an example of a two-stage dielectric resonance type band-elimination filter, in which (a) shows a plan view with the metal cover removed, and (a) a side cross-sectional view. In this figure, 1.2 is a dielectric resonator, 3.4 is its support, 5 is a metal chassis, 6 is a metal cover, 7.8 is a frequency adjustment screw,
Reference numeral 9 is a dielectric substrate, reference numeral 10 is a conductive pattern formed on the dielectric substrate 9, and reference numerals 11 and 12 are input and output connectors, respectively.

第4図に示す従来の構成例では、導体パターンlOは直
線状である。一方、誘電体共振器間の距離り、/ はフ
ィルタの設計論理より (2n−1)X(λg/4) と決められている。ここにλgは誘電体基板上の一波長
であり、nは1以上の正の整数(1,2,3、・−・)
である。
In the conventional configuration example shown in FIG. 4, the conductor pattern IO is linear. On the other hand, the distance between the dielectric resonators, /, is determined as (2n-1)X(λg/4) based on the filter design logic. Here, λg is one wavelength on the dielectric substrate, and n is a positive integer of 1 or more (1, 2, 3, ...)
It is.

このように従来の構成では2個の誘電体共振器の中心距
離L 、 / は L+’ = (2n  1)X (λg/4)で一義的
に決められてしまうが、L1′はλgの関数であるので
、周波数が変わると上記L 、 Pが変化する。
In this way, in the conventional configuration, the center distance L, / between the two dielectric resonators is uniquely determined by L+' = (2n 1)X (λg/4), but L1' is a function of λg. Therefore, when the frequency changes, the above L and P change.

例えば本器を無線通信機器として使用する場合に一つの
無線周波数帯域内であっても例えば4 GHz帯域の場
合に3.6〜4.2GHz、また6 GHz帯域の場合
には5.9〜6.4GHz帯域というように周波数が異
なるとL 、 lの長さも異なってくる。
For example, when using this device as a wireless communication device, even within one radio frequency band, for example, the frequency range is 3.6 to 4.2 GHz for the 4 GHz band, and 5.9 to 6 GHz for the 6 GHz band. If the frequency is different, such as the .4 GHz band, the lengths of L and l will also be different.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし導体パターンは直線上であるので、上記り、/ 
の長さが変わると金属シャーシの長さL′も変えなけれ
ばならない。そのため本器の寸法は長大なものとなるこ
とがあり、また誘電体基板の種類ごとに金属シャーシお
よび金属カバーを設計しなければならない欠点があった
However, since the conductor pattern is on a straight line, /
If the length of the metal chassis changes, the length L' of the metal chassis must also be changed. As a result, the dimensions of this device may be large, and there is also the drawback that a metal chassis and metal cover must be designed for each type of dielectric substrate.

本発明は、その寸法が比較的小さくまたある波長域内で
は同一の金属シャーシおよび金属カバーを使用すること
のできる誘電体共振型帯域阻止濾波器を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dielectric resonant band-elimination filter whose dimensions are relatively small and in which the same metal chassis and metal cover can be used within a certain wavelength range.

C問題点を解決するための手段〕 本発明は、従来の欠点を解決するために、誘電体基板上
に形成された導体パターンを誘電体共振器の間で迂回さ
せる構成を用いることを特徴としている。
Means for Solving Problem C] In order to solve the conventional drawbacks, the present invention is characterized by using a configuration in which a conductive pattern formed on a dielectric substrate is detoured between dielectric resonators. There is.

すなわち、本発明は、金属シャーシと、この金属シャー
シに内包された誘電体基板と、この誘電体基板の表面に
形成された導体パターンとを含み、この導体パターンに
生じる分布定数によりこの導体パターンを通過する電気
信号に所望の周波数特性を与える構造の誘電体共振型帯
域阻止濾波器において、 上記導体パターンは、電気長が実長より長くなるように
その一部が迂回形状に形成されたことを特徴とする。
That is, the present invention includes a metal chassis, a dielectric substrate included in the metal chassis, and a conductor pattern formed on the surface of the dielectric substrate, and the conductor pattern is controlled by a distributed constant generated in the conductor pattern. In a dielectric resonant band-elimination filter having a structure that gives a desired frequency characteristic to an electrical signal passing therethrough, the above-mentioned conductor pattern is partially formed in a detour shape so that the electrical length is longer than the actual length. Features.

金属シャーシは異なる周波数特性の濾波器に対して同一
の形状であることが望ましい。
It is desirable that the metal chassis have the same shape for filters with different frequency characteristics.

〔作 用〕[For production]

平面上に固定された2点間の直線距離は一定であるが、
この2点を結ぶ経路を迂回させてこの経路を辿らせれば
、2点間の亘り距離は任意のものとすることができる。
The straight line distance between two fixed points on a plane is constant, but
By detouring the route connecting these two points and following this route, the distance between the two points can be set to any value.

誘電体基板上の誘電体共振器間を結ぶ導体パターンを迂
回させ、亘り距離を変えれば、誘電体共振器の位置が固
定されていても、その回路を流れる異なった周波数のも
のに対応する導体パターン長を有する誘電体共振型帯域
濾波器が構成される。
By detouring the conductor pattern connecting the dielectric resonators on the dielectric substrate and changing the crossing distance, even if the position of the dielectric resonator is fixed, the conductor pattern corresponding to the different frequencies flowing through the circuit can be created. A dielectric resonant bandpass filter having a pattern length is constructed.

〔実施例〕〔Example〕

本発明の一実施例を図面によって説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図(a)は上記実施例の内部の平面図を示し、第1
図(b)は同じく側断面図を示す。なお、第4図と同一
機能を有する要素には同一符号を付しである。
FIG. 1(a) shows a plan view of the interior of the above embodiment;
Figure (b) also shows a side sectional view. Note that elements having the same functions as those in FIG. 4 are given the same reference numerals.

フィルタ理論より誘電体共振器の間の誘電体基板上の導
体パターンの長さは (2n−1)X (λg/4) である。本実施例ではこの長さを第1図[alに示すよ
うに、迂回された導体パターンの形状により実現してい
る。
According to filter theory, the length of the conductor pattern on the dielectric substrate between the dielectric resonators is (2n-1)X (λg/4). In this embodiment, this length is realized by the shape of the conductor pattern that is detoured, as shown in FIG. 1 [al].

本図においては誘電体共振器間の電気長、すなわち導体
パターンの長さiは、 !=j!、  +72. +j!、 +1.、 +1%
でありフィルタ理論より 1、+4□+12. +14+!。
In this figure, the electrical length between dielectric resonators, that is, the length i of the conductor pattern, is ! =j! , +72. +j! , +1. , +1%
According to filter theory, 1, +4□+12. +14+! .

=(2n−1)X(λg/4) であれば、フィルタの特性が最適となる。したがって本
発明を用いることにより、同一の周波数においては第1
図のLIは従来の構成例第4図のL′よりも小さくする
ことができる。このため金属シャーシの外形も本発明の
第1図りは、従来例第3図のL′よりも小さくすること
ができる。また周波数が決まったときに従来例では、L
 、 lが一義的に(2n−1)X(λg/4)により
決定されたのに対して、本実施例では12.14を適当
に選ぶことによりり、をかなりの自由度をもって選ぶこ
とができる。
=(2n-1)X(λg/4), the filter characteristics are optimal. Therefore, by using the present invention, the first
LI in the figure can be made smaller than L' in the conventional configuration example of FIG. 4. Therefore, the outer shape of the metal chassis in the first diagram of the present invention can be made smaller than L' in the conventional example in FIG. 3. Also, when the frequency is determined, in the conventional example, L
, l are uniquely determined by (2n-1)X(λg/4), whereas in this example, by appropriately selecting 12.14, it is possible to select with a considerable degree of freedom. can.

さらに第2図に示すように、導体パターンの形状を一部
変えることにより周波数が変化しても同一外形寸法の金
属シャーシを用いて、最適特性の誘電体共振型帯域阻止
濾波器が構成できる。
Furthermore, as shown in FIG. 2, by partially changing the shape of the conductor pattern, a dielectric resonant band-elimination filter with optimal characteristics can be constructed using a metal chassis with the same external dimensions even when the frequency changes.

第2図は周波数fがそれぞれ f2<f、 <f。In Figure 2, the frequency f is f2<f, <f.

である3波に対する導体パターンの長さの比較図である
。従来の構成例では、周波数が変化するとL 、 Iが
変化するので、外形寸法L′も変化するが、本発明の構
成を用いると第2図のように周波数f2、f、 、f、
のそれぞれに□対して誘電体共振器間の電気長が (2n−1)X(λg/4) となるように、第2図の(al、(b)および(e)に
示すように導体パターンの迂回路の迂回幅12いl1t
bおよび12cを βZb> 1 za〉I Zc である適宜な値を選ぶことにより、Llを一定にするこ
とができる。したがって誘電体共振器間の距離りも一定
となり、金属シャーシの外形が一定の設計のものとなる
FIG. 3 is a comparison diagram of the length of a conductor pattern for three waves. In the conventional configuration example, when the frequency changes, L and I change, so the external dimension L' also changes, but with the configuration of the present invention, the frequencies f2, f, , f,
As shown in (al, (b) and (e) in Figure 2, conductors are Pattern detour width 12l1t
By selecting appropriate values for b and 12c such that βZb>1za>IZc, Ll can be kept constant. Therefore, the distance between the dielectric resonators is also constant, and the outer shape of the metal chassis is designed to be constant.

したがって本発明によれば同一周波数の場合では従来の
構成よりも外形寸法を小さくでき、またある周波数の変
化範囲内では外形寸法が一定である金属シャーシの設計
ができる。
Therefore, according to the present invention, it is possible to design a metal chassis whose external dimensions are smaller than those of the conventional structure at the same frequency, and whose external dimensions are constant within a certain frequency change range.

次に、本発明と従来例との比較を第3図を用いて説明す
る。無線通信機の4 GHz帯域に使用する誘電体共振
型帯域阻止濾波器の設計例を示す。4Gllz帯域では
通常3.6〜4.2GHzのものが使用される。
Next, a comparison between the present invention and a conventional example will be explained using FIG. A design example of a dielectric resonant band-elimination filter used in the 4 GHz band of wireless communication equipment is shown below. In the 4Gllz band, 3.6 to 4.2 GHz is normally used.

いま、周波数をそれぞれ3.6GH2,3、9GHzお
よび4.2GHzの3波とすると、フィルタ理論により
二つの誘電体共振器の間の電気長は、それぞれ43.4
7鶴、40.13 amおよび37.32璽lとなる。
Now, if we assume three waves with frequencies of 3.6 GHz, 3, 9 GHz, and 4.2 GHz, the electrical length between the two dielectric resonators is 43.4 GHz, respectively, according to filter theory.
7 cranes, 40.13 am and 37.32 am.

したがって、第3図(a)に示す従来例構成ではKIの
値はそれぞれこの長さとしなければならない。また標準
的には誘電体共振器の中心から金属シャーシの端面まで
の寸法は通常2(haをとるので、金属シャーシの全長
はそれぞれ83.47 m、80.13鶴および77.
321璽となる。
Therefore, in the conventional configuration shown in FIG. 3(a), each value of KI must be set to this length. Also, the standard dimension from the center of the dielectric resonator to the end face of the metal chassis is usually 2 (ha), so the total length of the metal chassis is 83.47 m, 80.13 m, and 77 m, respectively.
It becomes the 321st seal.

ところが、本発明によれば、第3図(b)に示すように
に、の長さを30mと固定して導体パターンを迂回させ
る。すなわち導体パターンの中央部分を図示されたよう
に偏倚させることによって上記フィルタ理論より求めら
れたそれぞれ所定の電気長とすることができる。したが
って金属シャーシの長さkは一定の値70m■となる。
However, according to the present invention, as shown in FIG. 3(b), the length is fixed at 30 m and the conductor pattern is detoured. That is, by biasing the central portion of the conductive pattern as shown in the figure, it is possible to obtain the respective predetermined electrical lengths determined from the filter theory. Therefore, the length k of the metal chassis is a constant value of 70 m.

上記の関係を表に示して対比する。The above relationships are shown in a table and compared.

表 〔発明の効果〕 以上説明したように本発明によれば、誘電体共振器間の
導体パターンを迂回した形状とすることによって、最適
特性を示す誘電体共振器間の電気長を短縮でき金属シャ
ーシが小型化される。また、ある範囲内における異なる
周波数に対するシャーシの全長を一定にできるので、誘
電体共振型帯域濾波器の設計およびこれらを取付ける装
置の設計ががともに簡易化されるため、製作費および工
事費が低減する効果がある。
Table [Effects of the Invention] As explained above, according to the present invention, by making the conductor pattern between the dielectric resonators detoured, the electrical length between the dielectric resonators exhibiting optimum characteristics can be shortened. The chassis becomes smaller. In addition, since the overall length of the chassis can be made constant for different frequencies within a certain range, the design of dielectric resonant bandpass filters and the equipment to install them are both simplified, reducing manufacturing and construction costs. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成図で(a)は内部平面図、
(b)は側断面図。 第2図は本発明により異なる周波数に最適な導体パター
ンの比較図。 第3図は従来例と実施例の同一電気長に対する比較説明
図。 第4図は従来例の構成図で、(a)は内部平面図、(b
lは側断面図。 1.2・・・誘電体共振器、3.4・・・支持台、5・
・・金属シャーシ、6・・・金属カバー、7.8・・・
周波数調整ねし、9・・・誘電体基板、10・・・導体
パターン、11・・・入力コネクタ、12・・・出力コ
ネクタ。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and (a) is an internal plan view;
(b) is a side sectional view. FIG. 2 is a comparison diagram of conductor patterns optimal for different frequencies according to the present invention. FIG. 3 is a comparative explanatory diagram for the same electrical length between the conventional example and the embodiment. Figure 4 is a configuration diagram of a conventional example, (a) is an internal plan view, (b)
l is a side sectional view. 1.2... Dielectric resonator, 3.4... Support stand, 5...
...Metal chassis, 6...Metal cover, 7.8...
Frequency adjustment, 9... Dielectric substrate, 10... Conductor pattern, 11... Input connector, 12... Output connector.

Claims (2)

【特許請求の範囲】[Claims] (1)金属シャーシと、この金属シャーシに内包された
誘電体基板と、この誘電体基板の表面に形成された導体
パターンとを含み、この導体パターンに生じる分布定数
によりこの導体パターンを通過する電気信号に所望の周
波数特性を与える構造の誘電体共振型帯域阻止濾波器に
おいて、 上記導体パターンは、電気長が実長より長くなるように
その一部が迂回形状に形成されたことを特徴とする誘電
体共振型帯域阻止濾波器。
(1) Includes a metal chassis, a dielectric substrate included in this metal chassis, and a conductor pattern formed on the surface of this dielectric substrate, and electricity that passes through this conductor pattern due to a distributed constant generated in this conductor pattern. In a dielectric resonant band-elimination filter having a structure that gives a signal a desired frequency characteristic, the conductor pattern is characterized in that a part of the conductor pattern is formed in a detour shape so that the electrical length is longer than the actual length. Dielectric resonant band-stop filter.
(2)金属シャーシは異なる周波数特性の濾波器に対し
て同一の形状である特許請求の範囲第(1)項に記載の
誘電体共振型帯域阻止濾波器。
(2) The dielectric resonant band-elimination filter according to claim (1), wherein the metal chassis has the same shape for filters with different frequency characteristics.
JP6037185A 1985-03-25 1985-03-25 Dielectric resonance type band stopping filter Pending JPS61219201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6037185A JPS61219201A (en) 1985-03-25 1985-03-25 Dielectric resonance type band stopping filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6037185A JPS61219201A (en) 1985-03-25 1985-03-25 Dielectric resonance type band stopping filter

Publications (1)

Publication Number Publication Date
JPS61219201A true JPS61219201A (en) 1986-09-29

Family

ID=13140205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6037185A Pending JPS61219201A (en) 1985-03-25 1985-03-25 Dielectric resonance type band stopping filter

Country Status (1)

Country Link
JP (1) JPS61219201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144803A (en) * 1987-12-01 1989-06-07 Fujitsu Ltd Dielectric band elimination filter
US5977847A (en) * 1997-01-30 1999-11-02 Nec Corporation Microstrip band elimination filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136107A (en) * 1974-09-20 1976-03-26 Tekunikaru Inkoohoreetetsudo J Teepurekoodaniokeru sosasochi
JPS587082A (en) * 1981-07-06 1983-01-14 ソニー株式会社 Method of preventing scattering of glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136107A (en) * 1974-09-20 1976-03-26 Tekunikaru Inkoohoreetetsudo J Teepurekoodaniokeru sosasochi
JPS587082A (en) * 1981-07-06 1983-01-14 ソニー株式会社 Method of preventing scattering of glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144803A (en) * 1987-12-01 1989-06-07 Fujitsu Ltd Dielectric band elimination filter
US5977847A (en) * 1997-01-30 1999-11-02 Nec Corporation Microstrip band elimination filter

Similar Documents

Publication Publication Date Title
US4963844A (en) Dielectric waveguide-type filter
EP0844682A1 (en) Plane type stripline filter and dual mode resonator
TWI445243B (en) Defected ground structure with shielding effect
US7764147B2 (en) Coplanar resonator and filter using the same
US6323745B1 (en) Planar bandpass filter
JPH03212001A (en) Dielectric filter
JP4140855B2 (en) Band stop filter
JPS61219201A (en) Dielectric resonance type band stopping filter
CN105896008A (en) Compact-type band-pass filter comprising transmission zero points at high and low frequencies
US6512429B2 (en) Dielectric filter, transmission/reception sharing device, and communication device
JPS63204801A (en) Microstrip line filter
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
US7479856B2 (en) High-frequency filter using coplanar line resonator
US6496710B1 (en) Signal filter having circularly arranged resonators
JP2583849B2 (en) Stripline resonator
WO1999018630A9 (en) Slot line band pass filter
JP4327876B2 (en) Apparatus and method for split feed coupled ring resonator versus elliptic function filter
JP2002009503A (en) Filter, duplexer and communication unit
KR100459146B1 (en) Microwave Filter
JP2010028787A (en) Dual mode filter
JPH01101701A (en) Microstrip type band-pass filter
JP2001358501A (en) Stripline filter
JP3676683B2 (en) Microwave passive circuit, high-pass filter and duplexer
JP2007166270A (en) Short-circuiting means, and tip short-circuiting stub therewith, resonator and high-frequency filter
JPH0526802Y2 (en)