JPS61218911A - Signal processing circuit for oscillation driving type rate gyro - Google Patents

Signal processing circuit for oscillation driving type rate gyro

Info

Publication number
JPS61218911A
JPS61218911A JP60059395A JP5939585A JPS61218911A JP S61218911 A JPS61218911 A JP S61218911A JP 60059395 A JP60059395 A JP 60059395A JP 5939585 A JP5939585 A JP 5939585A JP S61218911 A JPS61218911 A JP S61218911A
Authority
JP
Japan
Prior art keywords
signal
driving
detection signal
drive
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059395A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博史 山口
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60059395A priority Critical patent/JPS61218911A/en
Publication of JPS61218911A publication Critical patent/JPS61218911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To detect an attitude accurately by detecting inertial angular velocity by adding/subtracting a signal proportionate to driving acceleration of simple harmonic oscillation driving to/from a deviation detection signal. CONSTITUTION:A differentiator 6 generates a driving acceleration signal 6' from output 4' of a driving speed signal source 4, and a variable gain amplifier 7 generates a cancellation signal of amplitude corresponding to driving inertial force component included in a deviation detection signal 1' from a driving acceleration signal 6'. An adder subtracter 9 adds/subtracts a cancellation signal to/from output of band pass filter 2 by polarity of driving inertial force component included in output of the band pass filter 2. In such a constitution, driving inertial force component included in the deviation detection signal 1' is almost removed before phase detection processing by a phase detector 3. For a low band filter 9 inserted after phase detection, necessary minimum one that can remove ripple caused by true signal component is enough for the purpose, and frequency characteristic as a device is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、物体の慣性角速度を検出するレートジャイロ
に係り、特に単振動駆動の振動型レートジャイロの信号
処理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rate gyro that detects the inertial angular velocity of an object, and more particularly to a signal processing circuit for a vibration type rate gyro driven by simple harmonic motion.

(従来の技術) 一般に慣性角速度といわれる慣性系に対する回転率を測
定する装置は種々であって、角速度センサ(Angul
ar rate 5ensorまたはAngular 
velocitysensor)、レートジャイロ、角
速度検出器(Angu−1ar rate sansi
ng device)など、いろいろな名称で呼ばれて
いる。以下、本発明ではレートジャイロという呼称を用
いる。
(Prior Art) There are various devices that measure the rotation rate with respect to an inertial system, which is generally referred to as inertial angular velocity.
ar rate 5 sensor or Angular
velocity sensor), rate gyro, angular velocity detector (Angu-1ar rate sensor)
It is called by various names such as ng device). Hereinafter, the term "rate gyro" will be used in the present invention.

従来、レートジャイロには様々なものが提案されている
が、それらに共通する動作原理は、l)質量要素を、被
測定座標系内で強制駆動する、 2) その駆動により、被測定座標系が慣性座標系に対
し回転運動したときに、前記質量要素にコリオリの力を
作用させる、 3)前記質量要素に作用する力を検知して、その偏移検
知信号から、コリオリの力に応じた成分を抽出し、コリ
オリの力の発生メカニズムに応じた信号処理を施して、
慣性角速度に比例した出力を得る、 ということができる。
Conventionally, various rate gyros have been proposed, but the operating principles common to all of them are: 1) The mass element is forcibly driven within the measured coordinate system. 2) The driving causes the measured coordinate system to change. 3) Detecting the force acting on the mass element, and detecting the deviation according to the Coriolis force from the shift detection signal. After extracting the components and applying signal processing according to the generation mechanism of Coriolis force,
It can be said that an output proportional to the inertial angular velocity is obtained.

ところでこれまで提案されている種々のレートジャイロ
を特徴づけるのは、その駆動方式(単振動駆動か、回転
駆動か、直線状放出か)、駆動方法(電磁作用を利用し
たもの、圧電効果を利用したもの等)、及びコリオリの
力を作用させるべき質量要素(たとえば片持ち梁、音叉
、弦の振動部、ロータそのもの、放出ガス等)及び、コ
リオリの力の検出方法(電磁作用を利用したもの、圧電
効果を利用したもの、カンチレバーによるもの、トルク
バネによるもの等)などがあり、着眼点によって、その
分類の仕方も変って来る。
By the way, the various rate gyros that have been proposed so far are characterized by their drive method (simple harmonic drive, rotational drive, linear emission), drive method (those using electromagnetic action, those using piezoelectric effect) mass elements to which the Coriolis force is applied (e.g., cantilevers, tuning forks, vibrating parts of strings, rotor itself, emitted gas, etc.), and methods for detecting the Coriolis force (such as those using electromagnetic action). , those using piezoelectric effects, those using cantilevers, those using torque springs, etc.), and the way they are classified differs depending on the point of view.

本発明で対称とするレートジャイロ装置は、上述の分類
要素のうち駆動方式に着目して、単振動駆動を用いる、
振動駆動型レートジャイロ(Vi−bratory d
rive rate gyro)に属する・この振動駆
動型レートジャイロは、前述の他の要素の違いによって
、例えば片持ち梁を電磁力により振動させ、その先端部
に生ずるコリオリの力による偏移を電磁的に検知するも
の、あるいは励振、検知のいずれか一方、又は両方に圧
電効果を利用するもの(いずれも米国特許第25446
46号)、音叉を電磁力で励振し、その先端部に作用す
るコリオリの力を、音叉支持軸まわりのトルクに変換し
て力”ンチレバーにより検知するもの(米国特許第26
83596号)等がある。
The rate gyro device targeted in the present invention focuses on the drive method among the above-mentioned classification elements, and uses simple harmonic drive.
Vibration driven rate gyro
This vibration-driven rate gyro, which belongs to the ``river rate gyro'' category, differs in the other factors mentioned above.For example, the cantilever beam is vibrated by electromagnetic force, and the deviation caused by the Coriolis force that occurs at the tip of the beam is electromagnetically corrected. those that use piezoelectric effects for sensing, or those that utilize piezoelectric effects for excitation, detection, or both (both are disclosed in U.S. Patent No. 25446).
No. 46), a tuning fork is excited by electromagnetic force, and the Coriolis force acting on its tip is converted into torque around the tuning fork support shaft, which is detected by a torque lever (U.S. Pat. No. 26).
83596) etc.

以上の2例の場合は勿論、他の例の場合も、振動駆動型
レートジャイロであればすべて、得られた偏移検知信号
に含まれる真の信号成分、即ちコリオリの力に応じた成
分(ひいては慣性角速度に比例した成分)は、 (1)振動駆動周波数に等しい周波数をもつ、(2)振
動駆動速度に等しい位相をもつ、という特徴を有してい
る。これは、コリオリの力は振動駆動速度と慣性角速度
のベクトル積に比例するという発生原理によるからであ
る。
In the above two cases as well as in other cases, all vibration-driven rate gyros can detect the true signal component contained in the obtained deviation detection signal, that is, the component corresponding to the Coriolis force ( In turn, the component proportional to the inertial angular velocity) has the following characteristics: (1) It has a frequency equal to the vibration drive frequency, and (2) It has a phase equal to the vibration drive speed. This is because the Coriolis force is proportional to the vector product of the vibration drive speed and the inertial angular velocity.

このような真の信号成分の特徴を利用して、偏移検知信
号から慣性角速度に比例した出力を得る信号処理の方法
としては、従来は適当な周波数弁別の後、振動駆動速度
に同期した基準信号によす位相検波を行なうのが一般的
である(例えば米国特許第3258617号)。
Conventionally, as a signal processing method to obtain an output proportional to the inertial angular velocity from a deviation detection signal by utilizing the characteristics of the true signal component, after appropriate frequency discrimination, a standard synchronized with the vibration driving speed has been used. It is common to perform phase detection on the signal (for example, US Pat. No. 3,258,617).

第2図は上記のような従来の信号処理回路を示すブロッ
ク図である0図において、1は質量要素に作用する力、
又はそれにより生ずるトルクに応じた電気出力を発生す
る偏移検知信号源であり。
FIG. 2 is a block diagram showing the conventional signal processing circuit as described above. In FIG. 0, 1 is the force acting on the mass element;
Or it is a deviation detection signal source that generates an electrical output according to the torque generated thereby.

その出力には真の必要信号成分であるコリオリの力に応
じた信号成分の外に、重力、被測定座標系の慣性座標系
に対する並進加速度に基づく反力としての慣性力、回転
運動に伴なう遠心力、被測定座標系内における単振動運
動に伴なって生ずる慣性力(駆動慣性力)等に応じた信
号成分も混入している。
In addition to the signal component corresponding to the Coriolis force, which is the true necessary signal component, the output includes gravity, an inertial force as a reaction force based on the translational acceleration of the measured coordinate system with respect to the inertial coordinate system, and an inertial force due to rotational motion. Also included are signal components corresponding to centrifugal force, inertial force (driving inertial force) caused by simple harmonic motion within the measured coordinate system, and the like.

2は振動駆動周波数を中心周波数とする帯域通過フィル
タであり、前記偏移検知信号1′に含まれる上記諸成分
のうち、本質的に振動駆動動作と因果関係のない成分、
即ち真の信号成分と振動駆動慣性力に応じた成分以外を
除去する。
2 is a bandpass filter whose center frequency is the vibration drive frequency, and among the various components included in the shift detection signal 1', components that essentially have no causal relationship with the vibration drive operation;
That is, components other than the true signal component and the component corresponding to the vibration drive inertia force are removed.

3は駆動速度信号源4の駆動速度信号4′を基準位相と
した位相検波器であり、原理的に駆動速度信号4′と位
相の直交した駆動慣性力に応じた成分を直流的に相殺し
、その出力の直流成分は低域通過フィルタ5によって取
り出され、コリオリの力に応じた成分の振幅に比例した
、ひいては慣性角速度に比例した最終出力5′を得るよ
うにしたものである。
3 is a phase detector whose reference phase is the drive speed signal 4' of the drive speed signal source 4, which in principle cancels the component corresponding to the drive inertia force whose phase is orthogonal to the drive speed signal 4' in a DC manner. , the DC component of the output is extracted by a low-pass filter 5 to obtain a final output 5' proportional to the amplitude of the component corresponding to the Coriolis force, and furthermore proportional to the inertial angular velocity.

(発明が解決しようとする問題点) このような従来の信号処理によれば、確かに慣性角速度
に比例した直流成分を有する出力を得ることができる。
(Problems to be Solved by the Invention) According to such conventional signal processing, it is possible to certainly obtain an output having a DC component proportional to the inertial angular velocity.

しかしこれだけでは実用上大きな問題となる場合がある
However, this alone may cause a serious problem in practice.

それは、質量要素に作用する駆動慣性力(振動運動に伴
なう加速度に基づく反力)が大きく、これは偏移検知信
号1′に表われ、本質的に振動駆動周波数と等しい周波
数であるため周波数による弁別が不可能であり、位相検
波器3によって直流的とには相殺されても、きわめて大
きなリップル成分として検波出力3′に駆動慣性力が表
れるということである。
This is because the driving inertial force (reaction force based on acceleration accompanying vibration motion) acting on the mass element is large, and this appears in the deviation detection signal 1', which is essentially the same frequency as the vibration driving frequency. Discrimination based on frequency is impossible, and even if the phase detector 3 cancels out the direct current, the drive inertia appears as an extremely large ripple component in the detected output 3'.

この駆動慣性力の振幅は、それと等しい振幅のコリオリ
の力を発生させるために必要な慣性角速度に換算すると
1/2ω(ωは駆動角周波数)もの大きな値に達する。
The amplitude of this driving inertial force reaches a value as large as 1/2ω (ω is the driving angular frequency) when converted into the inertial angular velocity required to generate a Coriolis force of the same amplitude.

このとき、駆動慣性力が駆動速度方向に、コリオリの力
が駆動速度の直交方向に作用することから、質量要素に
作用する力を電気信号に変換する際に、その感度方向を
駆動速度と直交する方向に設定して、駆動慣性力が偏移
検知信号1′に表われるのを防ぐのが一般的であるが。
At this time, since the drive inertia force acts in the direction of the drive speed and the Coriolis force acts in the direction perpendicular to the drive speed, when converting the force acting on the mass element into an electrical signal, the direction of sensitivity is set perpendicular to the drive speed. Generally, the drive inertia force is set in the direction to prevent the drive inertia force from appearing in the shift detection signal 1'.

この感度方向の設定誤差によって偏移検知信号1′に駆
動慣性力に応じた成分が混入するのである。
Due to this setting error in the sensitivity direction, a component corresponding to the driving inertia force is mixed into the deviation detection signal 1'.

上記メカニズムによって発生する駆動慣性力によるリッ
プル分は、慣性角速度信号そのもののリップル分と比較
換算すると、結局1/2ωtanθとなる。この値は、
慣性角速度の測定装置として実用可能な振動駆動周波数
、数百ないし数kHz(角周波数ωでは数百ないし数十
万”/5ac)、及び実現可能な加工精度θを考慮した
とき、通常この種の装置に求められる最低限の分解能0
.Olないし0.1°/sec、及びダイナミックレン
ジ士数100’/seaと比較して、いかに大きな値で
あるかがわかる。
When the ripple due to the drive inertia generated by the above mechanism is compared with the ripple of the inertial angular velocity signal itself, it ends up being 1/2 ω tan θ. This value is
Considering the practical vibration drive frequency for measuring inertial angular velocity, several hundred to several kHz (several hundred to several hundred thousand"/5ac at angular frequency ω), and the achievable machining accuracy θ, this type of Minimum resolution required for the device: 0
.. It can be seen how large this value is compared to 0.1°/sec and a dynamic range of 100'/sea.

従来、このようなリップルを軽減させるために低域通過
フィルタを挿入しているが、そのフィルタは慣性角速度
信号成分のリップルを低下させるのに必要なものより、
はるかに高次数、及び又は低遮断周波数特性のものが要
求され、これが装置としての周波数特性を著しく損ない
、特に通信衛星の姿勢制御等への応用のような良好な周
波数特性が要求される場合、致命的な欠陥となっている
Conventionally, a low-pass filter is inserted to reduce such ripples, but the filter is less than what is necessary to reduce the ripples of the inertial angular velocity signal component.
A much higher order and/or lower cut-off frequency characteristic is required, which significantly impairs the frequency characteristics of the device, especially when good frequency characteristics are required, such as in applications such as attitude control of communication satellites. This is a fatal flaw.

本発明は、駆動慣性力による極めて大きなリップル分を
、フィルタ等の位相おくれ、及び周波数制限を伴なわず
に軽減することが可能な振動駆動型レートジャイロの信
号処理回路の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a signal processing circuit for a vibration-driven rate gyro that can reduce extremely large ripples caused by drive inertia without causing a phase delay or frequency restriction of a filter or the like.

(問題点を解決するための手段) 本発明は上記問題点を解決するため、偏移検知信号に、
位相検波処理を施こす前に、その中に含まれる駆動慣性
力成分に見合うだけ、駆動加速度に比例した信号を加減
算して上記の目的を達するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a shift detection signal that includes:
The above objective is achieved by adding or subtracting a signal proportional to the drive acceleration in proportion to the drive inertia force component contained therein before performing the phase detection process.

(作 用) 以上のような手段によれば、駆動慣性力の偏移検知信号
への混入成分は加減演算によって相殺されるから、位相
遅れ及び周波数制限を伴なわずに出力リップルが小さく
なる。そのため、同期検波後の低域フィルタは必要最少
限ですみ、装置として良好な周波数特性を得ることがで
きる。
(Function) According to the means described above, the component of the drive inertia force mixed into the shift detection signal is canceled out by the addition/subtraction calculation, so that the output ripple is reduced without being accompanied by phase delay or frequency limitation. Therefore, the number of low-pass filters after synchronous detection can be kept to the minimum necessary, and good frequency characteristics can be obtained as a device.

(実施例) 第1図は本発明の振動駆動型レートジャイロ信号処理回
路の一実施例を示すブロック図である。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the vibration-driven rate gyro signal processing circuit of the present invention.

第1図において第2図と同じ符号1ないし4の説明は第
2図の説明を援用し、点線で囲んだ部分が本発明の信号
処理回路に特徴的な部分であり、以下その動作を説明す
る。
In FIG. 1, the explanation of the same reference numerals 1 to 4 as in FIG. 2 refers to the explanation of FIG. do.

6は微分器で駆動速度信号源4の出力4′から駆動加速
度信号6′を発生させるためのものであり、7は可変利
得増幅器で前記駆動加速度信号6′から、偏移検知信号
1′に含まれる駆動慣性力成分に見合う振幅の相殺信号
を発生する。8は加減算器で帯域通過フィルタ2の出力
に含まれる駆動慣性力成分の極性によって、帯域通過フ
ィルタ2の出力に相殺信号を加算又は減算するためのも
のである。
6 is a differentiator for generating a driving acceleration signal 6' from the output 4' of the driving speed signal source 4, and 7 is a variable gain amplifier for generating a deviation detection signal 1' from the driving acceleration signal 6'. A cancellation signal having an amplitude commensurate with the included drive inertia force component is generated. Reference numeral 8 denotes an adder/subtracter for adding or subtracting a cancellation signal to or from the output of the band-pass filter 2, depending on the polarity of the driving inertial force component included in the output of the band-pass filter 2.

以上の構成によって、偏移検知信号1′に含まれる駆動
慣性力成分は位相検波器3による位相検波処理の前にほ
ぼ除去され、位相検波後に挿入する低域通過フィルタ9
は、真の信号成分によるリップルを除去する程度の必要
最小限のものでよく、第2図で説明した従来の技術にお
ける低域通過フィルタ5よりも遥かに低次数、及び又は
高遮断周波数のものを使用することができる。従って装
置さしての周波数特性は飛躍的に改善される。
With the above configuration, the driving inertial force component included in the shift detection signal 1' is almost removed before the phase detection processing by the phase detector 3, and the low-pass filter 9 inserted after the phase detection.
may be the minimum necessary to remove ripples due to true signal components, and may have a much lower order and/or a higher cut-off frequency than the low-pass filter 5 in the conventional technology explained in FIG. can be used. Therefore, the frequency characteristics of the device are dramatically improved.

ここで偏移検知信号1′に含まれる駆動慣性力成分の振
幅および極性は、前述の加工誤差θに依存し、二重個々
でのばらつきがあるが、それはほぼ完全に静的、幾何的
誤差であって経時変化、温度変化は殆ど無視できるので
初期的に加減算器8の係数調整を行なうことで、その相
殺機能は恒久的に保証される。
Here, the amplitude and polarity of the driving inertial force component included in the deviation detection signal 1' depend on the aforementioned machining error θ, and there are variations between individual doubles, but this is almost entirely due to static and geometric errors. Since changes over time and temperature can be almost ignored, by initially adjusting the coefficients of the adder/subtractor 8, the canceling function can be permanently guaranteed.

なお、上述の実施例においては、駆動加速度信号を得る
ために駆動速度信号の微分という手段を用いたが、これ
は勿論、駆動速度信号源4と独立した駆動加速度信号源
を設けることでも可能である。しかし、振動駆動型レー
トジャイロが、基本動作原理として位相的にも振幅的に
も正確な駆動速度信号を要求するものであることを考慮
したとき、ハードウェアの負担が最少限で済む本実施例
によるような方法が、最も妥当である。
In the above embodiment, a method of differentiating the drive speed signal was used to obtain the drive acceleration signal, but this can of course also be done by providing a drive acceleration signal source independent of the drive speed signal source 4. be. However, considering that the vibration-driven rate gyro requires a drive speed signal that is accurate in both phase and amplitude as its basic operating principle, this embodiment minimizes the burden on hardware. The most appropriate method is as follows.

(発明の効果) 以上詳細に説明して明らかなように本発明の信号処理回
路によれば、周波数特性の非常にすぐれた振動駆動型レ
ートジャイロを実現でき、特に人工衛星等の姿勢制御に
用いてその姿勢の検知が極めて正確になり、かつ構成も
比較的簡易であるから斯界に尽くす効果は大きい。
(Effects of the Invention) As is clear from the detailed explanation above, the signal processing circuit of the present invention can realize a vibration-driven rate gyro with extremely excellent frequency characteristics, and is particularly useful for attitude control of artificial satellites. Since the posture can be detected extremely accurately and the configuration is relatively simple, it has a great effect on this field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における信号処理回路を示す
ブロック図、第2図は従来例における信号処理回路を示
すブロック図である。 1・・・偏移検知信号源、 2・・・帯域通過フィルタ
、 3・・・位相検波器、 4・・・駆動速度信号源、
 5,9 ・・・低域通過フィルタ、 6・・・微分器
、 7・・・可変利得増幅器、 8・・・加減算器。
FIG. 1 is a block diagram showing a signal processing circuit according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a signal processing circuit according to a conventional example. DESCRIPTION OF SYMBOLS 1... Deviation detection signal source, 2... Band pass filter, 3... Phase detector, 4... Driving speed signal source,
5, 9...Low pass filter, 6...Differentiator, 7...Variable gain amplifier, 8...Adder/subtractor.

Claims (1)

【特許請求の範囲】[Claims] 単振動駆動される質量要素に作用する力を検知して得ら
れる偏移検知信号から、慣性角速度を検出する振動駆動
型レートジャイロにおいて、前記単振動駆動の駆動加速
度に比例した信号を、上記偏移検知信号に加算または減
算処理することにより、偏移検知信号に含まれる駆動慣
性力成分を相殺した後、前記単振動駆動の速度を基準位
相とした位相検波器を用いて、慣性角速度を検出するこ
とを特徴とする振動駆動型レートジャイロの信号処理回
路。
In a vibration-driven rate gyro that detects inertial angular velocity, a signal proportional to the driving acceleration of the simple harmonic drive is detected from the deviation detection signal obtained by detecting the force acting on the mass element driven by the simple harmonic. After canceling the drive inertia force component included in the shift detection signal by adding or subtracting it to the shift detection signal, the inertial angular velocity is detected using a phase detector with the speed of the simple harmonic drive as a reference phase. A signal processing circuit for a vibration-driven rate gyro.
JP60059395A 1985-03-26 1985-03-26 Signal processing circuit for oscillation driving type rate gyro Pending JPS61218911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059395A JPS61218911A (en) 1985-03-26 1985-03-26 Signal processing circuit for oscillation driving type rate gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059395A JPS61218911A (en) 1985-03-26 1985-03-26 Signal processing circuit for oscillation driving type rate gyro

Publications (1)

Publication Number Publication Date
JPS61218911A true JPS61218911A (en) 1986-09-29

Family

ID=13112052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059395A Pending JPS61218911A (en) 1985-03-26 1985-03-26 Signal processing circuit for oscillation driving type rate gyro

Country Status (1)

Country Link
JP (1) JPS61218911A (en)

Similar Documents

Publication Publication Date Title
KR910001145B1 (en) Cyclically driven gyro
Weinberg et al. Error sources in in-plane silicon tuning-fork MEMS gyroscopes
TWI482946B (en) Vibrationskompensation fuer drehratensensoren
US5747961A (en) Beat frequency motor position detection scheme for tuning fork gyroscope and other sensors
JP4458441B2 (en) Tuning fork gyro with split electrodes
JP3816674B2 (en) Signal processing system for inertial sensors
JP2009025283A (en) Integrated accelerometer and angular velocity meter system
JPS63501245A (en) Signal processor for inertial measurements using accelerometer arrays sensing Coriolis forces
JP2003507728A (en) Apparatus for generating bias voltage for vibrating rotation angle rate sensor
WO2016153642A1 (en) Gyroscope that compensates for fluctuations in sensitivity
JPH02502127A (en) Coriolis rate sensor with synchronous 1/4 cycle demodulator
CN110482479B (en) Simplified MEMS multi-ring resonance gyroscope self-adaptive closed-loop control method
JP2005524856A (en) Passive temperature compensation for MEMS sensors
Casinovi et al. Electrostatic self-calibration of vibratory gyroscopes
JPS61218911A (en) Signal processing circuit for oscillation driving type rate gyro
JP3458732B2 (en) Vibration sensor disconnection detection device
JP3966719B2 (en) Angular velocity measuring device
JP2975262B2 (en) Vibrating gyroscope detection circuit
JP2000503756A (en) 2-axis navigation grade micro-machined rotation sensor system
JPS62280609A (en) Adjusting method for cyclic driving type rate gyro
JPS62150116A (en) Signal processing circuit of recirculation driving type gyroscope
Yang et al. Two-dimensional excitation operation mode and phase detection scheme for vibratory gyroscopes
JPH08110225A (en) Inclination measuring apparatus
NO843479L (en) APPARATUS FOR AA MAKING A SIGNAL REPRESENTING THE ANGLE MOVEMENT SPEED OF A CONSTRUCTION
JPH06225564A (en) Method of measuring load constant of motor drive system