JPH0633487B2 - Method of manufacturing cathode - Google Patents

Method of manufacturing cathode

Info

Publication number
JPH0633487B2
JPH0633487B2 JP60055967A JP5596785A JPH0633487B2 JP H0633487 B2 JPH0633487 B2 JP H0633487B2 JP 60055967 A JP60055967 A JP 60055967A JP 5596785 A JP5596785 A JP 5596785A JP H0633487 B2 JPH0633487 B2 JP H0633487B2
Authority
JP
Japan
Prior art keywords
nickel
chromium
cathode
electrode substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055967A
Other languages
Japanese (ja)
Other versions
JPS61217591A (en
Inventor
博也 山下
武志 山村
勝利 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60055967A priority Critical patent/JPH0633487B2/en
Publication of JPS61217591A publication Critical patent/JPS61217591A/en
Publication of JPH0633487B2 publication Critical patent/JPH0633487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素過電圧が低く且つ耐久性に優れた陰極の製
造方法に関し、特に塩化ナトリウム水溶液の隔膜法電解
に好適な陰極の製造方法を提供するものである。
TECHNICAL FIELD The present invention relates to a method for producing a cathode having a low hydrogen overvoltage and excellent durability, and particularly to a method for producing a cathode suitable for diaphragm electrolysis of an aqueous sodium chloride solution. To do.

〔従来の技術〕 従来、アルカリ金属水溶液の電解、特にイオン交換膜法
による塩化ナトリウム水溶液の電解により塩素と水酸化
ナトリウムとを得る技術等の開発が進み、益々高い電流
効率と低い電圧による電解、即ち電力原単位の向上が図
られている。これらの技術動向のうち、電流効率の向上
は主として、イオン交換膜の改良として、また電圧の低
下については、イオン交換膜の改良と並行して、電極に
おける電解時の過電圧を低下させる検討が行われてい
る。このうち陽極にあってはすでに種々の優れた提案が
なされており、ほとんど陽極過電圧が問題とならない電
極が工業的に用いられている。
[Prior Art] Conventionally, the electrolysis of an aqueous solution of an alkali metal, in particular, the development of a technique for obtaining chlorine and sodium hydroxide by the electrolysis of an aqueous solution of sodium chloride by an ion exchange membrane method has progressed, and electrolysis with an increasingly high current efficiency and a low voltage, That is, the power consumption rate is being improved. Among these technological trends, the improvement of current efficiency is mainly due to the improvement of the ion exchange membrane, and regarding the voltage reduction, in parallel with the improvement of the ion exchange membrane, studies are underway to reduce the overvoltage during electrolysis at the electrodes. It is being appreciated. Of these, various excellent proposals have already been made for the anode, and an electrode in which the anode overvoltage is hardly a problem is industrially used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかるに陰極、即ち水素発生用電極にあっては、一般に
軟鉄或いはニッケル製のものが工業的に使用されてお
り、例えば400ミリボルト程度の高い水素過電圧を許
容しているため、その改善の必要性が指摘されている。
However, as a cathode, that is, an electrode for hydrogen generation, one made of soft iron or nickel is generally used industrially, and since a high hydrogen overvoltage of, for example, about 400 millivolts is allowed, there is a need for improvement. It has been pointed out.

近年、水素過電圧の低減を目的として、種々の特許出願
がなされている。例えば特開昭55−164491号,
特開昭55−131188号,特開昭56−93885
号,或いは特開昭58−167788号公報に示された
電極にあっては電極基体上にニッケル,コバルト,鉄な
どの粒子又はこれらの金属とアルミニウムその他の金属
との合金の粒子を、溶着或いは銀,亜鉛,マグネシウ
ム,スズ等の保持用金属層中に一部露出するように埋没
させ、場合によっては保持用金属層の一部を化学的に浸
食させて多孔化した微粒子固定形の電極、或いは特開昭
54−60293号の如く、含硫黄ニッケル塩を含むメ
ッキ浴を用いて、電極基体上に電気メッキを行なう活性
金属の電析法により水素過電圧を小さくさせた水素発生
電極が提案されている。
In recent years, various patent applications have been made for the purpose of reducing hydrogen overvoltage. For example, JP-A-55-164491,
JP-A-55-131188, JP-A-56-93885
In the electrode shown in Japanese Patent Laid-Open No. 58-167788, particles of nickel, cobalt, iron or the like or alloy particles of these metals and aluminum or other metals are welded or deposited on the electrode base. An electrode of fine particle fixed type, which is made to be partially exposed in a metal layer for holding silver, zinc, magnesium, tin or the like so as to be exposed, and in some cases, chemically erodes a part of the metal layer for holding to make it porous, Alternatively, as in JP-A-54-60293, there has been proposed a hydrogen generating electrode in which a hydrogen overvoltage is reduced by an electrodeposition method of an active metal in which a plating bath containing a sulfur-containing nickel salt is used to electroplate. ing.

これらの提案により比較的小さい水素過電圧の陰極を得
ることは可能であるが、より小さい過電圧とすること及
び陰極性能の持続性を大きくすること或いはより廉価で
あることなど種々改良の必要性がある。例えば前記微粒
子固定形の電極にあっては、微粒子金属自体高価であっ
たり、その調製が容易でない等に加えて、一般に製法が
複雑であり、得られた製品である電極の性能がバラツキ
やすい等性能安定性に欠ける傾向にある。また後者の含
硫黄ニッケル浴による電気メッキにあっては、水素過電
圧が十分に小さくすることに難があり、場合によっては
耐久性が小さい等の欠点がある。
Although it is possible to obtain a cathode having a relatively small hydrogen overvoltage by these proposals, there is a need for various improvements such as a smaller overvoltage, a longer sustainability of the cathode performance, and a lower cost. . For example, in the case of the fine particle fixed type electrode, the fine particle metal itself is expensive, its preparation is not easy, etc., and in addition, the production method is generally complicated and the performance of the obtained electrode is likely to vary. Performance tends to lack. Further, in the latter electroplating with a sulfur-containing nickel bath, it is difficult to sufficiently reduce the hydrogen overvoltage, and in some cases, there are drawbacks such as low durability.

一方、他の方法として、例えばニッケル,鉄,あるいは
これらの合金よりなる基体を、エッチング,サンドプラ
スト等で表面処理する方法が提案されている。しかしな
がら、これらの方法に基いる基体は元来陰極(触媒)と
して使用するために製造されたものでないため、上記し
た機械的な表面処理では水素過電圧を充分に低下させる
ことは出来なく、また耐久性にも問題があった。
On the other hand, as another method, a method has been proposed in which a substrate made of, for example, nickel, iron, or an alloy thereof is surface-treated by etching, sand plast, or the like. However, since the substrate based on these methods was not originally manufactured for use as a cathode (catalyst), hydrogen overvoltage cannot be sufficiently reduced by the above-mentioned mechanical surface treatment, and the durability is also low. There was also a problem with sex.

そこで本発明の目的は、比較的安価な原材料を用い、且
つ高い機械的強度を有し、更に水素過電圧の低い、例え
ば30A/dm2の電流密度において、水素過電圧が20
0mV以下、特に150mV以下であり、しかも該性能が長
期間安定して使用可能となる陰極の製造方法を提供する
ものである。
Therefore, an object of the present invention is to use a relatively inexpensive raw material, have a high mechanical strength, and have a low hydrogen overvoltage, for example, a hydrogen overvoltage of 20 A / dm 2 at a current density of 20 A / dm 2.
The present invention provides a method for producing a cathode, which is 0 mV or less, particularly 150 mV or less, and the performance of which can be stably used for a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の目的を達成するために、電極基体上に多
孔性物質を形成した後、クロム含量が特定なニッケルと
クロムとの合金よりなる活性物質層を焼結被覆させた陰
極である。即ち本発明は、電極基体上に多孔性物質層を
形成した後、還元雰囲気下で少なくともニッケルとクロ
ムよりなり、且つクロムは、ニッケルとクロムの重量に
対して16〜65重量%のニッケルとクロムの合金より
なる活性物質を焼結被覆することを特徴とする陰極の製
造方法である。
In order to achieve the above object, the present invention is a cathode in which a porous material is formed on an electrode substrate and then an active material layer made of an alloy of nickel and chromium having a specific chromium content is sinter-coated. That is, according to the present invention, after forming a porous material layer on an electrode substrate, it is composed of at least nickel and chromium in a reducing atmosphere, and chromium is 16 to 65 wt% of nickel and chromium based on the weight of nickel and chromium. The method for producing a cathode is characterized in that an active material made of the alloy of (1) is coated by sintering.

本発明に用いる電極基体は、導電性物質であればよく一
般に陰極として使用する還境下に耐久性のある金属を用
いる。従って、アルカリ金属塩特にハロゲン化アルカリ
金属の電解や水の電解に用いる場合には、電極基体とし
て軟鉄やニッケルを用いるのが好ましい。しかしなが
ら、銅或いは銅合金の如き良電導性金属、場合によって
はチタン等も使用することが出来る。
The electrode substrate used in the present invention may be a conductive substance, and is generally made of a metal that is durable as a cathode and is used as a cathode. Therefore, when used for the electrolysis of alkali metal salts, especially alkali metal halides or the electrolysis of water, it is preferable to use soft iron or nickel as the electrode substrate. However, a highly conductive metal such as copper or a copper alloy, and titanium in some cases can be used.

電極形状は、電極基体の形状によって定まるものであ
り、本発明において特に限定されるものではなく、一般
に電解槽における陰極として使用される形状のものが使
用される。例えば平板状,網状,パンチドメタル,エキ
スパンドメタル,スダレ状などである。該電極基体は、
表面に多孔性物質層を形成させるに先立って脱脂,エッ
チング等の前処理を施すことが好ましい。その方法は公
知の方法が特に制限なく用いられる。
The shape of the electrode is determined by the shape of the electrode substrate and is not particularly limited in the present invention, and the shape generally used as the cathode in the electrolytic cell is used. For example, it may be a flat plate, a net, a punched metal, an expanded metal, or a scalloped shape. The electrode substrate is
Prior to forming the porous material layer on the surface, it is preferable to perform pretreatment such as degreasing and etching. As the method, a known method can be used without particular limitation.

本発明において電極基体表面に多孔性物質層を形成させ
る方法として、一般に導電性粒子を含有した金属メッキ
層を存在させる方法が好ましく用いられる。例えば特開
昭56−133484号公報に記載のように、導電性粒
子を含む金属メッキ浴を用いて電気メッキする方法が採
用できる。
In the present invention, as a method for forming the porous substance layer on the surface of the electrode substrate, generally, a method in which a metal plating layer containing conductive particles is present is preferably used. For example, as described in JP-A-56-133484, a method of electroplating using a metal plating bath containing conductive particles can be adopted.

導電性粒子は導電性および耐久性を有する粒子であれば
よい。例えばクロム,モリブテン,タングステン,パナ
ジウム,ニオブ,タンタル,鉄,コバルト,ニッケル,
金,銀等の金属微粒子;タングステンカーバイト,シリ
コンカーバイト,炭化ホウ素,ジルコニウムカーバイ
ト,炭化チタン,炭化ハフニウム,炭化ニオブ,炭化タ
ンタル,グラファイト,炭化バナジウム等の炭化物;ホ
ウ化鉄,ホウ化ニッケル等のホウ化物;窒化バナジウ
ム,窒化ニオブ,窒化チタン等の窒化物等で、特にタン
グステンカーバイトが好ましく、その粒径が0.05〜
50μが好ましく、特に好ましくは0.5〜5μのもの
が用いられる。
The conductive particles may be particles having conductivity and durability. For example, chromium, molybdenum, tungsten, vanadium, niobium, tantalum, iron, cobalt, nickel,
Fine metal particles such as gold and silver; tungsten carbide, silicon carbide, boron carbide, zirconium carbide, titanium carbide, hafnium carbide, niobium carbide, tantalum carbide, graphite, vanadium carbide and other carbides; iron boride, nickel boride Such as boride; nitride such as vanadium nitride, niobium nitride, titanium nitride, etc., particularly preferably tungsten carbide, having a particle size of 0.05 to
It is preferably 50 μm, and particularly preferably 0.5 to 5 μm.

金属メッキ浴としては従来公知のメッキ浴が特に制限な
く用いられるが、特に銀,ニッケル,鉄,コバルト等の
周期表第4周期第VIII族金属よりなるメッキ浴が好まし
く、例えばニッケルのメッキ浴としてはワット浴,ニッ
ケルブラック浴,ニッケル錯塩浴等が、また銀のメッキ
浴としてはシアン浴等が用いられる。
As the metal plating bath, conventionally known plating baths can be used without any particular limitation. Particularly, a plating bath made of a Group VIII metal of the 4th period of the periodic table such as silver, nickel, iron or cobalt is preferable. A watt bath, a nickel black bath, a nickel complex salt bath or the like is used, and a silver plating bath is a cyan bath or the like.

上記メッキ浴を用いるメッキ条件は適宜選定すればよい
が、一般には金属メッキ浴中に導電性粒子を1〜100
g/の濃度で懸濁した状態で、得られる電極基体上の
メッキ層中における導電性粒子の含有量が2〜30容量
%になる如くメッキ条件を選定することが好ましい。こ
のようにすることにより、電極基体表面に凹凸を有する
多孔性物質層が形成され、該多孔性物質層は電極の表面
積を大きくするのみでなく、後述する陰極性物質の含浸
を容易にし、該物質が強固に結合する効果をもたらし、
更に該活性物質の結晶成長を抑制する効果をも有する。
The plating conditions using the above plating bath may be appropriately selected, but generally 1 to 100 conductive particles are contained in the metal plating bath.
It is preferable to select the plating conditions such that the content of the conductive particles in the obtained plated layer on the electrode substrate is 2 to 30% by volume in the state of being suspended at a concentration of g /. By doing so, a porous material layer having irregularities is formed on the surface of the electrode substrate, and the porous material layer not only increases the surface area of the electrode, but also facilitates the impregnation of a cathode material described later, The effect that the substances are tightly bound,
Further, it also has an effect of suppressing crystal growth of the active substance.

電極基体上に多孔性物質層を形成させる方法は、上記の
メッキ方法に特に限定されるものではなく、そのほか例
えば溶射等の手段によって導電性粒子を電極基体上に固
着させてもよい。この際、多孔性物質層の厚さは特に制
限されないが、水素過電圧のより低い陰極を得る為に
は、少なくとも後述する活性物質を焼結被覆して得られ
る活性層の厚さよりも厚くすることが必要である。
The method of forming the porous substance layer on the electrode substrate is not particularly limited to the above-mentioned plating method, and in addition, the conductive particles may be fixed on the electrode substrate by means such as thermal spraying. At this time, the thickness of the porous material layer is not particularly limited, but in order to obtain a cathode with a lower hydrogen overvoltage, at least it should be thicker than the thickness of the active layer obtained by sintering and coating the active material described below. is necessary.

本発明において電極基体表面に存在させる活性物質であ
るニッケルおよびクロムの特定割合の合金層は、必ずし
も電極基体の全表面を覆っていることは必須ではない
が、電極の有効面積を増大させる意味からは全表面を覆
う方が有利である。また、電極基体が例えば銅などを用
い、それ自体陰極の使用環境下に腐蝕の恐れのある場合
には、当然該基体の全面(溶液中に浸漬される部分の全
面)を被覆するべきである。また本発明において、電極
基体の表面に存在させる該活性物質の組成は水素過電圧
に対して、極めて重要な意味を有する。即ち、該活性物
質は少なくともニッケルとクロムよりなる合金である
が、特にニッケル及びクロム、場合によってはその他に
表面積を増すための第三の成分を加えることも有効であ
る。更に不可避的に混入される他の元素又は化合物を含
むことも可能である該活性物質中のニッケル(Ni)と
クロム(Cr)との割合、即ち が16〜65重量%、好ましくは20〜60重量%の範
囲である必要がある。クロムの含有率がこの範囲をはず
れると水素過電圧が増大する。
In the present invention, the alloy layer containing nickel and chromium, which are active substances, present on the surface of the electrode substrate in a specific ratio does not necessarily cover the entire surface of the electrode substrate, but it is necessary to increase the effective area of the electrode. It is advantageous to cover the entire surface. When the electrode substrate is made of, for example, copper and may itself be corroded under the environment where the cathode is used, the entire surface of the substrate (the entire surface immersed in the solution) should be covered. . Further, in the present invention, the composition of the active substance present on the surface of the electrode substrate has a very important meaning for hydrogen overvoltage. That is, the active substance is an alloy of at least nickel and chromium, but it is also effective to add nickel and chromium, and optionally a third component for increasing the surface area. Further, it is possible to include other elements or compounds which are inevitably mixed in. The ratio of nickel (Ni) and chromium (Cr) in the active substance, that is, Should be in the range of 16 to 65% by weight, preferably 20 to 60% by weight. If the chromium content deviates from this range, the hydrogen overvoltage will increase.

上記した特定な合金よりなる活性物質を電極基体に焼結
被覆する方法は、ニッケル又はクロムを塩化物,臭化
物,沃化物等の化合物あるいはギ酸塩,硝酸塩等の形で
エタノール,ブタノール等の溶媒に一般に0.5〜15重
量%の濃度になるように溶解させ、この陰極活性物質の
溶液をメッキされた電極基体上にコーテイングし、次い
で熱分解することによって行われる。この陰極活性物質
溶液をコーテイングする方法は特に限定されず噴霧,塗
布,浸漬等の方法が用いられる。また、熱分解の条件は
陰極活性物質溶液がコーテイングされた電極基体を不活
性ガスあるいは還元雰囲気下において一般に200〜8
00℃の温度で15分間から3時間加熱することにより
特定のニッケル−クロム合金が焼結される。尚、熱分解
後も基体が100℃以下になるまで不活性ガスあるいは
還元雰囲気下に維持するのが好ましい。酸化雰囲気中で
熱分解を行うと性能の低下を生じるため好ましくない。
The method of sinter-coating the active substance consisting of the above-mentioned specific alloy on the electrode substrate is carried out by nickel or chromium in the form of a compound such as chloride, bromide, iodide or a solvent such as ethanol or butanol in the form of formate or nitrate. Generally, it is dissolved in a concentration of 0.5 to 15% by weight, a solution of the cathode active material is coated on the plated electrode substrate, and then pyrolysis is performed. The method for coating the cathode active substance solution is not particularly limited, and a method such as spraying, coating, dipping or the like is used. The thermal decomposition condition is generally 200 to 8 in an inert gas or reducing atmosphere for the electrode substrate coated with the cathode active material solution.
The particular nickel-chromium alloy is sintered by heating at a temperature of 00 ° C. for 15 minutes to 3 hours. Even after the thermal decomposition, it is preferable to maintain the substrate in an inert gas or reducing atmosphere until the temperature of the substrate becomes 100 ° C. or less. Pyrolysis in an oxidizing atmosphere is not preferable because it causes deterioration in performance.

本発明においては、陰極活性物質が焼結被覆されて形成
される活性層の厚さが0.01〜20μ、好ましくは0.1〜
3μとなるようにコーテイングおよび熱分解を繰り返し
行なうのが一般的である。
In the present invention, the thickness of the active layer formed by sintering the cathode active material is 0.01 to 20 μm, preferably 0.1 to 20 μm.
In general, coating and thermal decomposition are repeated to obtain 3μ.

〔作用及び効果〕[Action and effect]

本発明の陰極は導電性物質好ましくは鉄,ニッケルある
いはこれらの金属を1成分とする合金等からなる電極基
体の表面に、多孔性物質層を形成させた後、クロム含有
率が16〜65重量%のニッケル−クロム金よりなる活
性層を形成させることにより、極めて低い水素過電圧、
例えば90℃,11N−NaOH中で30A/dm2の電
流密度において水素過電圧100mVとすることも可能
である。かかる作用効果を生ずる理由は必ずしも明らか
ではないが、ニッケルにクロムが混入することにより、
結晶に歪が生じる触媒能を向上させたり、下地の多孔性
物質層が上述の触媒粒子の分散度を高めているため、陰
極として用いた場合に水素過電圧の低下をもたらしてい
ると推定される。
The cathode of the present invention has a chromium content of 16 to 65 wt% after a porous material layer is formed on the surface of an electrode substrate made of a conductive material, preferably iron, nickel or an alloy containing one of these metals as a component. % Nickel-chromium gold to form an active layer, resulting in an extremely low hydrogen overvoltage,
For example, it is possible to set the hydrogen overvoltage to 100 mV at a current density of 30 A / dm 2 in 90 ° C. and 11 N—NaOH. Although the reason why such an effect is produced is not always clear, by mixing chromium with nickel,
It is estimated that hydrogen overvoltage is reduced when it is used as a cathode because it improves the catalytic ability that causes distortion in crystals and / or the underlying porous material layer increases the dispersity of the above-mentioned catalyst particles. .

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例 1 脱脂,エッチング処理した軟鋼製エキスパンドメタル
(SW:3mm,LW:6mm,板厚:1.5mm)に、特開昭
56−133484号に従って第1表に示す分散メッキ
浴を用いて5A/dm2で5分間メッキを行なった。この
ようにして処理された基体上に、NiCl・6H
O,CrCl・6HOを溶解させたブタノール溶
液を塗布し、ニッケルとクロムの担持量の和がすべての
実施例で5回の熱分解で1.7mg/cm2となるようにした。
クロムの含有率を種々変化させて、330℃の温度で窒
素ガス(N)雰囲気中で熱分解を行なった。このよう
にして得られ昭た電極の90℃,11N−NaOH中で
30A/dm2の電流密度での水素過電圧を測定した。結
果を第2表に示す。
Example 1 A degreased and etched mild steel expanded metal (SW: 3 mm, LW: 6 mm, plate thickness: 1.5 mm) was subjected to a dispersion plating bath shown in Table 1 according to JP-A-56-133484 to obtain 5 A / It was plated with dm 2 for 5 minutes. This thus treated on a substrate, NiCl 2 · 6H
A butanol solution in which 2 O and CrCl 3 .6H 2 O were dissolved was applied so that the sum of supported amounts of nickel and chromium was 1.7 mg / cm 2 in five thermal decompositions in all the examples.
Pyrolysis was performed in a nitrogen gas (N 2 ) atmosphere at a temperature of 330 ° C. while changing the chromium content in various ways. The hydrogen overvoltage of the thus-obtained electrode was measured at 90 ° C. in 11N-NaOH at a current density of 30 A / dm 2 . The results are shown in Table 2.

実施例 2 焼成温度を430℃にする事以外は実施例1と同様にし
た。結果を第3表に示す。
Example 2 The same as Example 1 except that the firing temperature was 430 ° C. The results are shown in Table 3.

比較例 1 Ni−Cr合金中のCr含有率が5wt%にする事以外は
実施例1と同様にしたところ水素過電圧は200mVで
あった。
Comparative Example 1 The hydrogen overvoltage was 200 mV when the same as in Example 1 except that the Cr content in the Ni—Cr alloy was 5 wt%.

比較例2〜4 Ni−Cr合金中のCr含有率が5wt%,70wt%,及
び80wt%にする事以外は実施例2と同様にして行なっ
た。結果を第4表に示す。
Comparative Examples 2 to 4 The same procedure as in Example 2 was performed except that the Cr content in the Ni-Cr alloy was 5 wt%, 70 wt%, and 80 wt%. The results are shown in Table 4.

比較例5〜9 タングステンカーバイトを含む分散メッキを行なわない
事以外は実施例2と同様にして行なった。結果を第5表
に示す。
Comparative Examples 5 to 9 Comparative Examples 5 to 9 were performed in the same manner as in Example 2 except that dispersion plating containing tungsten carbide was not performed. The results are shown in Table 5.

比較例10〜12 焼成を空気中で行なう事以外は実施例2と同様にして行
なった。結果を第6表に示す。
Comparative Examples 10 to 12 Comparative Examples 10 to 12 were performed in the same manner as in Example 2 except that firing was performed in air. The results are shown in Table 6.

実施例3 焼成を水素雰囲気中で行なう事以外は実施例2と同様に
行なった結果を第7表に示す。
Example 3 Table 7 shows the results obtained in the same manner as in Example 2 except that the firing was performed in a hydrogen atmosphere.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電極基体上に多孔性物質層を形成した後、
還元雰囲気下で少なくともニッケルとクロムよりなり、
且つクロムはニッケルとクロムの重量に対して16〜65重
量%のニッケルとクロムの合金よりなる活性物質を焼結
被覆することを特徴とする陰極の製造方法
1. After forming a porous material layer on an electrode substrate,
Consists of at least nickel and chromium in a reducing atmosphere,
And a method for producing a cathode, characterized in that chromium is sintered and coated with an active material consisting of an alloy of nickel and chromium in an amount of 16 to 65% by weight based on the weight of nickel and chromium.
【請求項2】多孔性物質層が導電性粒子を含有した金属
メッキ層である特許請求の範囲第1項記載の陰極の製造
方法
2. The method for producing a cathode according to claim 1, wherein the porous material layer is a metal plating layer containing conductive particles.
JP60055967A 1985-03-22 1985-03-22 Method of manufacturing cathode Expired - Lifetime JPH0633487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055967A JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055967A JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Publications (2)

Publication Number Publication Date
JPS61217591A JPS61217591A (en) 1986-09-27
JPH0633487B2 true JPH0633487B2 (en) 1994-05-02

Family

ID=13013840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055967A Expired - Lifetime JPH0633487B2 (en) 1985-03-22 1985-03-22 Method of manufacturing cathode

Country Status (1)

Country Link
JP (1) JPH0633487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537961A4 (en) * 2010-02-17 2016-09-07 Permelec Electrode Ltd Electrode base, negative electrode for aqueous solution electrolysis using same, method for producing the electrode base, and method for producing the negative electrode for aqueous solution electrolysis
CN110983142B (en) * 2019-11-25 2021-10-19 河海大学 Preparation method of tungsten carbide-nickel hard alloy

Also Published As

Publication number Publication date
JPS61217591A (en) 1986-09-27

Similar Documents

Publication Publication Date Title
EP0181229B1 (en) Cathode
US4302322A (en) Low hydrogen overvoltage electrode
JP5008043B1 (en) Anode for chlorine generation
US4618404A (en) Electrode for electrochemical processes, method for preparing the same and use thereof in electrolysis cells
US6251254B1 (en) Electrode for chromium plating
JP4554542B2 (en) Electrode for electrolysis
US3350294A (en) Electrodes
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
JP2019119930A (en) Chlorine generating electrode
US4370361A (en) Process of forming Raney alloy coated cathode for chlor-alkali cells
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
KR910000916B1 (en) Method of electrolytic treatment of metals
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
JPH0633487B2 (en) Method of manufacturing cathode
JP4115575B2 (en) Activated cathode
JP3676554B2 (en) Activated cathode
JPH0257159B2 (en)
JP2006118022A (en) Electrode for generating hydrogen, precursor of electrode for generating hydrogen, manufacturing method therefor, and electrolysis method using it
JPH0633488B2 (en) Method of manufacturing cathode
US4405434A (en) Raney alloy coated cathode for chlor-alkali cells
JPH10330998A (en) Electroplating method
JPS6125790B2 (en)
Ohsaka et al. Electroplating of iridium–cobalt alloy
US4394228A (en) Raney alloy coated cathode for chlor-alkali cells
JP3941898B2 (en) Activated cathode and method for producing the same