JPS61218827A - Linear guiding mechanism - Google Patents

Linear guiding mechanism

Info

Publication number
JPS61218827A
JPS61218827A JP5954585A JP5954585A JPS61218827A JP S61218827 A JPS61218827 A JP S61218827A JP 5954585 A JP5954585 A JP 5954585A JP 5954585 A JP5954585 A JP 5954585A JP S61218827 A JPS61218827 A JP S61218827A
Authority
JP
Japan
Prior art keywords
guided
permanent magnets
flat
guide body
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5954585A
Other languages
Japanese (ja)
Inventor
Keiichi Shibata
圭一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5954585A priority Critical patent/JPS61218827A/en
Publication of JPS61218827A publication Critical patent/JPS61218827A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0434Passive magnetic bearings with permanent magnets on both parts repelling each other for parts moving linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets

Abstract

PURPOSE:To obtain a simple and dustless linear guiding mechanism by arranging the permanent magnets with the same pole so as to be opposite at a proper places in a guide body and a guided body so that the guide body and the guided body are brought into noncontact. CONSTITUTION:A guided body is constituted by a pair of flat-plate-shaped permanent magnets 1a and 1b having rectangular flat-plate surfaces which are magnetized in the direction perpendicular to the flat-plate surface, and a nonmagnetic spacer 2 of the same shape. On the other hand, a guide body is constituted by nonmagnetic holders 8, spacers 11a and 11b, and permanent magnets 10a, 10b and 12a-12d of which four faces opposing to the flat-plate- shaped permanent magnets 1a and 1b have the same pole and the same shapes respectively. Thus, the guided body 4 floats noncontactedly in the guide body 6 by magnetic force, which is same in the case of the other cross-sectional shapes such as a cylinder, triangular prism, and so forth, and dustless linear motion can be simply obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は直線案内機構に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a linear guide mechanism.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体製造設備の置かれたクリーンルーム内での作業で
は常にクリーンルーム内の高いクリーンネスを維持する
ために極力発塵を抑えた作業が要求されている。このよ
うなりリームルーム内の自動化機械等が有する直線案内
機構には、ベアリング金剛いた機構や高圧空気を用いた
静圧軸受など考えられるが、ベアリングを用いた直線案
内機構では軸と案内面、ボールと軸受面が接触しながら
移動するなめ各接触部分などからの発塵がありこれがク
リーンネスを低下させる原因となる。また高圧空気を用
いた静圧軸受は軸受部に発生する空気流によりクリーン
ルーム内の塵埃ttきあげるためこれもクリーンネスを
低下させる原因となる。
When working in a clean room where semiconductor manufacturing equipment is located, it is required to suppress dust generation as much as possible in order to maintain a high level of cleanliness within the clean room. Linear guide mechanisms such as those used in automated machines in ream rooms may include a mechanism with a rigid bearing or a static pressure bearing using high-pressure air, but in a linear guide mechanism using bearings, the shaft, guide surface, and ball As the bearing surfaces move while in contact with each other, dust is generated from each contact area, which causes a reduction in cleanliness. Further, in the case of a static pressure bearing that uses high-pressure air, the air flow generated in the bearing portion raises dust in the clean room, which also causes a reduction in cleanliness.

これらのクリーンネスの低下はウェハー表面の塵埃によ
る汚染を増進させ半導体製品の歩留を低下させる要因の
一つとなることから、従来の直線案内機構は半導体製造
設備の置かれたクリーンルーム内のように塵埃を極端に
嫌う環境では用いることはできなかつ九。
This reduction in cleanliness is one of the factors that increases dust contamination on the wafer surface and lowers the yield of semiconductor products. Therefore, conventional linear guide mechanisms are used only in clean rooms where semiconductor manufacturing equipment is located. It cannot be used in environments where dust is extremely averse.

ま念磁気浮上車両では、電磁石を用いて軌道と車両の間
を非接触に保ち直線駆動させているが直線案内機構とし
て用いるには装置が複雑であシ容積やt景等の問題があ
った。
Magnetic levitation vehicles use electromagnets to maintain non-contact between the track and the vehicle and drive in a straight line, but the device is complicated to use as a linear guide mechanism, and there are problems with volume and T-view. .

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みてなされ之もので。 The present invention has been made in view of the above problems.

その目的とするところは塵埃を発生させない直線案内機
構を提供することを目的としている。
The objective is to provide a linear guide mechanism that does not generate dust.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては。 In order to achieve the above object, the present invention provides.

案内体とこの案内体に囲われて直線案内される被案内体
とで構成される直線案内機構において、案内体と被案内
体の適所に同極の永久磁石を対向させて配置したことを
特徴とする直線案内機構を提供する。
A linear guide mechanism consisting of a guide body and a guided body surrounded by the guide body and guided in a straight line, characterized in that permanent magnets of the same polarity are placed opposite each other at appropriate positions on the guide body and the guided body. A linear guide mechanism is provided.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第1
図は本発明による直線案内機構の第一の実施例を示すも
ので、tずこの図を参照して本実施例の構成を説明する
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a first embodiment of the linear guide mechanism according to the present invention, and the configuration of this embodiment will be explained with reference to the figure.

長方形状の平板面を有する一対の平板状永久磁石(la
)、(lb)は開音同形の非磁性体のスペーサ(2)で
結合されて全体が四角柱状の被案内体(4)を形成して
いる。これら平板状永久磁石(1a) 、 (ib)は
上記平板面に垂直方向に着磁されている。この被案内体
(4)は角筒状の案内体(6)に嵌挿されて直線案内機
構が構成されている。上記案内体(6)は四隅が被磁性
体からなる保持体(8)と、これら保持体(8)の間に
上記嵌挿時において平板状永久磁石(la)、(tb)
とそれぞれ同極な面を対向して保持されている永久磁石
(10a)、(10b)と、平板状永久磁石(xa)、
(xb)の各側面と同じ幅でかつ同一の磁界金有する側
面を有し。
A pair of flat permanent magnets (la
) and (lb) are connected by a non-magnetic spacer (2) having an aperture isomorphism to form a guided body (4) having a quadrangular prism shape as a whole. These flat permanent magnets (1a) and (ib) are magnetized in a direction perpendicular to the flat plate surface. This guided body (4) is fitted into a rectangular cylindrical guide body (6) to constitute a linear guide mechanism. The guide body (6) has a holder (8) whose four corners are made of magnetic material, and flat permanent magnets (la), (tb) when inserted between these holders (8).
Permanent magnets (10a) and (10b) held with their same polar faces facing each other, and a flat permanent magnet (xa),
(xb) having side surfaces of the same width and having the same magnetic field as each side surface of (xb).

これら側面が平板状永久磁石(la)、(ib)の側面
と対向するようにそれぞれ非磁性体のスペーサ(tla
)、(ub) (i7介して積層され、永久磁石(1o
a)、(xob)の保持部分と直交する側になる保持体
(8)の間に保持されている永久磁石(x2a)、(t
zb)及び(t2c) 、 (tzd)とで構成されて
いる。
Non-magnetic spacers (tla) are placed so that these side faces face the sides of the flat permanent magnets (la) and (ib).
), (ub) (stacked through i7, permanent magnet (1o
Permanent magnets (x2a), (t
zb), (t2c), and (tzd).

上記構成による直線案内機構は、案内体(6)と被案内
体(4)のそれぞれに同極が対向されて配置された永久
磁石の反 作用で常に非接触状態を保っている。したが
って被案内体(4)は案内体(6)内に浮いた状態で被
案内体(4)の軸方向に直線移動することが可能である
。ま九、被案内体(4)の先端部に軸方向に直交する力
が作用した場合でも、案内体(6)と被案内体(4)の
間に#lく反 力はそれらの距離の二乗に反比例して大
きくなることから、案内体(6)と被案内体(4)の非
接触状態は非常に安定して維持される。
The linear guide mechanism with the above configuration always maintains a non-contact state due to the reaction of permanent magnets arranged with the same poles facing each other on the guide body (6) and the guided body (4). Therefore, the guided body (4) can move linearly in the axial direction of the guided body (4) while floating within the guide body (6). Even if a force perpendicular to the axial direction acts on the tip of the guided body (4), the reaction force between the guided body (6) and the guided body (4) will be proportional to the distance between them. Since it increases in inverse proportion to the square, the non-contact state between the guide body (6) and the guided body (4) can be maintained very stably.

このように被案内体(4)は常に案内体(6)に接触す
ることなしに直線移動可能なので従来のスライド式の直
線案内機構のように案内体と被案内体とが接触し摩擦す
る部分などから塵埃が発生することがない。したがって
外気を汚染することがないので高いクリーンネスを必要
とする半導体製造設備のクリーンルーム内でも用いるこ
とができる。
In this way, the guided body (4) can always move linearly without contacting the guide body (6), so unlike the conventional sliding linear guide mechanism, there is no friction between the guide body and the guided body. No dust is generated from such sources. Therefore, since it does not contaminate the outside air, it can be used even in the clean room of semiconductor manufacturing equipment that requires high cleanliness.

次に本発明による直線案内機構の第二の実施例t−第2
図を参照して説明する。
Next, a second embodiment of the linear guide mechanism according to the present invention t-2
This will be explained with reference to the figures.

同形状である一対の筒体(20a) 、(20b)が保
持体@により平行に保持され案内体四を形成している。
A pair of cylindrical bodies (20a) and (20b) having the same shape are held in parallel by a holder @ to form a guide body 4.

筒体(zoa) 、(2ob)の内部には磁性体である
円柱状の被案内体(26a)、(26b)がそれぞれ嵌
挿されて直線案内機構が構成されている。被案内体(2
6a)、(2sb)の一方の先端部はそれぞれ連結棒(
2)によって連結されている。
Inside the cylinders (zoa) and (2ob), cylindrical guided bodies (26a) and (26b) made of magnetic material are fitted, respectively, to constitute a linear guide mechanism. Guided object (2
One tip of 6a) and (2sb) is connected to a connecting rod (
2).

筒体(2oa) 、(2ob)の側壁は筒体(20a)
 、(20b)の軸方向に同極が連続することで対向す
る側壁どうしが異極となるように連結棒(至)の軸に直
交する方向で着磁されている。ま九被案内体(26a)
、(26b)は軸に直交する方向で着磁され対向する筒
体(2oa)、(2ob)側壁の磁極と同極が向き合っ
ている、 上記構成によれば被案内体(26a)、(26b)は周
囲の筒体(20a)、(20b)のそれぞれに同極が対
向されて配置された永久磁石の反 作用で常に非接触状
態を保っている。したがって、被案内体(26a)、(
26b)は筒体(2oa’)、(20b)内に浮いた状
態で被案内体(26a)、(2ob)の軸方向に直線移
動することが可能である。
The side walls of the cylinder (2oa) and (2ob) are the cylinder (20a)
, (20b) are magnetized in a direction perpendicular to the axis of the connecting rod (to) so that the same polarity continues in the axial direction and the opposing side walls have different polarity. Maku guided body (26a)
, (26b) are magnetized in the direction perpendicular to the axis, and the same poles as the magnetic poles of the side walls of the opposing cylinders (2oa) and (2ob) face each other. According to the above configuration, the guided bodies (26a) and (26b) ) are always maintained in a non-contact state due to the reaction of permanent magnets placed with the same poles facing each of the surrounding cylinders (20a) and (20b). Therefore, the guided body (26a), (
26b) can move linearly in the axial direction of the guided bodies (26a) and (2ob) while floating within the cylinder bodies (2oa') and (20b).

また、本実施例中の一対の被案内体(zaa)、(2s
b)はそれぞれの軸を中心とした回転ができないように
連結棒(至)によって拘束されているので、磁石による
反 力を受は九被案内体(26a) 、(26b)が回
転して筒体(zoa)、(2ob)の異動引き合い接触
することは起きない。
In addition, the pair of guided bodies (zaa), (2s
b) are restrained by the connecting rods (to) so that they cannot rotate about their respective axes, so the nine guided bodies (26a) and (26b) receive the reaction force from the magnets and rotate, causing the cylinder to rotate. The body (zoa) and (2ob) do not come into contact with each other due to transfer.

次に、本発明による直線案内機構の第三の実施例を第3
図を参照して説明する。
Next, a third embodiment of the linear guide mechanism according to the present invention will be described.
This will be explained with reference to the figures.

長方形状の平板面を有する三枚の平板状永久磁石(至)
が非磁性体である三角筒状のスペーサ0′!Jで結合さ
れて全体が三角筒状の被案内体(ロ)を形成している。
Three flat permanent magnets with rectangular flat surfaces (to)
is a triangular cylindrical spacer 0' which is a non-magnetic material! They are connected at J to form a guided body (b) which has a triangular cylindrical shape as a whole.

これら平板状永久磁石(至)は、平板に垂直方向に着磁
されている。この被案内体(ロ)は三角筒状の案内体(
至)に嵌挿されて直線案内機構が構成されている。案内
体温は三つの隅が非磁性体からなる保持体(至)になシ
それらの各間には平板状永久磁石(至)と同極な面を対
向した永久磁石(AOが保持されている。
These flat permanent magnets are magnetized in a direction perpendicular to the flat plate. This guided body (b) is a triangular cylindrical guide body (
(to) to form a linear guide mechanism. The guiding body temperature is held by a holder whose three corners are made of non-magnetic material.A permanent magnet (AO) is held between each of them, with the same polar surface facing the flat permanent magnet. .

このような構成によれば被案内体(ロ)は案内体(至)
に接触することなしに軸方向への直線移動ができる。
According to this configuration, the guided body (b) is the guide body (to).
Can move linearly in the axial direction without touching the

尚本発明による直線案内機構は上述した実施例に限定さ
れることはなく、本発明の要旨を変更しない範囲内で変
形を加え得ることは明らかである。
It should be noted that the linear guide mechanism according to the present invention is not limited to the embodiments described above, and it is clear that modifications can be made without changing the gist of the present invention.

例えば、案内側と被案内側の断面形状を他の多角形にて
構成することは容易に考えられる。
For example, it is easily possible to configure the cross-sectional shapes of the guide side and the guided side to be other polygons.

〔発明の効果〕〔Effect of the invention〕

本発明によれば直線案内機構の案内側と被案内側とが磁
力による反 力で常に非接触な状態に保たれているので
塵埃を発生させないで直線案内機構を用いることができ
る。
According to the present invention, the guide side and the guided side of the linear guide mechanism are always kept in a non-contact state by the reaction force of the magnetic force, so the linear guide mechanism can be used without generating dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による直線案内機構の第一の実施例を示
す斜視図、第2図は同発明の第二の実施例を示す斜視図
、第3図は同発明の第三の実施例を示す斜、視図である
。 la、tb・・・平板状永久磁石、4r・・被案内体6
・・・案内体、  toa、tob・・・永久磁石12
・・・永久磁石
FIG. 1 is a perspective view showing a first embodiment of the linear guide mechanism according to the invention, FIG. 2 is a perspective view showing a second embodiment of the invention, and FIG. 3 is a third embodiment of the invention. FIG. la, tb...Flat permanent magnet, 4r...Guided body 6
...guide body, toa, tob...permanent magnet 12
···permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 案内体と、この案内体に囲われて直線案内される被案内
体とで構成される直線案内機構において、案内体と被案
内体の適所に同極の永久磁石を対向させて配置したこと
を特徴とする直線案内機構。
In a linear guide mechanism consisting of a guide body and a guided body surrounded by the guide body and guided in a straight line, permanent magnets of the same polarity are placed opposite each other at appropriate positions on the guide body and the guided body. Features a linear guide mechanism.
JP5954585A 1985-03-26 1985-03-26 Linear guiding mechanism Pending JPS61218827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5954585A JPS61218827A (en) 1985-03-26 1985-03-26 Linear guiding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5954585A JPS61218827A (en) 1985-03-26 1985-03-26 Linear guiding mechanism

Publications (1)

Publication Number Publication Date
JPS61218827A true JPS61218827A (en) 1986-09-29

Family

ID=13116335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5954585A Pending JPS61218827A (en) 1985-03-26 1985-03-26 Linear guiding mechanism

Country Status (1)

Country Link
JP (1) JPS61218827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894181A (en) * 1997-07-18 1999-04-13 Imlach; Joseph Passive magnetic bearing system
DE10101237A1 (en) * 2001-01-11 2002-07-25 Dorma Gmbh & Co Kg Slide block for door closers or window sash drives has magnets on both sides acting with magnets in slide rail
US7894140B2 (en) 2006-11-14 2011-02-22 Asml Holding N.V. Compensation techniques for fluid and magnetic bearings
WO2023148076A1 (en) * 2022-02-04 2023-08-10 Precitec Gmbh & Co. Kg Laser machining head with hermetically encapsulated movable optical unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894181A (en) * 1997-07-18 1999-04-13 Imlach; Joseph Passive magnetic bearing system
DE10101237A1 (en) * 2001-01-11 2002-07-25 Dorma Gmbh & Co Kg Slide block for door closers or window sash drives has magnets on both sides acting with magnets in slide rail
US7894140B2 (en) 2006-11-14 2011-02-22 Asml Holding N.V. Compensation techniques for fluid and magnetic bearings
WO2023148076A1 (en) * 2022-02-04 2023-08-10 Precitec Gmbh & Co. Kg Laser machining head with hermetically encapsulated movable optical unit

Similar Documents

Publication Publication Date Title
TW453972B (en) Drive mechanism having a gas bearing operable under a negative pressure environment
Kim High-precision planar magnetic levitation
JPS61230836A (en) Positioning device
JP2834832B2 (en) Attitude control device
US4689529A (en) Linear stepping motor
JPH05504100A (en) Ultra-high-speed electrodynamic X, Y, Θ positioning stage
JPS61218827A (en) Linear guiding mechanism
US20050023906A1 (en) Transverse mechanical translator with ferrofluid support
Kang et al. Design of magnetic force field for trajectory control of levitated diamagnetic graphite
JP2568128B2 (en) Levitation device using non-contact guide magnetism
KR100541740B1 (en) Transfer apparatus
US20220181054A1 (en) Magnetic levitation apparatus and measurement apparatus using the same
US6628435B1 (en) Contact-less ballistic scanning method
JPH04365722A (en) Magnetic levitation transport apparatus
JPS63235218A (en) Dustproof transport system and mechanism thereof
JP2000074171A (en) Actuator
JP2572276Y2 (en) Magnetic precision moving device
JPH03221336A (en) Movable stage device
JPH02219455A (en) Linear motor supporting mechanism
JPS63124763A (en) Article conveyer
CN211127522U (en) Air-float motion platform
JPS61224855A (en) Supporting device for linearly moving mechanism
JP2547713Y2 (en) Magnetic precision moving device
JPS6397911A (en) Actuator for telescope
JPH02262091A (en) Positioning apparatus