JPS61218959A - Measuring instrument for semiconductor laser - Google Patents

Measuring instrument for semiconductor laser

Info

Publication number
JPS61218959A
JPS61218959A JP6130585A JP6130585A JPS61218959A JP S61218959 A JPS61218959 A JP S61218959A JP 6130585 A JP6130585 A JP 6130585A JP 6130585 A JP6130585 A JP 6130585A JP S61218959 A JPS61218959 A JP S61218959A
Authority
JP
Japan
Prior art keywords
signal
semiconductor laser
sine wave
current
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6130585A
Other languages
Japanese (ja)
Inventor
Toshiaki Sekino
関野 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6130585A priority Critical patent/JPS61218959A/en
Publication of JPS61218959A publication Critical patent/JPS61218959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To attain observation with a current-differential quantum efficiency curve showing a mode change by constituting the bias power source of a semiconductor laser to be measured with an iteration sweep signal generator and a fine amplitude sine wave generator. CONSTITUTION:When a bias current available from superimposing the saw-tooth signal of the generator 2 upon the sine wave signal of the generator 5 is applied to the semiconductor laser to be measured 1, the optical signal turns out to be a signal obtained by superimposing the sine wave signal upon the saw-tooth signal. Here, when the output voltage of a resistance 8 and that of a resistance 11 are applied to the horizontal axis and vertical one of a cathode ray oscilloscope 15, a current-output characteristic as shown by the solid line in figure can be obtained. On the other hand, the sine wave signal being the output voltage of a resistance 13 is inputted through an amplifier 14, thereby obtaining the current-differential quantum efficiency as shown by the broken line in the figure. It emphasizes an inflection point, and accordingly a mode changing point can be easily observed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの特性のうち、特に発振モードの
安定性測定の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring device for measuring the stability of oscillation mode among characteristics of a semiconductor laser.

〔従来の技術〕[Conventional technology]

半導体レーザの発振モードの変化は波長の変動、スペク
トルの拡がり、光出力の変化をもたらし、モードの安定
性は重要な特性項目の一つである。
Changes in the oscillation mode of a semiconductor laser cause wavelength fluctuations, spectrum broadening, and optical output changes, and mode stability is one of the important characteristic items.

従来この種の測定は、モード変化がおこると第2図のよ
うにその動作電流点で、半導体レーザの電流−晃出力特
性上変曲点人が見られることから次のような測定方法が
用いられている。
Conventionally, in this type of measurement, when a mode change occurs, an inflection point can be seen in the current-light output characteristic of the semiconductor laser at the operating current point as shown in Figure 2, so the following measurement method has been used. It is being

1)電流−光出力特性の形状よ〕判断する。1) Determine the shape of the current-light output characteristics.

2)半導体レーザの直流動作電流に微小振幅の正弦波を
重畳させることによシ、外部微分量子効率に相等する特
性値が得られるため、この電流−外部微分量子効率特性
よ請求める。
2) By superimposing a sine wave of minute amplitude on the DC operating current of a semiconductor laser, a characteristic value equivalent to the external differential quantum efficiency can be obtained, so this current-external differential quantum efficiency characteristic can be claimed.

3)モード変化点でスペクトルが拡がることからスペク
トルを観測する。
3) Observe the spectrum as it expands at the point of mode change.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の測定装置では、1)の方法では判定があいまいで
ある。2)の方法では手動で電流掃引するため測定に時
間を要する。3)の方法ではスペクトルの観測に時間が
かかる。という欠点がある。
With conventional measuring devices, the determination in method 1) is ambiguous. Method 2) requires time to measure because the current is swept manually. In method 3), it takes time to observe the spectrum. There is a drawback.

本発明は以上の欠点を鑑みて、測定操作が容易な半導体
レーザの測定装置を提供することである。
SUMMARY OF THE INVENTION In view of the above drawbacks, the present invention provides a semiconductor laser measuring device that is easy to operate.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために1本発明の測定装置は、被測
定用半導体レーザのバイアス電源として繰返し掃引信号
発生器と微小振幅正弦波発生器よシ構成している。
In order to achieve this object, the measuring apparatus of the present invention includes a repetitive sweep signal generator and a minute amplitude sine wave generator as a bias power source for the semiconductor laser to be measured.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す、lは被測定用半導体
レーザ、2は鋸歯状信号発生器で半導体レーザlへのバ
イアス電流を与える。3は過電流防止用抵抗、4は交流
阻止用インダクタである。
FIG. 1 shows an embodiment of the present invention, where l is a semiconductor laser to be measured, and 2 is a sawtooth signal generator that provides a bias current to the semiconductor laser l. 3 is a resistor for overcurrent prevention, and 4 is an AC blocking inductor.

5は正弦波発生器でその信号は鋸歯状信号発生器2から
の鋸歯状信号と重畳し、半導体レーザ1に印加される。
Reference numeral 5 denotes a sine wave generator whose signal is superimposed on the sawtooth signal from the sawtooth signal generator 2 and applied to the semiconductor laser 1.

ここで正弦波信号の振幅は鋸歯状信号に比べ充分小さい
ものとする。6は鋸歯状信号阻止コンデンサ、7は正弦
波信号の電流値を調整するための抵抗である。8は電流
検出用抵抗、9は光出力検出用受光器、10は受光器の
バイアス電源、11は光出力信号検出抵抗である。コン
テ、/す12と抵抗13は高域通過フィルタを形成して
、正弦波信号成分を検出する。14はその正弦波信号の
増幅器である。15はオシロスコープで16は過電流防
止用抵抗である。
Here, it is assumed that the amplitude of the sine wave signal is sufficiently smaller than that of the sawtooth signal. 6 is a sawtooth signal blocking capacitor, and 7 is a resistor for adjusting the current value of the sine wave signal. Reference numeral 8 designates a current detection resistor, 9 a light receiver for optical output detection, 10 a bias power supply for the light receiver, and 11 a light output signal detection resistor. The conte 12 and the resistor 13 form a high-pass filter to detect the sinusoidal signal component. 14 is an amplifier for the sine wave signal. 15 is an oscilloscope, and 16 is an overcurrent prevention resistor.

今、被測定用半導体レーザIK鋸歯状信号と正弦波信号
を重畳したバイアス電流を加えると、その光信号は鋸歯
状信号に正弦波信号が重畳した信号となる。ここでオシ
ロスコープ15の横軸に抵抗8の出力電圧を縦軸に抵抗
11の出力電圧を入れると、第2図の実線で示す電流−
出力特性が得られる。一方縦軸に抵抗13の出力電圧す
なわち正弦波信号を増幅器14を通して入れるとこれは
微分量子効率を示すから第2図の破線で示す直流−微分
量子効率が得られる。すなわちこの微分量子効率曲線は
直流−光出力特性の微分特性であるため変曲点が強調さ
れて見え、モード変化点を見やすくしている。
Now, when a bias current is applied which is a superposition of the sawtooth signal and the sine wave signal of the semiconductor laser to be measured, the optical signal becomes a signal in which the sawtooth signal and the sine wave signal are superimposed. Now, if we put the output voltage of the resistor 8 on the horizontal axis of the oscilloscope 15 and the output voltage of the resistor 11 on the vertical axis, the current -
Output characteristics can be obtained. On the other hand, when the output voltage of the resistor 13, ie, a sine wave signal, is inputted through the amplifier 14 on the vertical axis, it shows the differential quantum efficiency, so that the DC-differential quantum efficiency shown by the broken line in FIG. 2 is obtained. That is, since this differential quantum efficiency curve is a differential characteristic of DC-optical output characteristics, the inflection point appears emphasized, making it easier to see the mode change point.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明はそ−ド変化を電流−微
分量子効率曲線で観測でき、しかもオシロスコープにて
簡単に見えることができる。
As described above, according to the present invention, the current change can be observed using a current-differential quantum efficiency curve, and moreover, it can be easily viewed using an oscilloscope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるブロック図、第2図は
半導体レーザの特性を示し、実線は電流対光出力特性、
破線は電流対外部微分量子効率を示すグラフである。 1・・・・・・被測定用半導体レーザ、2・・・・・・
鋸歯状信号発生器、3.7.8.11.13.16・・
・・・・抵抗、4・・・・・・インダクタ、5・・・・
・・正弦波信号発生器、6.12・・・・・・コンデン
サ、9・・・・・・受光器、10・・・・・・直流電源
、14・・・・・・増幅器、15・・・・・・オシロス
コープ。
Fig. 1 is a block diagram according to an embodiment of the present invention, Fig. 2 shows the characteristics of a semiconductor laser, and the solid line shows the current vs. optical output characteristics;
The dashed line is a graph showing current versus external differential quantum efficiency. 1... Semiconductor laser to be measured, 2...
Sawtooth signal generator, 3.7.8.11.13.16...
...Resistance, 4...Inductor, 5...
... Sine wave signal generator, 6.12 ... Capacitor, 9 ... Photo receiver, 10 ... DC power supply, 14 ... Amplifier, 15. ·····oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] 繰返し掃引信号発生器と微小振幅正弦波発生器と、両信
号を重畳した信号を被測定用半導体レーザに加え、その
光出力信号を検出する装置とを有し、前記半導体レーザ
の発振モード安定性の判定を可能とすることを特徴とす
る半導体レーザの測定装置。
The device includes a repetitive sweep signal generator, a small amplitude sine wave generator, and a device that applies a signal obtained by superimposing both signals to a semiconductor laser under test and detects the optical output signal, and detects the oscillation mode stability of the semiconductor laser. A semiconductor laser measuring device characterized by being capable of determining.
JP6130585A 1985-03-26 1985-03-26 Measuring instrument for semiconductor laser Pending JPS61218959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6130585A JPS61218959A (en) 1985-03-26 1985-03-26 Measuring instrument for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6130585A JPS61218959A (en) 1985-03-26 1985-03-26 Measuring instrument for semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61218959A true JPS61218959A (en) 1986-09-29

Family

ID=13167329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6130585A Pending JPS61218959A (en) 1985-03-26 1985-03-26 Measuring instrument for semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61218959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236373A (en) * 1988-07-27 1990-02-06 Sony Tektronix Corp Light emitting element measuring instrument
CN104880298A (en) * 2015-05-15 2015-09-02 北京光电技术研究所 Semiconductor laser testing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236373A (en) * 1988-07-27 1990-02-06 Sony Tektronix Corp Light emitting element measuring instrument
CN104880298A (en) * 2015-05-15 2015-09-02 北京光电技术研究所 Semiconductor laser testing system

Similar Documents

Publication Publication Date Title
JP3364333B2 (en) Attenuation characteristic measuring device
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
Goldstein et al. Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
US4982151A (en) Voltage measuring apparatus
JPS6126240B2 (en)
Chitnis et al. Optical fiber sensor for vibration amplitude measurement
JPS61218959A (en) Measuring instrument for semiconductor laser
JP3352543B2 (en) Voltage measuring device
JPS60202329A (en) Light-path-noise suppressing modulation system in spectrochemical analysis device using variable wavelength laser
JPS6156979A (en) Insulation measurement of power cable
CN110186551A (en) Square wave transforming amplitudes measuring device and method based on self-mixed interference
JPS60253953A (en) Measurement system for gas concentration
JP3151752B2 (en) Partial discharge measurement method
JPS61139766A (en) Apparatus for measuring multiplication dark current of avalanche photodiode
JPH02285203A (en) Tunnel microscope
US3397607A (en) Single faraday cell polarimeter
JP2796649B2 (en) Gas detector
JP2001274482A (en) Apparatus for measurement and calibration of frequency of laser beam and method for measurement and calibration of frequency of laser beam
JPH036465A (en) Non-contact type voltage measuring apparatus using laser beam
Chitnis et al. An optoelectronic transducer for vibration amplitude measurement
JPH03137526A (en) Measuring apparatus of spectral width of laser
SU1467394A1 (en) Device for measuring displacements
RU1827551C (en) Coordinate-sensitive radiation converter
JPH0536727B2 (en)