JPH03137526A - Measuring apparatus of spectral width of laser - Google Patents

Measuring apparatus of spectral width of laser

Info

Publication number
JPH03137526A
JPH03137526A JP27550889A JP27550889A JPH03137526A JP H03137526 A JPH03137526 A JP H03137526A JP 27550889 A JP27550889 A JP 27550889A JP 27550889 A JP27550889 A JP 27550889A JP H03137526 A JPH03137526 A JP H03137526A
Authority
JP
Japan
Prior art keywords
light
laser
spectral width
etalon
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27550889A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP27550889A priority Critical patent/JPH03137526A/en
Publication of JPH03137526A publication Critical patent/JPH03137526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure a spectral width of a laser light by converting a frequency variation of the laser light into a variation of the intensity of light by the frequency discrimination characteristic of a Fabry-Perot etalon and by catching this variation as a variation of an electric output by a detector. CONSTITUTION:An output light of a laser 1 is passed through a collimator lens 2 and an isolator 3 and made to branch by a splitter 4. A light transmitted through a sweeping-type Fabry-Perot etalon 5 is detected by a detector 6, while a reflected light is detected by a detector 7. When the etalon 5 is controlled so that an output ratio between the two detectors be fixed, a slanting part of the resonance characteristic of the etalon 5 is always is accord with the frequency of a laser light to be measured. Accordingly, a spectral width of the laser light to be measured, i.e. a phase fluctuation thereof, is converted into an amplitude fluctuation by the etalon 5 and outputted from the detector 6. A DC part of a fluctuation signal being cut, the signal is inputted to a voltage value histogram display unit 10 and the spectral width is displayed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザのスペクトル幅を測定する装置の特性
の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improving the characteristics of a device for measuring the spectral width of a laser.

〈従来の技術〉 レーザのスペクトル幅を測定するために、従来から次の
ような各種の手法が用いられている。
<Prior Art> In order to measure the spectral width of a laser, the following various methods have been used in the past.

a、遅延自己ヘテロダイン法(ホモダイン法)被測定レ
ーザ光を分岐して遅延用光ファイバおよび音皆光学素子
を通過させた後、合波した光を検出してスペクトルアナ
ライザで測定する。
a. Delayed self-heterodyne method (homodyne method) After the laser beam to be measured is branched and passed through a delay optical fiber and a tone optical element, the combined light is detected and measured with a spectrum analyzer.

b、スキャニングファプリペロー形 被測定レーザ光を掃引型ファブリペローエタロンに入射
して透過する光を検出し、掃引信号を用いてCRT”表
示する。
b. Scanning Fabry-Perot type laser beam to be measured is incident on a sweep type Fabry-Perot etalon, the transmitted light is detected and displayed on a CRT using a sweep signal.

C,ビート法 基準周波数レーザ光と被測定レーザ光を合波してそのビ
ート信号を検出しスペクトルアナライザで測定する。
C. Beat method The reference frequency laser beam and the laser beam to be measured are combined, the beat signal is detected, and it is measured with a spectrum analyzer.

〈発明が解決しようとする課題〉 しかしながら、上記の各手法には次のような問題がある
。すなわちaの遅延自己ヘテロダイン法は分解能を上げ
るなめに高価な光ファイバが相当長さ必要である。また
bのスキャニングファブリベロー形は分解能を上げるた
めに高いQのファブリペローエタロンが必要である。C
のと−1〜法は基準周波数レーザ光として同一周波数で
狭スペクトルのレーザが必要である。
<Problems to be Solved by the Invention> However, each of the above methods has the following problems. That is, the delayed self-heterodyne method of a requires a considerable length of expensive optical fiber in order to improve the resolution. Furthermore, the scanning Fabry-Perot type shown in b requires a Fabry-Perot etalon with a high Q to improve resolution. C
The Noto-1~ method requires a laser with the same frequency and narrow spectrum as the reference frequency laser beam.

本発明はこのような課題を解決するなめになされたもの
で、簡単な構成、安価な部品で高分解能のレーザスペク
トル幅測定装置を実現することを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to realize a high-resolution laser spectral width measuring device with a simple configuration and inexpensive parts.

く課題を解決するための手段〉 本発明に係るレーザスペクトル幅測定装置は被測定レー
ザ光を2つに分岐する光分岐手段と、この光分岐手段の
一方の出力光を入射する掃引形のファブリペローエタロ
ンと、このファブリペローエタロンの透過光を検出する
第1の光検出器と、前記光分岐手段の他方の出力光を入
射する第2の光検出器と、前記第1.第2の光検出器の
出力の比が所定の設定値と等しくなるように制御する制
御手段とを備え、被測定レーザ光の周波数変動に対応し
て変化するファブリペローエタロンの出力光強度を第1
の光検出器で検出し、第1の光検出器の振幅変動から被
測定レーザ光のスペクトル幅を測定するように構成した
ことを特徴とする。
Means for Solving the Problems> The laser spectral width measuring device according to the present invention includes a light branching means for branching a laser beam to be measured into two, and a sweep type fabricator into which the output light of one of the light branching means is incident. a Perot etalon, a first photodetector that detects the transmitted light of the Fabry-Perot etalon, a second photodetector that receives the other output light of the optical branching means; a control means for controlling the ratio of the output of the second photodetector to be equal to a predetermined set value; 1
The first photodetector detects the laser beam, and the spectral width of the laser beam to be measured is measured from the amplitude fluctuation of the first photodetector.

〈作用〉 被測定レーザ光の周波数変動はファブリペローエタロン
の周波数弁別特性により出力光強度の変動に変換され、
第1の光検出器により電気出力の変動に変換される。こ
の電気出力の変動から被測定レーザ光のスペクトル幅を
測定することができる。
<Operation> Frequency fluctuations of the laser beam to be measured are converted into fluctuations in the output light intensity by the frequency discrimination characteristics of the Fabry-Perot etalon.
A first photodetector converts it into a variation in electrical output. The spectral width of the laser beam to be measured can be measured from this variation in electrical output.

〈実施例〉 以下本発明を図面を用いて詳しく説明する。<Example> The present invention will be explained in detail below using the drawings.

第1図は本発明に係るレーザスペクトル幅測定装置の一
実施例を示す構成ブロック図である。1は被測定レーザ
、2はこの被測定レーザ1の出力光を平行光にするコリ
メートレンズ、3はコリメートレンズ2の出射光が通過
する戻り光防止用の光アイソレータ、4は光アイソレー
タ3の出射光を2方向に分岐するビームスプリッタ、5
はビームスプリッタを透過した光を入射する挿引型ファ
ブリペローエタロン、51は掃引型ファブリペローエタ
ロン5のミラーの間隔を変えるPZT、6は掃引型ファ
ブリペローエタロン5の透過光を入射する第1の光検出
器、7はビームスグリツタ4の反射光を入射する第2の
光検出器、制御部8は第1.第2の光検出器6.7の出
力の比が設定入力と等しくなるようにPZT51を駆動
する制御部、9は光検出器6の出力の直流分をカットす
るキャパシタ、10はキャパシタ9の交流出力をヒスト
グラム表示する電圧値ヒストグラム表示器である。
FIG. 1 is a block diagram showing an embodiment of a laser spectral width measuring device according to the present invention. 1 is a laser to be measured, 2 is a collimating lens that converts the output light of the laser to be measured 1 into parallel light, 3 is an optical isolator for preventing return light through which the emitted light from the collimating lens 2 passes, and 4 is an output of the optical isolator 3. Beam splitter that splits the emitted light into two directions, 5
51 is a PZT that changes the interval between the mirrors of the swept Fabry-Perot etalon 5; and 6 is a first type Fabry-Perot etalon that receives the light transmitted through the swept Fabry-Perot etalon 5. A photodetector 7 is a second photodetector into which the reflected light from the beam sinter 4 is incident, and a control unit 8 is a first photodetector. A control unit that drives the PZT 51 so that the ratio of the output of the second photodetector 6.7 becomes equal to the set input, 9 is a capacitor that cuts the DC component of the output of the photodetector 6, and 10 is the AC of the capacitor 9. This is a voltage value histogram display that displays the output as a histogram.

上記のような構成のレーザスペクトル幅測定装置の動作
を第1図および第2図を用いて次に説明する。被測定レ
ーザ1の出力光はコリメートレンズ2および光アイソレ
ータ3を介してビームスプリッタ4に入射して2つに分
岐され、掃引型ファブリペローエタロン5の透過光が光
検出器6で検出され、反射光が光検出器7で検出される
。制御部8は光検出器6と光検出器7の出力比が一定と
なるようにエタロン5を制御しているので、第2図に示
すように、常にエタロン5の共振特性の傾斜部分が被測
定レーザ光の周波数と一致するようになる。したがって
被測定レーザ光のスペクトル幅すなわち位相ゆらぎはエ
タロン5で振幅ゆらぎに変換され、光検出器6から出力
される。この振幅ゆらぎの信号は直流部分がカットされ
た後、電圧値ヒストグラム表示器10に入力されそのヒ
ストグラムがとられた後、被測定レーザ光のスベクラム
幅が表示される。なおヒストグラム表示器としてはデジ
タルオシロスコープを使用することができるが、第3図
のように高速AD変換器11とコンピュータ12とで構
成することもできる。コンピュータ12ではエタロン5
の共振特性における斜線部の非線形性のリニアライズも
行っている。
The operation of the laser spectral width measuring device having the above configuration will be explained below with reference to FIGS. 1 and 2. The output light of the laser to be measured 1 enters the beam splitter 4 via the collimating lens 2 and the optical isolator 3 and is split into two.The transmitted light of the swept Fabry-Perot etalon 5 is detected by the photodetector 6 and reflected. Light is detected by a photodetector 7. Since the control unit 8 controls the etalon 5 so that the output ratio of the photodetector 6 and the photodetector 7 is constant, the slope portion of the resonance characteristic of the etalon 5 is always exposed, as shown in FIG. The frequency will match the measurement laser beam frequency. Therefore, the spectral width or phase fluctuation of the laser beam to be measured is converted into amplitude fluctuation by the etalon 5 and output from the photodetector 6. After the DC portion of this amplitude fluctuation signal is cut, it is input to the voltage value histogram display 10, a histogram of which is taken, and then the subelum width of the laser beam to be measured is displayed. Note that a digital oscilloscope can be used as the histogram display, but it can also be configured with a high-speed AD converter 11 and a computer 12 as shown in FIG. Etalon 5 on computer 12
We also linearize the nonlinearity in the shaded area in the resonance characteristics.

エタロン5として例えばFSR2GHz (間隔25m
m)、フィネス20とすると、共振特性のピーク幅10
0MHzとなり、通常の半導体レーザのスペクトル幅約
20MHzはエタロン特性のリニアな部分で十分に1定
することできる。また第3図の11として8ビツトのA
D変換器を使用したとすると、100MHz/256中
400kHzの分解能があることになる。
For example, as etalon 5, FSR2GHz (interval 25m
m), finesse is 20, the peak width of the resonance characteristic is 10
0 MHz, and the spectral width of a normal semiconductor laser, about 20 MHz, can be sufficiently constant in the linear portion of the etalon characteristics. Also, as 11 in Figure 3, the 8-bit A
If a D converter is used, there will be a resolution of 400 kHz out of 100 MHz/256.

このような構成のレーザスペクトル幅測定装置によれば
、遅延用光ファイバも、高フィネスのエタロンも不要な
ので低コストとなる。
According to the laser spectral width measurement device having such a configuration, neither a delay optical fiber nor a high finesse etalon is required, resulting in low cost.

また安価なエタロンを用いて非常に高分解能の測定が可
能となる。
Furthermore, very high resolution measurements can be made using inexpensive etalons.

なお上記の実施例において、掃引型ファブリペローエタ
ロンの代りにリング共振器やマイゲルソン干渉計等、共
振特性(すなわち共振周波数)が制御可能な任意の共振
器を用いることができる。
Note that in the above embodiments, any resonator whose resonant characteristics (ie, resonant frequency) can be controlled can be used instead of the swept Fabry-Perot etalon, such as a ring resonator or a Meigelson interferometer.

また被測定光の入力に光ファイバを用いることもできる
。この場合にビームスプリッタの代りにファイバカプラ
を用いることもできる。
Moreover, an optical fiber can also be used for inputting the light to be measured. In this case, a fiber coupler can also be used instead of a beam splitter.

また被測定レーザのスペクトル幅に応じ、FSRやフィ
ネスを切換えるようにしてもよい。
Further, the FSR and finesse may be changed according to the spectral width of the laser to be measured.

また被測定レーザ光の周波数ゆらぎの半値幅を光検出器
6の出力から直接求めることもできる。
Further, the half width of the frequency fluctuation of the laser beam to be measured can also be directly determined from the output of the photodetector 6.

〈発明の効果〉 以上述べたように本発明によれば、簡単な構成、安価な
部品で高分解能のレーザスペクトル幅測定装置を実現す
ることができる。
<Effects of the Invention> As described above, according to the present invention, a high-resolution laser spectral width measuring device can be realized with a simple configuration and inexpensive parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーザスペクトル幅測定装置の一
実施例を示す構成ブロック図、第2図は第1図装置の動
作説明図、第3図は第1図の電圧値ヒストダラム表示器
10の具体例を示す部分構成ブロック図である。 1・・・被測定レーザ、4・・・光分岐手段、5・・・
掃引形のファブリペローエタロン、6・・・第1の光検
出器、7・・・第2の光検出器、8・・・制御手段。
FIG. 1 is a block diagram showing an embodiment of the laser spectral width measuring device according to the present invention, FIG. 2 is an explanatory diagram of the operation of the device shown in FIG. 1, and FIG. 3 is the voltage value histogram display 10 of FIG. FIG. 2 is a partial configuration block diagram showing a specific example. 1... Laser to be measured, 4... Optical branching means, 5...
Sweep type Fabry-Perot etalon, 6... first photodetector, 7... second photodetector, 8... control means.

Claims (1)

【特許請求の範囲】[Claims] 被測定レーザ光を2つに分岐する光分岐手段と、この光
分岐手段の一方の出力光を入射する掃引形のフアブリペ
ローエタロンと、このフアブリペローエタロンの透過光
を検出する第1の光検出器と、前記光分岐手段の他方の
出力光を入射する第2の光検出器と、前記第1、第2の
光検出器の出力の比が所定の設定値と等しくなるように
制御する制御手段とを備え、被測定レーザ光の周波数変
動に対応して変化するフアブリペローエタロンの出力光
強度を第1の光検出器で検出し、第1の光検出器の振幅
変動から被測定レーザ光のスペクトル幅を測定するよう
に構成したことを特徴とするレーザスペクトル幅測定装
置。
A light branching means for branching the laser beam to be measured into two, a swept Fabry-Perot etalon into which the output light of one of the light branching means is incident, and a first one for detecting the transmitted light of the Fabry-Perot etalon. control so that the ratio of the outputs of the photodetector, the second photodetector into which the other output light of the light branching means is incident, and the first and second photodetectors is equal to a predetermined set value; A first photodetector detects the output light intensity of the Fabry-Perot etalon, which changes in response to frequency fluctuations of the laser beam to be measured, and detects the output light intensity from the amplitude fluctuations of the first photodetector. A laser spectral width measurement device characterized in that it is configured to measure the spectral width of a measurement laser beam.
JP27550889A 1989-10-23 1989-10-23 Measuring apparatus of spectral width of laser Pending JPH03137526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27550889A JPH03137526A (en) 1989-10-23 1989-10-23 Measuring apparatus of spectral width of laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27550889A JPH03137526A (en) 1989-10-23 1989-10-23 Measuring apparatus of spectral width of laser

Publications (1)

Publication Number Publication Date
JPH03137526A true JPH03137526A (en) 1991-06-12

Family

ID=17556459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27550889A Pending JPH03137526A (en) 1989-10-23 1989-10-23 Measuring apparatus of spectral width of laser

Country Status (1)

Country Link
JP (1) JPH03137526A (en)

Similar Documents

Publication Publication Date Title
US6057919A (en) Apparatus and method for measuring characteristics of optical pulses
US5751747A (en) Linear swept frequency generator
US4005936A (en) Interferometric methods and apparatus for measuring distance to a surface
US5153667A (en) Apparatus for detecting the change of light intensity
Ishii Recent developments in laser-diode interferometry
JP3500216B2 (en) Voltage measuring device
US4982151A (en) Voltage measuring apparatus
JP2744728B2 (en) Gas concentration measuring method and its measuring device
US5666062A (en) Voltage measuring using electro-optic material&#39;s change in refractive index
JPH03137526A (en) Measuring apparatus of spectral width of laser
JP2726881B2 (en) Backscattered light measurement device
JPH05256768A (en) Method and apparatus for measuring gas concentration
JPH08101232A (en) Voltage measuring apparatus
US5184189A (en) Non-intrusive beam power monitor for high power pulsed or continuous wave lasers
JPS60253953A (en) Measurement system for gas concentration
Cruz et al. An all-fiber RF modulation technique: frequency response calibration of optical detectors
JP2000039360A (en) Light spectrum-measuring apparatus
JPH07103828A (en) Estimation unit for variable frequency characteristics
JPH067099B2 (en) Gas sensor using tunable etalon
JP3235446B2 (en) Frequency variable light source and optical fiber inspection device
JPH0716982Y2 (en) Optical frequency change measuring device
Podoleanu et al. Three electrode laser as a source and detection unit for low coherence interferometry
JPS61218959A (en) Measuring instrument for semiconductor laser
JPH02307027A (en) Light frequency measuring instrument
Won et al. FMCW reflectometric optical fiber strain sensor