JPS61217591A - Production of cathode - Google Patents

Production of cathode

Info

Publication number
JPS61217591A
JPS61217591A JP60055967A JP5596785A JPS61217591A JP S61217591 A JPS61217591 A JP S61217591A JP 60055967 A JP60055967 A JP 60055967A JP 5596785 A JP5596785 A JP 5596785A JP S61217591 A JPS61217591 A JP S61217591A
Authority
JP
Japan
Prior art keywords
nickel
cathode
electrode
layer
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60055967A
Other languages
Japanese (ja)
Other versions
JPH0633487B2 (en
Inventor
Hiroya Yamashita
博也 山下
Takeshi Yamamura
武志 山村
Katsutoshi Yoshimoto
吉本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60055967A priority Critical patent/JPH0633487B2/en
Publication of JPS61217591A publication Critical patent/JPS61217591A/en
Publication of JPH0633487B2 publication Critical patent/JPH0633487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To lower the hydrogen overvoltage of the resulting cathode and to improve the durability by forming a porous metallic layer on a substrate for an electrode and coating the layer with an active substance made of a prescribed Ni-Cr alloy by sintering. CONSTITUTION:A porous metallic layer contg. electrically conductive particles is formed on a substrate for an electrode by plating. A soln. prepd. by dissolving NiCl2.6H2O and CrCl3.6H2O in butanol is applied to the layer and the compounds are thermally decomposed to coat the layer with an active substance made of an Ni-Cr alloy contg. 16-65wt% Cr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素過電圧が低く且つ耐久性に優れた陰極の製
造方法に関し、特に塩化ナトリウム水溶液の隔膜法電解
に好適な陰極の製造方法を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a cathode with low hydrogen overvoltage and excellent durability, and particularly provides a method for producing a cathode suitable for diaphragm electrolysis of an aqueous sodium chloride solution. It is something to do.

〔従来の技術〕[Conventional technology]

従来、アルカリ金属塩水溶液の電解、特にイオン交換膜
法による塩化ナトリウム水溶液の電解により塩素と水酸
化ナトリウムとを得る技術等の開発が進み、益々高い電
流効率と低い電圧による電解、即ち電力原単位の向上が
図られている。これらの技術動向のうち、電流効率の向
上は主として、イオン交換膜の改良として、また電圧の
低下については、イオン交換膜の改良と並行して、電極
における電解時の過電圧を低下させる検討が行われてい
る。このうち陽極にあってはすでに種々の優れた提案が
なされており、−1とんど陽極過電圧が問題とならない
電極が工業的に用いられている。
Conventionally, the development of technologies for obtaining chlorine and sodium hydroxide through the electrolysis of aqueous alkali metal salt solutions, especially the electrolysis of sodium chloride aqueous solutions using ion-exchange membrane methods, has progressed, and electrolysis with higher current efficiency and lower voltage, that is, electric power consumption, has progressed. Improvements are being made. Among these technological trends, the improvement of current efficiency is mainly due to improvements in ion-exchange membranes, and the reduction in voltage is being studied to reduce overvoltage during electrolysis at electrodes in parallel with improvements to ion-exchange membranes. It is being said. Among these, various excellent proposals have already been made for anodes, and electrodes in which -1 anode overvoltage is not a problem are used industrially.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに陰極、即ち水素発生用電極にあっては、一般に
軟鉄或いはニッケル製のものが工業的に使用されて訃り
、例えば400 ミIJボルト程度の高い水素過電圧を
許容しているため、その改善の必要性が指摘されている
However, as for the cathode, that is, the electrode for hydrogen generation, those made of soft iron or nickel are generally used industrially and have failed, allowing a high hydrogen overvoltage of, for example, 400 mIJ volts, so there is no need to improve this. The necessity has been pointed out.

近年、水素過電圧の低減を目的として、種々の特許出願
がなされている。例えば特開昭55−164491号、
特開昭55−131188号、特開昭56−95885
号、或いは特開昭58−167788号公報に示された
電極忙あっては電極基体上にニッケル、コバルト。
In recent years, various patent applications have been filed for the purpose of reducing hydrogen overvoltage. For example, JP-A-55-164491,
JP-A-55-131188, JP-A-56-95885
In the case of the electrode shown in Japanese Patent Laid-Open No. 58-167788, nickel and cobalt are used on the electrode base.

銀などの粒子又はこれらの金属とアルミニウムその他の
金属との合金の粒子を、溶着或いは銀、亜鉛、マグネシ
ウム、スズ等の保持用金属層中に一部露出するように埋
没させ、場合によっては保持用金属層の一部を化学的に
浸食させて多孔化した微粒子固定形の電極、或いは特開
昭54−60293号の如く、含硫黄ニッケル塩を含む
メッキ浴を用いて、電極基体上に電気メッキを行なう活
性金属の電析法により水素過電圧を小さくさせ念水素発
生電極が提案されている。
Particles such as silver or particles of alloys of these metals and aluminum or other metals are welded or buried in a holding metal layer such as silver, zinc, magnesium, tin, etc. so that a portion is exposed, and in some cases, they are held. Electrodes with fixed fine particles in which a part of the metal layer is chemically eroded to make them porous, or a plating bath containing a sulfur-containing nickel salt as in Japanese Patent Application Laid-open No. 54-60293, are used to form electrically conductive electrodes on the electrode substrate. A hydrogen-generating electrode has been proposed in which the hydrogen overvoltage is reduced by the active metal electrodeposition method used for plating.

これらの提案により比較的小さい水素過電圧の陰極を得
ることは可能であるが、より小さい過電圧とすること及
び陰極性能の持続性を大きくするとと或いはより廉価で
あることなど種々改良の必要性がある。例えば前記微粒
子固定形の電極にあっては、微粒子金属自体高価であっ
たり、その調製が容易でない等に加えて、一般に製法が
複雑であり、得られた製品である電極の性能がバラツキ
やす5等性能安定性に欠ける傾向にある。また後者の含
硫黄ニッケル浴による電気メッキにあっては、水素過電
圧が十分に小さくすることに難があり、場合によっては
耐久性が小さい等の欠点がある。
Although it is possible to obtain a cathode with a relatively small hydrogen overvoltage through these proposals, there is a need for various improvements such as lower overvoltage, greater sustainability of cathode performance, or lower cost. . For example, in the case of the above-mentioned fine particle fixed electrode, the fine particle metal itself is expensive, it is not easy to prepare, and the manufacturing method is generally complicated, and the performance of the resulting electrode product may vary. They tend to lack performance stability. Furthermore, in the latter electroplating using a sulfur-containing nickel bath, it is difficult to sufficiently reduce the hydrogen overvoltage, and in some cases there are drawbacks such as low durability.

一方、他の方法として、例えばニッケル。On the other hand, other methods such as nickel.

鉄、あるいはこれらの合金よりなる基体を、エツチング
、サンドブラスト等で表面処理する方法が提案されてい
る。しかしながら、これらの方法に基いる基体は元来陰
極(触媒)として使用するために製造されたものでない
ため、上記した機械的な表面処理では水素過電圧を充分
に低下させることは出来なく、また耐久性にも問題があ
った。
Methods have been proposed in which a substrate made of iron or an alloy thereof is surface-treated by etching, sandblasting, or the like. However, since the substrates based on these methods were not originally manufactured for use as cathodes (catalysts), the mechanical surface treatments described above cannot sufficiently reduce the hydrogen overvoltage, and the durability is limited. There were also problems with sexuality.

そこで本発明の目的は、比較的安価な原材料を用い、且
つ高い機械的強度を有し、更に水素過電圧の低b、例え
ば30A/a−の電流密度において、水素過電圧が20
0mV以下、特に150mV以下であり、しかも該性能
が長期間安定して使用可能となる陰極の製造方法を提供
するものである。
Therefore, the object of the present invention is to use relatively inexpensive raw materials, have high mechanical strength, and further have a low hydrogen overvoltage, for example, at a current density of 30A/a-, the hydrogen overvoltage is 20
The object of the present invention is to provide a method for producing a cathode which has a voltage of 0 mV or less, particularly 150 mV or less, and which can be stably used for a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の目的を達成するためK、電極基体上に多
孔性物質層を形成した後、クロム含量が特定なニッケル
とクロム合金よりなる活性層を焼結被覆させた陰極であ
る。即ち本発明は、電極基体上に多孔性物質層を形成し
た後、還元雰囲気下で少なくともクロム含有率が16〜
65重量%のニッケルとクロムの合金よりなる活性物質
を焼結被覆することを特徴とする陰極の製造方法である
To achieve the above object, the present invention provides a cathode in which a porous material layer is formed on a nickel and electrode substrate, and then an active layer made of a nickel and chromium alloy with a specific chromium content is sintered and coated. That is, in the present invention, after forming a porous material layer on an electrode substrate, the chromium content is reduced to at least 16 to 16% in a reducing atmosphere.
A method for producing a cathode, characterized in that an active material consisting of an alloy of 65% by weight of nickel and chromium is sintered and coated.

本発明に用りる電極基体は、導電性物質であればよく一
般に陰極として使用する環境下に耐久性のある金属を用
いる。従って、アルカリ金属塩特に−・ロゲン化アルカ
リ金属の電解や水の電解に用いる場合には、電極基体と
して軟鉄やニッケルを用いるのが好まし−0しかしなが
ら、銅或いは銅合金の如き良電導性金属、場合によって
はチタン等も使用することが出来る。
The electrode substrate used in the present invention may be made of any conductive material and is generally made of a metal that is durable under the environment in which it is used as a cathode. Therefore, when used for the electrolysis of alkali metal salts, especially halogenated alkali metals, or water, it is preferable to use soft iron or nickel as the electrode substrate. In some cases, titanium or the like may also be used.

電極形状は、電極基体の形状によって定まるものであり
、本発明において特に限定されるものではなく、一般に
電解槽における陰極として使用される形状のものが使用
される。
The shape of the electrode is determined by the shape of the electrode base, and is not particularly limited in the present invention, and a shape generally used as a cathode in an electrolytic cell is used.

例えば平板状、網状、パンチトメタル、エキスバンドメ
タル、スダレ状などである。該電極基体は、表面に多孔
性物質層を形成させるに先立って脱脂、エツチング等の
前処理を施すことが好ましい。その方法は公知の方法が
特に制限なく用いられる。
For example, it has a flat plate shape, a net shape, a punched metal shape, an expanded metal shape, a sag shape, etc. The electrode substrate is preferably subjected to pretreatment such as degreasing and etching prior to forming a porous material layer on the surface. Any known method can be used without particular limitation.

本発明において電極基体表面に多孔性物質層を形成させ
る方法としては、一般に導電性粒子を含有した金属メッ
キ暦を存在させる方法が好ましく用いられる。例えば特
開昭56−133484号公報に記載のように、導電性
粒子を含む金属メッキ浴を用いて電気メッキする方法が
採用できる。
In the present invention, as a method for forming a porous material layer on the surface of an electrode substrate, a method in which metal plating containing conductive particles is generally used is preferably used. For example, as described in JP-A-56-133484, a method of electroplating using a metal plating bath containing conductive particles can be adopted.

導電性粒子は導電性および耐食性を有する粒子であれば
よい。例えばクロム、モリブテン、タングステン、バナ
ジウム、ニオブ、タンタル、鉄、コバルト、ニッケル、
 金、 銀等の金属微粒子;タングステンカーバイド、
シリコンカーバイト、炭化ホウ素、ジルコニウムカーバ
イト、炭化チタン、炭化ハフニウム。
The conductive particles may be particles having conductivity and corrosion resistance. For example, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, iron, cobalt, nickel,
Fine metal particles such as gold and silver; tungsten carbide,
Silicon carbide, boron carbide, zirconium carbide, titanium carbide, hafnium carbide.

炭化ニオブ、炭化タンタル、グラファイト。Niobium carbide, tantalum carbide, graphite.

炭化バナジウム等の炭化物ニホウ化鉄、ホウ化ニッケル
等のホウ化物;窒化バナジウム。
Carbides such as vanadium carbide; borides such as iron diboride and nickel boride; vanadium nitride.

窒化ニオブ、窒化チタン等の窒化物等で、特にタングス
テンカーバイドが好ましく、その粒径が0.05〜50
μが好ましく、特に好ましくは0.5〜5μのものが用
いられる。
Niobium nitride, titanium nitride, and other nitrides, particularly tungsten carbide, with a particle size of 0.05 to 50
μ is preferred, and 0.5 to 5 μ is particularly preferred.

金属メッキ浴としては従来公知のメッキ浴が特に制限な
く用いられるが、特に銀、ニッケル、鉄、コバルト等の
周期表第4周期第■族金属よりなるメッキ浴が好ましく
、例えばニッケルのメッキ浴とl、ではワット浴、ニッ
ケルブラック浴、ニッケル錯塩浴等が、また銀のメッキ
浴としてはシアン浴等が用いられる。
As the metal plating bath, conventionally known plating baths can be used without particular restriction, but plating baths made of metals from group Ⅰ of the fourth period of the periodic table, such as silver, nickel, iron, and cobalt, are particularly preferred; for example, nickel plating baths and 1, a Watt bath, a nickel black bath, a nickel complex bath, etc. are used, and a cyan bath, etc. is used as a silver plating bath.

上記メッキ浴を用いるメッキ条件は適宜選定すればよい
が、一般には金属メッキ浴中に導電性粒子を1〜100
 ’?/Lの濃度で懸濁した状態で、得られる電極基体
上のメッキ層中における導電性粒子の含有量が2〜ろ0
容量%になる如くメッキ条件を選定することが好ましい
。このようKすることにより、電極基体表面に凹凸を有
する多孔性物質層が形成され、該多孔性物質層は電極の
表面積を大き(するのみでなく、後述する陰極活性物質
の含浸を容易にし、該物質が強固に結合する効果を本た
らし、更に該活性物質の結晶の成長を抑制する効果をも
有する。
The plating conditions using the above plating bath may be selected as appropriate, but in general, 1 to 100 conductive particles are added to the metal plating bath.
'? /L, the content of conductive particles in the plated layer on the electrode substrate obtained is 2 to 0.
It is preferable to select plating conditions so that the volume % is achieved. By applying K in this manner, a porous material layer having irregularities is formed on the surface of the electrode substrate, and the porous material layer not only increases the surface area of the electrode, but also facilitates impregnation of the cathode active material described below. It has the effect of strongly binding the substance and also has the effect of suppressing the growth of crystals of the active substance.

電極基体上に多孔性物質層を形成させる方法は、上記の
メッキ方法に特に限定されるものではなく、その疎か例
えば溶射等の手段によって導電性粒子を電極基体上に固
着させてもよい。この際、多孔性物質層の厚さは特に制
限されないが、水素過電圧のより低い陰極を得る為には
、少なくとも後述する活性物質を焼結被覆して得られる
活性層の厚さよりも厚くすることが必要である。
The method for forming the porous material layer on the electrode substrate is not particularly limited to the above-mentioned plating method, and the conductive particles may be fixed on the electrode substrate by means such as thermal spraying. At this time, the thickness of the porous material layer is not particularly limited, but in order to obtain a cathode with a lower hydrogen overvoltage, it should be made thicker than the active layer obtained by sintering and coating the active material described below. is necessary.

本発明において電極基体表面に存在させる活性物質であ
るニッケルおよびクロムの特定割合の合金層は、必ずし
も電極基体の全表面を覆っていることは必須ではないが
、電極の有効面積を増大させる意味からは全表面を覆う
方が有利である。また、電極基体が例えば銅などを用い
、それ自体陰極の使用環境下に腐蝕の恐れのある場合に
は、当然該基体の全面(溶液中に浸漬される部分の全面
)を被覆するべきである。また本発明において、電極基
体の表面に存在させる該活性物質の組成は水素過電圧に
対して、極めて重要な意味を有する。即ち、該活性物質
は少なくともニッケルとクロムよりなる合金であるが、
特にニッケル及びクロム場合によってはその他に表面積
を増すための第三の成分を加えることも有効である。更
に不可避的に混入される他の元素又は化合物を含むこと
も可能である。該活性物費中のニッケル(N1)とクロ
ム(Cr )〜65重量%、好着しくは20〜60重量
%の範囲である必要がある。クロムの含有率がこの範囲
をけずれると水素過電圧が増大する。
In the present invention, the alloy layer of a specific ratio of nickel and chromium, which are active substances, to be present on the surface of the electrode substrate does not necessarily have to cover the entire surface of the electrode substrate, but from the point of view of increasing the effective area of the electrode. It is advantageous to cover the entire surface. Furthermore, if the electrode substrate is made of copper, for example, and there is a risk of corrosion in the environment in which the cathode is used, it is natural that the entire surface of the substrate (the entire surface of the part immersed in the solution) should be coated. . Furthermore, in the present invention, the composition of the active substance present on the surface of the electrode substrate has an extremely important meaning with respect to hydrogen overvoltage. That is, the active material is an alloy consisting of at least nickel and chromium;
In particular, it is effective to add a third component to increase the surface area in addition to nickel and chromium. Furthermore, it is also possible to contain other elements or compounds that are unavoidably mixed. The amount of nickel (N1) and chromium (Cr) in the active substance must be in the range of 65% by weight, preferably 20-60% by weight. When the chromium content deviates from this range, hydrogen overvoltage increases.

上記した特定な合金よりなる活性物質を電極基体に焼結
被覆する方法は、ニッケル又はクロムを塩化物、臭化物
、沃化物等の化合物あるいはギ酸塩、硝酸塩等の形でエ
タノール。
A method of sintering and coating an electrode substrate with an active material made of the above-mentioned specific alloy is to sinter nickel or chromium in the form of a compound such as chloride, bromide, iodide, or formate, nitrate, etc. in ethanol.

ブタノール等の溶媒に一般VC0,5〜15重量%の濃
度になるように溶解させ、この陰極活性物質の溶液をメ
ッキされた電極基体上にコーティングし、次いで熱分解
することによって行われる。この陰極活性物質溶液をコ
ーテインクする方法は特に限定されず噴霧、塗布。
This is carried out by dissolving VC in a solvent such as butanol to a concentration of generally 0.5 to 15% by weight, coating this cathode active material solution on a plated electrode substrate, and then thermally decomposing it. The method of coating this cathode active material solution is not particularly limited, and may be spraying or coating.

浸漬等の方法が用いられる。また、熱分解の条件は陰極
活性物質溶液がコーティングされた電極基体を不活性ガ
スあるいは還元雰囲気下において一般に200〜800
℃の温度で15分間から3時間加熱することにより特定
のニッケルークロム合金が焼結される。尚、熱分解後も
基体が100℃以下になるまで不活性ガスあるいは還元
雰囲気下に維持するのが好ましい。酸化雰囲気中で熱分
解を行うと性能の低下を生じるため好ましくない。
Methods such as immersion are used. The thermal decomposition conditions are generally such that the electrode substrate coated with the cathode active material solution is heated to 200 to 800 ml under an inert gas or reducing atmosphere.
Certain nickel-chromium alloys are sintered by heating at temperatures of 0.degree. C. for 15 minutes to 3 hours. Note that even after thermal decomposition, it is preferable to maintain the substrate under an inert gas or reducing atmosphere until the temperature of the substrate becomes 100° C. or lower. It is not preferable to carry out thermal decomposition in an oxidizing atmosphere because this will result in a decrease in performance.

本発明においては、陰極活性物質が焼結被覆されて形成
される活性層の厚さが0.01〜20μ、好ましくけ0
.1〜3μとなるようにコーティングおよび熱分解を繰
り返し行なうのが一般的である。
In the present invention, the active layer formed by sintering and coating the cathode active material has a thickness of 0.01 to 20 μm, preferably 0.01 μm to 20 μm.
.. It is common to repeat coating and thermal decomposition so that the particle size is 1 to 3μ.

〔作用及び効果〕[Action and effect]

本発明の陰極は導電性物質好ましくは鉄。 The cathode of the present invention is made of a conductive material, preferably iron.

ニッケルあるいけこれらの金属を1成分とする合金等か
らなる電極基体の表面に、多孔性物質層を形成させた後
、クロム含有率が16〜65重量%のニッケルークロム
合金よりなる活性層を形成させることにより、極めて低
い水素過電圧、例えば90℃、 11 N−Na0E(
中で30A/d−の電流密度において水素過電圧100
mVとすることも可能である。かかる作用効果を生ずる
理由は必ずしも明らかではないが、ニッケルにクロムが
混入することにより、結晶に歪が生じ触媒能を向上させ
たり、下地の多孔性物質層が上述の触媒粒子の分散度を
高めているため、陰極として用いた場合に水素過電圧の
低下をもたらしていると推定される。
After forming a porous material layer on the surface of an electrode substrate made of nickel or an alloy containing these metals as one component, an active layer made of a nickel-chromium alloy with a chromium content of 16 to 65% by weight is formed. By forming extremely low hydrogen overpotentials, e.g. at 90°C, 11N-Na0E(
In the hydrogen overvoltage 100 at a current density of 30 A/d-
It is also possible to set it to mV. The reason for this effect is not necessarily clear, but the mixing of chromium into nickel causes distortion in the crystals and improves the catalytic ability, and the underlying porous material layer increases the degree of dispersion of the catalyst particles mentioned above. Therefore, it is presumed that this causes a decrease in hydrogen overvoltage when used as a cathode.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例 1 脱脂、エブチング処理した軟鋼性エキスバンドメタル(
8W : 5 wttr * L W : 6 wm 
#板厚=1.5日)に、特開昭56−133484号に
従って第」表に示す分散メッキ浴を用いて5A/d−で
5分間メッキを行なった。このようにして処理された基
体上に、NiC22・6H20、8nCt2 ・2H2
0を溶解させたブタノール溶液を塗布し、ニッケルとク
ロムの担持量の和がすべての実施例で5回の熱分解で1
.7W/e11Nとなるようにした。クロムの含有率を
種々変化させて、330℃の温度で窒素ガス(N2)雰
囲気中で熱分解を行なった。
Example 1 Degreased and ebbed mild steel extracted band metal (
8W: 5wttr * LW: 6wm
Plating was carried out at 5 A/d- for 5 minutes using the dispersion plating bath shown in Table 1 according to JP-A-56-133484 (Plate thickness = 1.5 days). On the substrate treated in this way, NiC22・6H20, 8nCt2・2H2
A butanol solution in which nickel and chromium were dissolved was applied, and the sum of supported amounts of nickel and chromium decreased to 1 after 5 thermal decompositions in all examples.
.. It was set to 7W/e11N. Thermal decomposition was carried out at a temperature of 330°C in a nitrogen gas (N2) atmosphere while varying the chromium content.

このようにして得られた電極の90℃、11N−NaO
H中で3OA/d−の電流密度での水素過電圧を測定し
た。結果を第2表に示す。
The thus obtained electrode was heated to 90°C with 11N-NaO
The hydrogen overpotential was measured in H at a current density of 3 OA/d. The results are shown in Table 2.

第  1  表 第  2  表 実施例 2 焼成温度を430℃にする事以外は実施例1と同様にし
た。結果を第3表に示す。
Table 1 Table 2 Example 2 The same procedure as Example 1 was carried out except that the firing temperature was 430°C. The results are shown in Table 3.

第  3  表 比較例 1 Nj、−Cr合金中のcr含有率が5wt%にする事以
外は実施例1と同様にしたところ水素過電圧は200 
mVであった。
Table 3 Comparative Example 1 When the same procedure as Example 1 was carried out except that the Cr content in the Nj, -Cr alloy was 5 wt%, the hydrogen overvoltage was 200%.
It was mV.

比較例2〜4 Ni−Cr合金中のCr含有率が5wt%。Comparative examples 2 to 4 The Cr content in the Ni-Cr alloy is 5 wt%.

70wt%、及び80wt%にする事以外は実施例2と
同様にして行なった。結果をt84表に示す。
The same procedure as in Example 2 was carried out except that the concentrations were 70 wt% and 80 wt%. The results are shown in the t84 table.

第  4  表 比較例5〜9 タングステンカーバイドを含む分散メッキを行なわない
事以外は実施例2と同様にして行なった。結果をts5
表に示す。
Table 4 Comparative Examples 5 to 9 The same procedure as Example 2 was carried out except that dispersion plating containing tungsten carbide was not performed. ts5 result
Shown in the table.

第  5  表 比較例10〜12 焼成を空気中で行なう事以外は実施例2と同様にして行
なった。結果を第6表に示す。
Table 5 Comparative Examples 10 to 12 The same procedure as in Example 2 was carried out except that the firing was carried out in air. The results are shown in Table 6.

第  6  表Table 6

Claims (1)

【特許請求の範囲】 1)電極基体上に多孔性物質層を形成した後、還元雰囲
気下で少なくともクロム含有率が16〜65重量%のニ
ッケルとクロムの合金よりなる活性物質を焼結被覆する
ことを特徴とする陰極の製造方法 2)多孔性物質層が導電性粒子を含有した金属メッキ層
である特許請求の範囲第1項記載の陰極の製造方法
[Claims] 1) After forming a porous material layer on an electrode substrate, sintering and coating an active material made of an alloy of nickel and chromium with a chromium content of at least 16 to 65% by weight in a reducing atmosphere. 2) A method for producing a cathode according to claim 1, wherein the porous material layer is a metal plating layer containing conductive particles.
JP60055967A 1985-03-22 1985-03-22 Method of manufacturing cathode Expired - Lifetime JPH0633487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055967A JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055967A JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Publications (2)

Publication Number Publication Date
JPS61217591A true JPS61217591A (en) 1986-09-27
JPH0633487B2 JPH0633487B2 (en) 1994-05-02

Family

ID=13013840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055967A Expired - Lifetime JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Country Status (1)

Country Link
JP (1) JPH0633487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102431A1 (en) * 2010-02-17 2011-08-25 クロリンエンジニアズ株式会社 Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
CN110983142A (en) * 2019-11-25 2020-04-10 河海大学 Preparation method of tungsten carbide-nickel hard alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102431A1 (en) * 2010-02-17 2011-08-25 クロリンエンジニアズ株式会社 Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
JP2011190534A (en) * 2010-02-17 2011-09-29 Chlorine Engineers Corp Ltd Electrode base, negative electrode for aqueous solution electrolysis using the same, and method for producing the electrode base
CN102770587A (en) * 2010-02-17 2012-11-07 氯工程公司 Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
CN110983142A (en) * 2019-11-25 2020-04-10 河海大学 Preparation method of tungsten carbide-nickel hard alloy

Also Published As

Publication number Publication date
JPH0633487B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4618404A (en) Electrode for electrochemical processes, method for preparing the same and use thereof in electrolysis cells
EP0181229B1 (en) Cathode
JPS6231075B2 (en)
US6251254B1 (en) Electrode for chromium plating
KR890003164B1 (en) Durable electrode for electrolysis and process for production thereof
FI75872C (en) Electrode for use in an electrochemical cell and its preparation
US4584085A (en) Preparation and use of electrodes
US4132620A (en) Electrocatalytic electrodes
US4422920A (en) Hydrogen cathode
US4572770A (en) Preparation and use of electrodes in the electrolysis of alkali halides
FI84496B (en) ANOD FOER ANVAENDNING FOER FRAMSTAELLNING AV VAETEPEROXIDLOESNING OCH FOERFARANDE FOER FRAMSTAELLNING AV ANODEN.
JP4115575B2 (en) Activated cathode
JP3676554B2 (en) Activated cathode
JPS61217591A (en) Production of cathode
JPH0257159B2 (en)
JP2006118022A (en) Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JPH0633488B2 (en) Method of manufacturing cathode
JP3941898B2 (en) Activated cathode and method for producing the same
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
KR102553793B1 (en) A hydrogen evolution reaction catalytic electrode, its manufacturing method, and the hydrogen production method by water electrolysis using it
JP2722262B2 (en) Electrode for electrolysis and method for producing the same
JP2003041390A (en) Cathode with low hydrogen overvoltage
JPS61213387A (en) Cathode for generating hydrogen and its manufacture
JPH0233792B2 (en)