JPS61219119A - Winding for stationary induction electric apparatus - Google Patents

Winding for stationary induction electric apparatus

Info

Publication number
JPS61219119A
JPS61219119A JP5953285A JP5953285A JPS61219119A JP S61219119 A JPS61219119 A JP S61219119A JP 5953285 A JP5953285 A JP 5953285A JP 5953285 A JP5953285 A JP 5953285A JP S61219119 A JPS61219119 A JP S61219119A
Authority
JP
Japan
Prior art keywords
winding
oil
windings
horizontal
induction electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5953285A
Other languages
Japanese (ja)
Inventor
Sanae Sekida
関田 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5953285A priority Critical patent/JPS61219119A/en
Publication of JPS61219119A publication Critical patent/JPS61219119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To improve the cooling effect of a winding by providing an oil plug which can alternately change the flow of a refrigerant in a unit of 5-8 horizontal oil routes among each winding, vertical oil routes being provided among inner and outer insulation cylinders, the windings and the windings divided into two groups. CONSTITUTION:Vertical oil routes 5, 7 are formed among inner and outer insulation cylinders 2, 3 and windings 4 respectively, vertical oil route 6 is provided in the middle of divided two groups of the windings 4 and a horizontal oil route 8 is provided between the upper and lower windings for the flow of a refrigerant fluid. Oil plugs 10, 11, 12 are provided for the effective flow of the refrigerant in the horizontal oil route 8. The oil plugs 10, 11, 12 use an electrical insulator. The oil plugs 11, 12 are provided in the vertical oil routes between the windings 4 and between the windings 4 and the outer insulation cylinder 3, from this position, the refrigerant passes through the horizontal oil routes of uniform number of 5-8 and the oil plugs 10, 11 are provided between the inner insulation cylinder 2 and the windings 4 and between the windings 4 respectively. this construction is repeated and the windings are constituted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は静止誘導電器巻線に係り、特にこの巻線の冷却
効果を改善し九油道構造の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to stationary induction electric appliance windings, and more particularly to improving the cooling effect of the windings and improving the nine-oil structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の変圧器あるいはりアクドルのような静止誘導電器
、例えば変圧器巻線内の油道構造は第3図に示すように
構成されている。即ち鉄心1の外周の内側及び外側に設
けられた内側及び外側絶縁筒2.3の間に複数本の素線
導体を巻回して形成された円板伏の巻線4を鉄心lの軸
方向に順次配置し、内側及び外側絶縁筒2,3と巻線4
との間に各々垂直油道5.6.7を形成するとともに、
各巻線4間に水平油道8を形成しこれらの油道(:絶縁
性の高い冷却媒体例えば絶縁油のような冷却流体(以下
冷媒という)を通過させる構造をとっている。
A conventional stationary induction electric device such as a transformer or an axle, for example, an oil conduit structure within a transformer winding, is constructed as shown in FIG. That is, a disc-shaped winding 4 formed by winding a plurality of wire conductors between inner and outer insulating tubes 2.3 provided on the inner and outer sides of the outer circumference of the iron core 1 is wound in the axial direction of the iron core 1. The inner and outer insulating cylinders 2 and 3 and the winding 4
and forming vertical oil passages 5, 6, and 7 between the
Horizontal oil passages 8 are formed between each winding 4, and a highly insulating cooling medium such as insulating oil (hereinafter referred to as refrigerant) is passed through these oil passages.

ところがこのよう(:構成された従来の油道構造では冷
媒が巻線の発熱により加熱されて浮力を生じて流動する
といった自然対流方式の冷却方法である場合(=は垂直
油道油道5,6.7では流量が大いが、水平油道8内で
の流量つまり流速は矢印9に示すよう(二方向が定まら
ず勝手に流動するばかりで表く流れが止ってしまう部分
があり、さらに巻線からの発熱量が増加すると流れが止
まるだけでなく冷媒がピストン運動を生じながら少しず
つ流動するといった状態となり、巻線と冷媒との熱交換
が阻止されるため巻線は局部的に過熱されで断線したり
、短絡するといった事故を生じるおそれがある。
However, in the case of the conventional oil pipe structure configured as shown below, the cooling method is a natural convection method in which the refrigerant is heated by the heat generated by the windings and flows with buoyancy (= is the vertical oil pipe 5, 6.7, the flow rate is large, but the flow rate in the horizontal oil pipe 8, that is, the flow velocity, is as shown by the arrow 9 (there are parts where the flow stops because the two directions are not fixed and it just flows by itself, and When the amount of heat generated from the windings increases, not only does the flow stop, but the refrigerant flows little by little while creating a piston motion, which prevents heat exchange between the windings and the refrigerant, causing local overheating of the windings. Otherwise, accidents such as wire breakage or short circuit may occur.

このため第1図(二示すよう(二水平油道8を何本かの
単位毎に内側絶縁筒2と巻線4との間、もしくは外側絶
縁筒3と巻線4との間に各々油絵10゜11.12を配
置し、水平油道8内(二冷媒を導入させるのであるが、
油絵間の水平油道の本数が多いと第3図に示す矢印9の
ような逆流および滞流現象が生じる。
For this purpose, as shown in Figure 1 (2), the two horizontal oil pipes 8 are installed between the inner insulating cylinder 2 and the winding 4, or between the outer insulating cylinder 3 and the winding 4, respectively. 10° 11.12 is placed in the horizontal oil pipe 8 (two refrigerants are introduced,
If the number of horizontal oil passages between oil paintings is large, backflow and stagnation phenomena occur as shown by arrow 9 in FIG. 3.

また逆舊:第1図における油樫間の水平油道本数を少な
くしすぎると、水平油道内の流速は早くなるが、全体と
して流動抵抗が増加するため全体としての流量は減少す
るため、やはり巻線の温度は上昇する。
In addition, if the number of horizontal oil pipes between the oil oaks in Figure 1 is too small, the flow velocity in the horizontal oil pipe will increase, but the overall flow resistance will increase and the overall flow rate will decrease. The temperature of the winding increases.

このため巻線への入力を減少する等して巻線からの発熱
を抑える等の消極的方法がとられており、効率のよい自
冷式変圧器あるいは大型化等の解決すべき問題点があっ
た。
For this reason, passive methods have been taken to suppress the heat generation from the windings by reducing the input to the windings, and there are problems that need to be solved by creating more efficient self-cooling transformers or increasing the size of the transformers. there were.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考慮して冷されたもので、その目的
とするところは巻線幅の大きな巻線(二おいて垂直油道
の流れを効率よく水平油道に導入するため油絵取付に対
する最適な水平油道本数を与えることにより巻線の冷却
効果を向上し、安全且つ大容量の静止誘導電器巻線を提
供することである。
The present invention was developed in consideration of the above points, and its purpose is to install a winding with a large winding width (2) to install an oil painting in order to efficiently introduce the flow of a vertical oil pipe into a horizontal oil pipe. The purpose of the present invention is to provide a safe and large-capacity stationary induction electric appliance winding by improving the cooling effect of the winding by providing the optimum number of horizontal oil passages for the winding.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明C;よれば、内側絶
縁筒と外側絶縁筒との内に素線導体を巻回して形成した
大形の円板伏の巻線を2分割して構成しこの巻線を軸方
向に順次平行に配置し、前記各巻線間に冷媒を通過させ
る水平油道を形成して水平油道内に冷媒を効率よく導入
する油絵配置とすることにより巻線の冷却効果を向上し
、安全且つ大容量化することを特徴とする。
In order to achieve this object, according to the present invention C, a large disc-shaped winding formed by winding a wire conductor in an inner insulating cylinder and an outer insulating cylinder is divided into two parts. The windings are arranged parallel to each other in the axial direction, and horizontal oil passages are formed between each of the windings to allow the refrigerant to pass through.The oil-painting arrangement allows the refrigerant to be efficiently introduced into the horizontal oil passages, thereby achieving a cooling effect on the windings. It is characterized by improved safety and large capacity.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の静止誘導電器巻線の一実施例である第1図
を参照し、同一個所には同一記号を符して説明する。
The following description will be made with reference to FIG. 1, which shows an embodiment of the static induction electric winding of the present invention, and the same parts are denoted by the same symbols.

変圧器あるいはりアクドルのような静止誘導電器のうち
例えば変圧器巻線は鉄心1の外周部で内側及び外側に設
けられた内側絶縁筒2及び外側絶縁筒3との間に複数本
の素線導体を巻回して形成した巻線4を鉄心1の軸方向
に順次配置し、内側・及び外側絶縁筒2,3と巻線4と
の間にはそれぞれ垂直油道5,7を形成し、巻線4を2
分割して中間に垂直油道6を設け、巻線の上下間(二は
水平油道8を形成し、絶縁冷却媒体例えば絶縁油やSF
For example, in a stationary induction electric appliance such as a transformer or an accelerator, a transformer winding includes a plurality of strands of wire between an inner insulating tube 2 and an outer insulating tube 3 provided on the inner and outer sides of the outer circumference of the iron core 1. Windings 4 formed by winding a conductor are sequentially arranged in the axial direction of the iron core 1, and vertical oil passages 5, 7 are formed between the inner and outer insulating cylinders 2, 3 and the windings 4, respectively. winding 4 to 2
It is divided and a vertical oil passage 6 is provided in the middle, and between the upper and lower parts of the winding (the second part forms a horizontal oil passage 8), an insulating cooling medium such as insulating oil or SF is used.
.

ガス等のような冷却流体を通過させる構造をとっている
It has a structure that allows cooling fluid such as gas to pass through it.

この冷媒を水平油道8内に効率よく導入させるために油
栓10.11.12を設置する。油絵10,11゜12
は電気絶縁物を用い、油絵11,12は巻線4と巻線4
との間及び巻線4と外側絶縁筒3との間の垂直油道に配
置し、この位置から上部側もしくは下部側へ水平油道の
本数が5〜8本内で且つ均一本数を径て油絵10.11
を内側絶縁筒2と巻線4との間及び巻線4と巻線4との
間の垂直油道(:各々配置する構成をくり返して巻線を
構成する。
In order to efficiently introduce this refrigerant into the horizontal oil pipe 8, oil plugs 10, 11, and 12 are installed. Oil painting 10, 11゜12
uses electrical insulators, and oil paintings 11 and 12 use winding 4 and winding 4.
and between the winding 4 and the outer insulating cylinder 3, and the number of horizontal oil pipes from this position to the upper side or the lower side is within 5 to 8 and uniform in diameter. Oil painting 10.11
The windings are constructed by repeating the arrangement of vertical oil passages between the inner insulating cylinder 2 and the windings 4 and between the windings 4 and 4 respectively.

上下における油絵間での水平油道の本数は巻線構成にお
いて均一な本数の配置とするが、巻線構成上端数が生じ
る場合で、本数5〜8本の内の本数をnとする時、K”
を基準としで、端数が%xnより小さい場合は最下部の
油絵間に加え、%×nより端数が大きい場合は最上部の
油絵間に構成する次に本発明の作用効果についで説明す
る。
The number of horizontal oil passages between the upper and lower oil paintings shall be uniform in the winding configuration, but if the upper end of the winding configuration occurs, and the number of oil passages from 5 to 8 is set as n, K”
If the fraction is smaller than %xn, it is added between the oil paintings at the bottom, and when the fraction is larger than %xn, it is added between the oil paintings at the top.Next, the effects of the present invention will be explained.

冷媒である絶縁油は巻線4からの発熱(二より温度上昇
しで軽くをり浮力を受けて第1図の下側から上側に上昇
して流通する。
The insulating oil, which is a refrigerant, is slightly buoyant due to the heat generated from the winding 4 (the temperature rises), and it rises from the bottom to the top in FIG. 1 and circulates.

この時第1図の実施例に示す細枠配置とすることにより
水平細道8内の流速分布を計測すると矢印9のようにな
る。
At this time, by using the thin frame arrangement shown in the embodiment of FIG.

ここで矢印9の長さは流速(流量も同じ)の大きさを示
す。
Here, the length of the arrow 9 indicates the magnitude of the flow velocity (the flow rate is also the same).

上下の油絵閣内における水平細道の流速分布は垂直細道
5の入口13に近い巻線では下側が最も早く、上側にな
るに従ってゆるやかとなる分布となるが、垂直細道7の
出口14に近い巻線では上下においてほぼ同程度の流速
分布となっている。次の油絵間配置では方向が反対で全
く同様な流速分布が存在し、これをくり返しで流通する
The flow velocity distribution in the horizontal narrow paths in the upper and lower oil painting cabinets is fastest in the windings near the entrance 13 of the vertical narrow path 5 at the bottom, and becomes gentler towards the top, but in the windings near the exit 14 of the vertical narrow path 7 The flow velocity distribution is almost the same in the upper and lower regions. In the next arrangement between oil paintings, there is a completely similar flow velocity distribution with the opposite direction, and this flow is repeated repeatedly.

水平細道8内の冷媒の流速が早ければ巻線4との熱交換
が流速に比例して促進されるため巻線は効率よく冷却さ
れて極部的に高温となる巻線はないため効率のよい自冷
式巻線を提供することができる。
If the flow velocity of the refrigerant in the horizontal narrow path 8 is fast, heat exchange with the winding 4 is promoted in proportion to the flow velocity, so the winding is efficiently cooled, and no winding becomes extremely high in temperature, which improves efficiency. Can provide good self-cooling winding.

ところが上下の油絵間での水平細道8の本数を15本位
(:すると冷媒な逆流したり滞流する部分が生じて巻線
4は局所的に過熱状態となるため大容量化することがで
きないばかりか、この局所過熱により溶けて短絡すると
いった重大な事故を生じる原因ともなる。
However, if the number of horizontal narrow paths 8 between the upper and lower oil paintings is reduced to 15, then there will be parts where the refrigerant flows backward or stagnates, and the winding 4 will be locally overheated, making it impossible to increase the capacity. Otherwise, this local overheating can cause serious accidents such as melting and short circuits.

一方逆に上下の油絵間での水平細道8の本数を小さくす
ると冷媒の流速は増加するが、巻線構成全体としての抵
抗が増加するため流量が減少し、巻線温度は全体として
高温となり冷却効果はやはり良くない。また製作上から
も多くの油絵を必要とするため経済的でない。
On the other hand, if the number of horizontal narrow paths 8 between the upper and lower oil paintings is reduced, the flow velocity of the refrigerant will increase, but the resistance of the entire winding structure will increase, so the flow rate will decrease, and the winding temperature will become high as a whole for cooling. The effect is still not good. Also, it is not economical to produce as it requires a lot of oil painting.

巻線構成における上部と下部とにおける油絵間の流速分
布を比較すると下部よりも上部にある油栓間の流速分布
の方が、油絵閣内での流速比が大きいため巻線構成上で
水平細道8の本数nの分割数が整数倍とならない場合は
流速比のゆるやかな下部に本数nより大きい水平細道本
数を設置するか又は流速比の大きくなる上部に本数nよ
り小さい水平細道本数を設置すれば全体の流量や流速分
布は同様の効果を得ることができる。
Comparing the flow velocity distribution between oil paintings in the upper and lower parts of the winding configuration, the flow velocity distribution between the oil plugs in the upper part is higher than that in the lower part because the flow velocity ratio in the oil painting pavilion is larger, so the horizontal narrow path 8 is found in the winding configuration. If the number of divisions of the number n is not an integral multiple, install horizontal narrow paths larger than the number n in the lower part where the flow velocity ratio is gentle, or install horizontal narrow roads smaller than the number n in the upper part where the flow velocity ratio is large. Similar effects can be obtained with the overall flow rate and flow velocity distribution.

水平細道高さをH1巻線幅をWとすると&4=5〜40
の間)二あれば第1図(:示す流速分布矢印9となり冷
却効果のよい自冷式巻線を得ることができる。
If the horizontal narrow path height is H1 and the winding width is W, &4=5~40
2), the flow velocity distribution arrow 9 shown in FIG.

次に他の実施例を示す。Next, another example will be shown.

第2図において油310,12は内側絶縁筒2と巻線4
の間及び外側絶縁筒3と巻線4との間に各々設置し、油
絵11を巻線4と巻線4との中間に設置する配置を交互
にくり返す構成でもよく、この場合の水平細道8内の流
速分布は矢印9に示すようになり、上記と同様(二効率
よく巻線を冷却することができる。
In Fig. 2, oil 310, 12 is connected to inner insulating cylinder 2 and winding 4
The oil painting 11 may be installed between the outer insulating cylinder 3 and the winding 4, and the oil painting 11 may be installed between the windings 4 and the winding 4, and the arrangement may be repeated alternately. The flow velocity distribution within 8 is as shown by arrow 9, and the winding can be cooled with high efficiency in the same way as above.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明(二よれば内側及び外側絶縁筒と巻
線及び2分割した巻線間に垂直細道を設け、各巻線相互
間に水平細道を設けて、水平細道本数を5〜8本単位と
して水平油道内を流れる冷媒の流れを交互に方向変換す
るような細枠配置とすること区二より水平油道内の流速
分布は比較的均一な分布が得られるために巻線の冷却効
果を向上させるため安全且つ大容量で信頼性の高い静止
誘導電器巻線を提供することができる。
As described above, according to the present invention (2), vertical narrow paths are provided between the inner and outer insulating cylinders, the windings, and the two divided windings, and horizontal narrow paths are provided between each winding, so that the number of horizontal narrow paths is 5 to 8. As a unit, the narrow frame arrangement is used to alternately change the direction of the flow of refrigerant flowing in the horizontal oil pipe.Secondly, the flow velocity distribution in the horizontal oil pipe is relatively uniform, so the cooling effect of the windings is improved. Therefore, it is possible to provide a safe, large-capacity, and highly reliable stationary induction electric winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明二よる変圧器巻線の細道構造の
要部断面図、第3図は従来の変圧器巻線の細道構造の要
部断面図である。 1・・・鉄心      2・・・内側絶縁筒3・・・
外側絶縁筒   4・−・巻線5.6.7・・・垂直細
道  8・・・水平細道9・・・水平細道の流速分布 
10,11,12・・・油絵13・・・垂直細道の入口
部 14・・・垂直細道の出口部H・・・水平細道の高
さ W・・・巻線の幅代理人 弁理士 則 近 憲 右
 (ほか1名)第1図 第2図 第3
1 and 2 are sectional views of main parts of a narrow passage structure of a transformer winding according to the second invention, and FIG. 3 is a sectional view of main parts of a narrow passage structure of a conventional transformer winding. 1... Iron core 2... Inner insulation cylinder 3...
Outer insulating cylinder 4... Winding 5.6.7... Vertical narrow path 8... Horizontal narrow path 9... Flow velocity distribution of horizontal narrow path
10, 11, 12... Oil painting 13... Entrance of vertical narrow path 14... Exit of vertical narrow path H... Height of horizontal narrow path W... Winding width Agent Patent attorney Nori Chika Ken, right (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)内側絶縁筒と外側絶縁筒との間に素線導体を巻回
して形成した円板伏の巻線を2組並列配置し、さらに巻
線を軸方向に順次並列に配置し、前記巻線と内側及び外
側絶縁筒との間、及び巻線と巻線との間に垂直油道を形
成するとともに、垂直方向は前記巻線と巻線との間に水
平油道を形成し、前記各油道内に冷却媒体を導く油栓を
設置し、前記冷却媒体が自然対流で流動する静止誘導電
器巻線において、前記水平油道の本数n本を単位として
、前記巻線と内側もしくは外側絶縁筒との間の垂直油道
を前記冷却媒体を交互に通過させるように前記油栓を配
置し、この本数nは5〜8本としたことを特徴とする静
止誘導電器巻線。
(1) Two sets of disc-shaped windings formed by winding a wire conductor between an inner insulating cylinder and an outer insulating cylinder are arranged in parallel, and further the windings are arranged in parallel in the axial direction, and the above-mentioned A vertical oil path is formed between the winding and the inner and outer insulating cylinders and between the windings, and a horizontal oil path is formed between the windings in the vertical direction, An oil plug for guiding a cooling medium is installed in each of the oil pipes, and in a stationary induction electric winding in which the cooling medium flows by natural convection, the number of horizontal oil pipes, n, is installed inside or outside the winding. A stationary induction electric appliance winding, characterized in that the oil plugs are arranged so that the cooling medium alternately passes through the vertical oil path between the insulating cylinder, and the number n is 5 to 8.
(2)巻線の水平方向の幅をWとし、水平油道の高さを
HとするとW/Hが5〜40となることを特徴とする特
許請求の範囲第1項記載の静止誘導電器巻線。
(2) The stationary induction electric appliance according to claim 1, wherein W/H is 5 to 40, where W is the width of the winding in the horizontal direction and H is the height of the horizontal oil pipe. winding.
(3)巻線構成上で油栓配置による水平油道数n本の分
割が5〜8本のいずれかの均一本数分割の整数倍となら
ないで端数が生じる場合は、(1/2×n)本を基準と
して端数≧(1/2×n)本の時は巻線構成の最上部に
配置し、端数<(1/2×n)本の時は最下部の巻線構
成を(n+1/2n)本とすることを特徴とする特許請
求の範囲第1項記載の静止誘導電器巻線。
(3) If the number of horizontal oil passages (n) divided by the arrangement of oil plugs in the winding configuration is not an integral multiple of the uniform number of oil passages (5 to 8), and a fraction occurs, (1/2 x n ) When the number of fractions is ≥ (1/2 x n), the winding configuration is placed at the top of the winding configuration, and when the number of fractions is < (1/2 x n), the winding configuration at the bottom is placed at the top of the winding configuration (n+1). /2n) stationary induction electric appliance winding according to claim 1.
JP5953285A 1985-03-26 1985-03-26 Winding for stationary induction electric apparatus Pending JPS61219119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5953285A JPS61219119A (en) 1985-03-26 1985-03-26 Winding for stationary induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5953285A JPS61219119A (en) 1985-03-26 1985-03-26 Winding for stationary induction electric apparatus

Publications (1)

Publication Number Publication Date
JPS61219119A true JPS61219119A (en) 1986-09-29

Family

ID=13115969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5953285A Pending JPS61219119A (en) 1985-03-26 1985-03-26 Winding for stationary induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS61219119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296829A (en) * 1992-11-24 1994-03-22 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296829A (en) * 1992-11-24 1994-03-22 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands
WO1994012993A1 (en) * 1992-11-24 1994-06-09 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands

Similar Documents

Publication Publication Date Title
JPH0329289A (en) Equipment for electric induction heating fluid in pipeline
JPS61219119A (en) Winding for stationary induction electric apparatus
US4695675A (en) Electric lead device for superconducting electric apparatus
JPH02299108A (en) Superconducting cable
US2113421A (en) Cascade transformer
JPH06119827A (en) Litz wire
US3984756A (en) Power source for supplying stabilized current to electrical installations
JPS61219120A (en) Winding for stationary induction electric apparatus
US4052685A (en) Current transformer
JPH0669048A (en) Transformer connecting-lead-wire device
US5744784A (en) Low-loss induction coil for heating and/or melting metallic materials
JPS59103317A (en) Large current 3-phase electric circuit
CN214476877U (en) Water-cooling reactor
JPS62104010A (en) Power supplying method and power supply apparatus
CN210640097U (en) Center oil inlet and outlet type forced circulation oil immersed transformer
JPH02109211A (en) Superconductive cable
SU961049A1 (en) Electric machine stator winding rod
JPS5651813A (en) Transformer winding
KR102145840B1 (en) Transformer
GB286427A (en) Improvements connected with the windings of electric machines and apparatus
JPS6353909A (en) Duct spacer for foil winding transformer
JP2005129549A (en) Superconducting device and manufacturing method the same
Samorodov et al. Optimization of a independently cooled cryogenic current lead
JPS5875816A (en) Leaf winding transformer
JPS596108Y2 (en) Terminal equipment for cooling channels in water-cooled cable lines