JPS61217430A - Intermediate pressure set-up device in capsule transport - Google Patents
Intermediate pressure set-up device in capsule transportInfo
- Publication number
- JPS61217430A JPS61217430A JP5784385A JP5784385A JPS61217430A JP S61217430 A JPS61217430 A JP S61217430A JP 5784385 A JP5784385 A JP 5784385A JP 5784385 A JP5784385 A JP 5784385A JP S61217430 A JPS61217430 A JP S61217430A
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- valve
- blower
- transport path
- launch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Transport Of Granular Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は空気カプセル輸送路における中間昇圧装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intermediate pressurization device in an air capsule transport path.
[従来の技術]
空気カプセル輸送は、被輸送物を車輪付カプセルに積載
し、輸送路(パイプライン)内を気流にのせて輸送する
ものであるが、輸送路が長くなると輸送圧が低下するた
め、1m径のパイプで、被輸送物の荷重によっても異な
るが5〜6kmで中間昇圧が必要となる。この中間昇圧
方法として、次記(1)〜(4)のような方法が提案さ
れている。[Prior art] Air capsule transportation involves loading objects to be transported into wheeled capsules and transporting them on air currents within a transportation route (pipeline), but the longer the transportation route, the lower the transportation pressure. Therefore, for a pipe with a diameter of 1 m, an intermediate pressure increase is required after 5 to 6 km, depending on the load of the transported object. As this intermediate boosting method, the following methods (1) to (4) have been proposed.
(1)エアバイパス・二連仕切弁方式(ソ連で唯一実用
化されている)
これはエアバイパス区間を用いてカプセル間隔を保った
上で中間昇圧を行うものである。すなわち、カプセル間
隔より若干短い間隔でエアバイパスを設置し、このエア
バイパスは輸送路木管内の空気をある区間バイパスする
ことによりその区間のカプセルの推進力をなくシ、カプ
セルを停止させようとするもので走行カプセルの自然惰
行距離より少し長い水平な本管とその区間のエアバイパ
スとから成る。(本管に仕切弁を設けることによりバイ
パス区長を短くしたものもある。)このエアバイパスは
直下流のエアバイパス区間の本管内を先行カプセルが通
過完了しない限り、後続カプセルをその区間内に停めて
おくことにより隣り合うエアバイパス間のカプセル数を
1以下にしてカプセル間隔をつねにエアバイパス間の距
離以上に保つ機能を有する。こうして輸送路中、いずれ
の場所においてもカプセルはある値以上の間隔で通過す
ることになる。このような措置がとられたシルテムにお
いて次めような中間昇圧が可能となる。すなわち第2図
(a)〜(f)において、カプセルlが輸送路2の上流
側仕切弁Glに近づくと気流の放出口が52からSsに
切替わり[(a)→(b)]、カプセルlがG!を通過
するとG1が閉じ下流側の仕切弁G2が開き[(b)→
(C)]、続いて気流の吹込口がDffiからDIに切
替わり[(C)→(d)] 、カプセルが02を通過す
ると吹込口がDIからD2に切替わり[(d)→(e)
] 、続いてG2が閉じG1が開き、放出口がSlから
Stに切替わる[(e)→(f)]ようになっており中
中間圧が行われる。(1) Air bypass/double gate valve system (the only one in practical use in the Soviet Union) This uses an air bypass section to maintain the capsule spacing and then performs intermediate pressurization. In other words, air bypasses are installed at intervals slightly shorter than the capsule spacing, and these air bypasses bypass the air in the wood pipes of the transportation route in a certain section, thereby eliminating the propulsive force of the capsule in that section and attempting to stop the capsule. It consists of a horizontal main pipe that is slightly longer than the natural coasting distance of the traveling capsule and an air bypass in that section. (There are also systems that shorten the length of the bypass section by installing a gate valve in the main pipe.) This air bypass prevents subsequent capsules from stopping within the main pipe of the air bypass section directly downstream until the preceding capsule has passed through the main pipe. By doing so, the number of capsules between adjacent air bypasses is set to 1 or less, and the capsule interval is always maintained at a distance greater than or equal to the distance between air bypasses. In this way, the capsules will pass at intervals of a certain value or more at any location along the transport route. At Siltem, where such measures are taken, the following intermediate pressure increases will be possible. That is, in FIGS. 2(a) to (f), when the capsule l approaches the upstream gate valve Gl of the transport path 2, the airflow outlet is switched from 52 to Ss [(a)→(b)], and the capsule l is G! When passing through, G1 closes and gate valve G2 on the downstream side opens [(b) →
(C)], then the airflow inlet is switched from Dffi to DI [(C) → (d)], and when the capsule passes 02, the airflow inlet is switched from DI to D2 [(d) → (e )
] Then, G2 closes and G1 opens, and the discharge port switches from Sl to St [(e)→(f)], and intermediate pressure is applied.
(2)フラップ弁方式
これはイギリスで開発され実証テストが行なわれている
もので、第3図(&)〜(f)にその機構を示す。すな
わち、輸送路2を搬送されてきたカプセルlが気流の吸
込口Sの上流にあるとき。(2) Flap valve system This flap valve system was developed in England and is being tested, and its mechanism is shown in Figures 3 (&) to (f). That is, when the capsule l transported through the transport path 2 is located upstream of the airflow suction port S.
ブロアで発生する差圧により弁Nが閉じている[ (a
)] 、(b)はカプセルが吸込口Sを遮る位置に到達
した状態を示す、このときカプセル1とフラップ弁Nと
の間の空気が圧縮され、弁Nの前後の差圧が逆転して弁
Nがすみやかに開く。Valve N is closed due to the differential pressure generated by the blower [(a
)], (b) shows the state in which the capsule has reached the position where it blocks the suction port S. At this time, the air between the capsule 1 and the flap valve N is compressed, and the differential pressure across the valve N is reversed. Valve N opens promptly.
(C)は列車先頭カプセルlの前シールが弁Nを通過し
ようとしている時点のものである。カプセル1が弁Nを
通過する間、弁Nは対重のmきで開放状態に保たれる(
d)0列車の最後尾が吐出口Hを通過すると、気流が弁
Nの下方を逆流できるようになり、弁Nの上下の差圧が
生じて弁Nが閉じ[(e)→(f)] 、カプセルlは
ブロアからの気流に押されて前進する。(C) shows the moment when the front seal of the train's leading capsule l is about to pass through the valve N. While the capsule 1 passes through the valve N, the valve N is kept open with a weight of m (
d) When the tail end of the 0 train passes the discharge port H, the airflow becomes able to flow backwards under the valve N, a pressure difference between the upper and lower sides of the valve N is generated, and the valve N closes [(e) → (f) ], the capsule l is pushed forward by the airflow from the blower.
(3)ジェットポンプ式
これは第4図に示すように、輸送路2内の気流の一部を
抜出し、ブロアによりジェットノズルPを介してジェッ
ト気流を輸送路2内に噴射し、走行カプセルを吸込圧に
より移行させて推進するものである。(3) Jet pump type As shown in Fig. 4, this jet pump extracts a part of the airflow in the transportation path 2, and uses a blower to inject the jet airflow into the transportation path 2 through the jet nozzle P, thereby propelling the traveling capsule. It is moved and propelled by suction pressure.
(4)連続荷役装置流用式
これは、例えば特公昭59−45570号公報に開示さ
れているような連続荷役装置で、荷役を行なわずに中間
昇圧装置として利用する方法で既存技術の応用である。(4) Continuous cargo handling system diversion type This is an application of existing technology in a continuous cargo handling system such as that disclosed in Japanese Patent Publication No. 59-45570, which is used as an intermediate booster without performing cargo handling. .
第5図に示すように制動ゾーンF、カプセル相互の自動
連結装置3カプセル搬送装置4、連結解除装置5、スイ
ッチバック式発射筒Xおよび吸引および主ブロア12,
13よりなる。制動ゾーンでは輸送路2内を高速で走行
してきたカプセルを所定速度に制御し、先行カプセルに
追突させ、カプセル前後に設けられている自動連結装置
3にてそれぞれを連結させ、搬送装置4でカプセルを搬
送し、連結解除装置5により連結を解き1発射筒Xに導
き1発射筒Xを発射用輸送路2°に方向変換しカプセル
を主ブロア13からの気流により発射させるものである
。この連続荷役装置流用式に関するそれぞれの装置およ
び速度制御方法について、いくつかの提案が開示されて
いる。たとえば、各装置に関しては実公昭59−163
42.同59−16346.同59−16374.同5
9−16348号各公報が。As shown in FIG. 5, there is a braking zone F, an automatic capsule coupling device 3, a capsule transport device 4, a coupling release device 5, a switchback type launcher X, and a suction and main blower 12,
Consists of 13. In the braking zone, the capsule traveling at high speed on the transport route 2 is controlled to a predetermined speed, collides with the preceding capsule, is connected by the automatic coupling device 3 installed at the front and rear of the capsule, and the capsule is separated by the transport device 4. is conveyed, uncoupled by the uncoupling device 5, guided to one launch tube Several proposals have been disclosed regarding devices and speed control methods related to this continuous cargo handling system. For example, regarding each device,
42. 59-16346. 59-16374. Same 5
9-16348 each publication.
速度制御方法に関しては特開昭57−145719、同
57−164321号各公報がある。Regarding speed control methods, there are Japanese Patent Laid-Open Nos. 57-145719 and 57-164321.
さらに、本出願人は、本出願人と同時出願の「カプセル
輸送の中間昇圧方法」において、第7図に示すように、
連続荷役装置流用式における発射筒に替えて連続解除装
置より下流側に直線的に昇圧発射装置を設けてカプセル
を昇圧発射させる方法を提案している。昇圧発射装置は
発射用輸送路2°に設けられた上・下流の二つの仕切弁
7゜8と、上流側仕切弁7より下流側の近傍において発
射用輸送路2′に連通して配された空気の吸引吹込部り
と下流側仕切弁8より下流側の近傍において発射用輸送
路2°に連通して配された空気の吹込発射部Eを備えた
ものであり、空気の吸引吹込部りおよび吹込発射部Eは
それぞれ弁9,10.11を介してブロア12,13に
接続されており、仕切弁7,8の開閉および弁9,10
.11操作によりカプセルを昇圧発射させるものである
。Furthermore, as shown in FIG.
We have proposed a method in which a pressurized launcher is installed in a straight line downstream of the continuous release device to replace the launch tube in the continuous cargo handling system, and to pressurize and launch the capsule. The boost launch device is arranged in communication with two upstream and downstream gate valves 7°8 provided at the launch transport path 2°, and in the vicinity of the downstream side of the upstream gate valve 7, in communication with the launch transport path 2′. The air suction/injection part E is arranged in communication with the emission transport path 2° near the downstream side of the downstream gate valve 8. The blower and blower E are connected to blowers 12 and 13 via valves 9 and 10.11, respectively, and gate valves 7 and 8 are opened and closed, and valves 9 and 10 are connected to blowers 12 and 13 through valves 9 and 10.
.. 11 operation causes the capsule to be pressurized and launched.
[発明が解決しようとする問題点]
カプセル輸送の昇圧方法には以上のようなものがあるが
これらはいずれも以下のような問題点を有している。[Problems to be Solved by the Invention] There are the above pressurization methods for transporting capsules, but they all have the following problems.
(イ)エアバイパスΦ二連仕切弁方式
この方法はカプセル間隔が一定以上に保たれるため、確
実な作動が保証されやすい利点をもつ反面、最も大きな
欠点としてカプセル間隔を制御するためにカプセル間隔
より短い間隔でエアバイパスを設けることが必要なこと
である。エアバイパスの長さは、カプセル速度10m/
S、ころがり抵抗係数JJ= = 0.005で設計し
てlkmを超す、このような長い水平区間をとることは
我国の国土事情から不可能に近く、このため、エアバイ
パスは本管に仕切弁を設けた形式をとらざるを得ない、
この場合のバイパス区間の長さは本管φ1mのシステム
でカプセル重量W=9000kg%もれ率ψ= 0.0
3(シール性を評価する特性値)で設計して200m近
くになる。この程度の長さの水平区間をとることは不可
能ではないにしても短い間隔でとることは極めて困難と
なる0例えば2ks+程度の間隔でエアバイパスを設置
することはカプセル間隔をこれ以上大きくすることを意
味し、ある量の輸送量を確保するにはカプセルの編成両
数を増すことになる1例えば本管φimのシステムでカ
プセル速度8m/Sとして15両編成前後となる。この
ようにカプセルを長大なaimにするとステーションで
の制動・発射が困難となり、積込や荷卸装置も大型とな
るため、コスト面で実用性が少ない。(a) Air bypass Φ dual gate valve system This method has the advantage of ensuring reliable operation because the capsule spacing is maintained above a certain level, but the biggest drawback is that the capsule spacing is It is necessary to provide air bypasses at shorter intervals. The length of the air bypass is capsule speed 10m/
S, Rolling resistance coefficient JJ = = 0.005 and it is almost impossible to take such a long horizontal section exceeding 1km due to the land situation of our country.For this reason, the air bypass has a gate valve in the main We have no choice but to adopt a format that includes
In this case, the length of the bypass section is a system with main pipe φ1m, capsule weight W = 9000kg% leakage rate ψ = 0.0
3 (characteristic value for evaluating sealability), the length is nearly 200 m. Although it is not impossible to take horizontal sections of this length, it is extremely difficult to take them at short intervals. For example, installing air bypasses at intervals of about 2ks+ would make the capsule spacing even larger. This means that in order to secure a certain amount of transportation, the number of capsules in a train must be increased.For example, in the main φim system, the capsule speed is 8 m/s and the number of cars is around 15. If the capsule is made to have a long aim in this way, it will be difficult to brake and launch at the station, and the loading and unloading equipment will also be large, making it less practical in terms of cost.
(ロ)フラップ弁方式
この方法は弁操作を加える必要がない利点をもつが、停
電などでシルテムが停止した際にトラブルを起こす恐れ
が大きい、すなわち、輸送路には起伏が避けられないの
で、この昇圧装置の下流側に上り傾斜がある場合、シス
テムが停止して管内の気流がなくなるとカプセルは逆流
を始め、フラップ弁に右方から衝突する。この弁は左方
からのカプセル進入に対しては衝突を回避する構造とな
っているが右方からのカプセル進入に対しては何ら防御
策をもたず、弁破損あるいはカプセル破損を招く、これ
を防止するためには、上り傾斜部と昇圧装置との間に充
分な距離をとらねばならずその距離を試算するとlk諺
となり我国でこのような制約を満足させることは一般的
に困難である。(b) Flap valve method This method has the advantage of not requiring any valve operations, but there is a high risk of causing trouble when Siltem stops due to a power outage, etc. In other words, there are unavoidable ups and downs on the transportation route If there is an uphill slope downstream of this pressurizer, when the system stops and the airflow in the tube disappears, the capsule begins to flow backwards and collides with the flap valve from the right. This valve has a structure that avoids collisions when the capsule enters from the left, but it has no defense against capsule entry from the right, leading to damage to the valve or capsule. In order to prevent this, a sufficient distance must be provided between the upslope section and the booster, and calculating that distance results in a proverb, and it is generally difficult to satisfy such constraints in Japan. .
(ハ)ジェットポンプ式
これは昇圧の効率が低いため、その設置間隔がlkm未
満と短く数多くの昇圧装置を要するためコスト面の実用
の可能性が低い。(c) Jet pump type This type has low pressure boosting efficiency, and requires a large number of boosting devices with short installation intervals of less than 1 km, so it is unlikely to be practical in terms of cost.
(ニ)連続荷役装置流用方式 この方式は前記三方式の問題点を解決するが。(d) Continuous cargo handling equipment usage method This method solves the problems of the three methods mentioned above.
中間昇圧部に広大な空間を要するため実用に供すること
がきわめて困難である。すなわち発射筒は一点を支点に
シリンダによりスイングされる方式が一般的であるため
転回角度が制約される。たとえ、この角度が90@まで
可能としてもパイプラインの曲率半径は40D〜100
0(D:管内径)で700前後が一般的なため1発射筒
を中心とするパイプラインの線形は第6図に示す形状と
なり、D=1mのものでは大略20mX100mの面積
を要する。一方、発射筒を回転式にして180°近く回
転する機構にすると所用時間が長くなり採用にあたって
の大きな制約となる。たとえばφ=1mのパイプライン
において長さ15mの発射筒は積載カプセルが中に入る
と約15)ンになりこれを10秒未満で反転しなくては
ならない。It is extremely difficult to put this into practical use because the intermediate booster requires a vast space. That is, since the firing tube is generally swung by a cylinder around one point, the rotation angle is restricted. Even if this angle is possible up to 90@, the radius of curvature of the pipeline is 40D~100
0 (D: pipe inner diameter) is generally around 700, so the pipeline shape centered on one launcher cylinder has the shape shown in FIG. 6, and a pipeline with D=1 m requires an area of approximately 20 m x 100 m. On the other hand, if the launcher is made into a rotary mechanism that rotates nearly 180 degrees, the required time will be longer, which will be a major constraint on adoption. For example, in a pipeline with φ = 1 m, a 15 m long launch tube becomes approximately 15 m long when a loaded capsule enters it, which must be reversed in less than 10 seconds.
(ホ)同時出願発明
同発明では、吸引ブロア12を利用するが、その稼動率
は20%未満で、たとえば50秒の発車間隔のシステム
で7〜8秒ときわめて低いばかりでなく、弁9,10.
11の連繋操作が複雑である。そこで、第8図のように
、主ブロア13のみ設け、そのサクション側を利用して
吸引することも考えられるが、サクシオン側の負荷が吸
引時と非吸引時とで変動し、これが吐出圧の変動として
あられれ、吹込発射部Eより下流側の気流に変動が乗じ
、安定したカプセル走行の妨げになる虞れがある。(E) Co-filed invention In the same invention, the suction blower 12 is used, but its operating rate is less than 20%, for example, in a system with a 50-second departure interval, it is not only extremely low, but also extremely low, at 7 to 8 seconds. 10.
11 linked operations are complicated. Therefore, as shown in Fig. 8, it is possible to provide only the main blower 13 and use its suction side for suction, but the load on the suction side varies between suction and non-suction, and this causes the discharge pressure to change. This may occur as a fluctuation, and the fluctuation may be multiplied by the airflow on the downstream side from the blow-in/ejection part E, which may interfere with stable capsule travel.
したがって、本発明の主たる目的は、前記従来の問題点
を一挙に解決するとともに、1台のブロアで済み、かつ
弁操作が容易で、しかも発射点までの動力が不要で経済
的であり、さらに安定したカプセル輸送が可能な中間昇
圧装置を提供することにある。Therefore, the main object of the present invention is to solve the above-mentioned conventional problems at once, and also to be economical because only one blower is required, valve operation is easy, and no power is required to reach the firing point. The object of the present invention is to provide an intermediate pressurization device that enables stable capsule transportation.
[問題点を解決するための手段]
上記問題点を解決するための本発明は、後行カプセルを
先行カプセルに追突させて連結させる自動連結装置と、
連結したカプセルを前方へ搬送する搬送装置と、連結カ
プセルから先頭部カプセルの連結を解除する連結解除装
置と、先頭部カプセルを昇圧状態で発射する昇圧発射装
置とを備え;前記昇圧発射装置は、発射用輸送路と、こ
の発射用輸送路において形成され、前記連結が解除され
た先頭部カプセルをその重力により移送される下り勾配
の助走部と、助走後先頭部カプセルの静止点より上流側
位置において前記輸送路に連通して形成された圧気の発
射用吹込口とを有する構成としたものである。[Means for Solving the Problems] The present invention for solving the above problems includes an automatic coupling device that connects the trailing capsule by colliding with the leading capsule;
A transport device that transports the connected capsules forward, a disconnection device that disconnects the leading capsule from the connected capsule, and a boost firing device that fires the leading capsule in a pressurized state; a launch transport path, a run-up section with a downward slope formed in the launch transport path and to which the disconnected lead capsule is transported by its gravity; and a position upstream from a resting point of the lead capsule after the run-up. and a pressurized air injection inlet formed in communication with the transport path.
[作用]
本発明においては輸送路の制動ゾーンで低速まで減速し
たカプセルを先行カプセルに連結し、連結したカプセル
を搬送装置により所定速度で搬送し連結解除装置で解除
後、それぞれのカプセルを′ 弁操作により昇圧発射さ
せるものであるからカプセルの速度制御、カプセル間隙
制御するために、エアバイパス会二連仕切弁方式のよう
に長大な水平距離を必要とせず、また長編成カプセルお
よび大型装置を要することなく短編成カプセルにも適用
可能である。[Operation] In the present invention, a capsule that has been decelerated to a low speed in a braking zone of a transportation route is connected to a preceding capsule, the connected capsule is transported at a predetermined speed by a conveying device, and after being released by a decoupling device, each capsule is Since it is pressurized and launched by operation, it does not require a long horizontal distance like the air bypass dual gate valve method to control the speed of the capsule and the gap between the capsules, and also requires a long capsule and large equipment. It can also be applied to short capsules without any problems.
また、フラップ弁方式では停電時にフラップ弁下流側に
勾配があるとカプセルが逆流を生じ、弁に衝突する恐れ
があったが本発明においては、停電時昇圧発射装置の各
弁が後述のように適切な位置にあるため、カプセルの逆
流や追突を防ぐことができる。In addition, with the flap valve system, if there is a gradient downstream of the flap valve during a power outage, the capsule may cause backflow and collide with the valve, but in the present invention, each valve of the booster launcher during a power outage is operated as described below. The proper position prevents the capsule from flowing backwards or colliding with the enemy.
一方、本発明においては昇圧装置を平面的にみて直線的
に配置するので連続荷役装置流用によるスイッチバック
方式の発射筒のような広大な面積を必要とせず、直線は
もとより任意のルート上に設置可能であり、占有幅も管
径の2倍径度で良く、カプセルの昇圧発射のためには通
常の仕様形態のブロアが使用できるので効率よく昇圧発
射できる。On the other hand, in the present invention, the booster is arranged linearly when viewed from above, so it does not require a large area like a switchback type launcher that uses continuous cargo handling equipment, and can be installed not only in a straight line but also on any route. It is possible, the occupied width can be twice the diameter of the tube, and a blower with a normal specification can be used for pressurizing and ejecting the capsule, allowing efficient pressurization and ejection.
しかも、連結解除後のカプセルは、下り勾配の助走部に
おいて重力により自走するから、発射点まで移行させる
吸引ブロアは不要で、発射用の吐出ブロアのみで足りる
。Furthermore, since the capsule after the connection is disconnected moves by gravity on the run-up portion of the downward slope, there is no need for a suction blower to move it to the firing point, and only a discharge blower for firing is sufficient.
[発明の具体例]
さらに、本発明を第1図に示す具体例によって、その作
用とともに説明する。[Specific Example of the Invention] Further, the present invention will be explained with reference to a specific example shown in FIG. 1, together with its operation.
カプセルldは輸送用のブロア(図示せず)による気流
により輸送路2内を図中右方に走行する。カプセル1d
の前後には自動連結装置3が設けられている。輸送路2
の排気口Aから調節弁6の取付部Bまでの制動ゾーンF
下より下流側の輸送路2の終端部には常時適宜数のカプ
セルlcが待機している。これに対して後続カプセルl
dが走行してくると、その走行に伴って待機カプセルl
cの存在によって輸送路2がシールされるため、カプセ
ルlc、ld間の空気が圧縮されて生じる圧力がカプセ
ル1dの制動力として作用し、その制動圧力を調節弁6
で制御することによって一定速度以下でカプセルldが
待機カプセルlcに追突し連結される。他方で、カプセ
ルlbは搬送装置4により搬送され、この結果これに連
結されているカプセルla、lcも移動する。先頭カプ
セル1aとカプセルlbとの連結部が連結解除点Cに到
達すると連結解除装置5により連結が解かれる。The capsule ld travels to the right in the figure within the transport path 2 by airflow from a transport blower (not shown). capsule 1d
An automatic coupling device 3 is provided before and after. Transport route 2
Braking zone F from the exhaust port A to the mounting part B of the control valve 6
An appropriate number of capsules lc are always waiting at the terminal end of the transport path 2 on the downstream side from the bottom. On the other hand, the subsequent capsule l
When d runs, the standby capsule l
Since the transportation path 2 is sealed by the presence of the capsule 1c, the pressure generated by compressing the air between the capsules lc and ld acts as a braking force on the capsule 1d, and the braking pressure is applied to the control valve 6.
By controlling this, the capsule ld collides with the standby capsule lc at a speed below a certain speed and is connected to the waiting capsule lc. On the other hand, the capsule lb is transported by the transport device 4, so that the capsules la, lc connected thereto also move. When the connection between the leading capsule 1a and the capsule lb reaches the connection release point C, the connection is released by the connection release device 5.
一方、輸送路2は、搬送装置4および連結解除装置5の
部分において途切れており、その下流側には発射用輸送
路2゛が配管されている。この輪送路2゛の基端部には
次のような昇圧発射装置が設けられている。On the other hand, the transport path 2 is interrupted at a portion of the transport device 4 and the connection release device 5, and a launch transport path 2′ is piped on the downstream side thereof. The following booster firing device is provided at the base end of the wheel feed path 2''.
すなわち、輸送路2°の上流側および下流側に上流側お
よび下流側仕切弁7.8がそれぞれ設けられ、それらに
近接した下流側には発射用吹込口りおよび走行用吹込口
Eが輸送路2”に連通して開口している。13は主ブロ
アで、第7図に示す吸引プ四ア12は設置されておらず
、単独設置になっている。この主ブロア13の吐出側は
発射用管路14と走行用管路15とに分岐し、それらに
は切換弁16.17がそれぞれ形成されている。That is, upstream and downstream gate valves 7.8 are provided on the upstream and downstream sides of the transportation path 2°, respectively, and on the downstream side adjacent to these, a firing inlet and a running inlet E are provided along the transportation path. The main blower 13 is a main blower, and the suction blower 12 shown in Fig. 7 is not installed, but is installed alone. It branches into a service pipe 14 and a running pipe 15, each of which is provided with a switching valve 16, 17.
そして、管路14は発射用吹込口りに、管路15は走行
用吹込口Eにそれぞれ連なっている。The conduit 14 is connected to the ejection nozzle, and the conduit 15 is connected to the travel nozzle E.
また1発射用輸送路2”の始端部は、水平面に対して傾
斜角θをもって下り勾配とされ、ここが助走部Gとなっ
ている。この助走部G以後は水平となっている。その水
平部における仕切弁8までの区域は停止発射部Hとなっ
ている。The starting end of the transport path 2'' for one launch is sloped downward at an angle of inclination θ with respect to the horizontal plane, and this is the run-up section G. After this run-up section G, it is horizontal. The area up to the gate valve 8 in the section is a stop/fire section H.
さて、前述の先頭カプセルlaが連結解除点Cにおいて
、連結解除装置5により後続のカプセルtbとの連結が
解除されると、助走部Gが下り勾配をもっているため、
先頭カプセルlaは自重により助走部Gを降下する。こ
のとき、仕切弁7は開、仕切弁8は閉の状態にある。自
走降下したカプセルlaは停止発射部Hに達すると慣性
力を失い、減速されやがて停止する。このとき、カプセ
ル1mの走行に伴って、仕切弁8との間の空気が圧縮さ
れ、カプセルlaに対する制動力として作用する。カプ
セルlaが仕切弁7を通過した後。Now, when the aforementioned leading capsule la is disconnected from the following capsule tb by the disconnection device 5 at the disconnection point C, since the run-up portion G has a downward slope,
The leading capsule la descends through the run-up section G due to its own weight. At this time, the gate valve 7 is open and the gate valve 8 is closed. When the self-propelled descending capsule la reaches the stop launch section H, it loses its inertia, is decelerated, and eventually stops. At this time, as the capsule 1m travels, the air between it and the gate valve 8 is compressed, and acts as a braking force on the capsule la. After the capsule la passes through the gate valve 7.
仕切弁7は閉止され、またカプセル1aの停止後、仕切
弁8は開放される。その後、弁17が閉止された状態で
、弁16が開とされ、発射用吹込口りから主ブロア13
による圧気が吹込まれてカプセルlaが発射される。The gate valve 7 is closed, and after the capsule 1a has stopped, the gate valve 8 is opened. Thereafter, while the valve 17 is closed, the valve 16 is opened, and the main blower 13 is
Pressure air is blown into the capsule la and the capsule la is fired.
発射されたカプセルlaが仕切弁8を通過したならば、
仕切弁7が開放されるとともに、弁16が閉、弁17が
開とされ、しかも仕切弁8が閉止され、力・プセルla
はさらに右方に推進される。If the launched capsule la passes through the gate valve 8,
The gate valve 7 is opened, the valve 16 is closed, the valve 17 is opened, and the gate valve 8 is closed.
is propelled further to the right.
同時に、続くカプセルlbの連結解除を待つ、以後この
ような操作が順次行なわれる。At the same time, the device waits for the subsequent capsule lb to be uncoupled, and thereafter such operations are performed sequentially.
ここで、搬送装置4は常に一定の速度でカプセルを右方
に搬送するが、もし連結解除点Cより若干の距離20手
前に到達しても、仕切弁7が開放(スタンバイ)状態に
ない場合には、速かにカプセルを停止させ、その状態に
なるのを待つ。Here, the conveyance device 4 always conveys the capsule to the right at a constant speed, but if the gate valve 7 is not in the open (standby) state even if it reaches a distance of 20 minutes before the disconnection point C. In this case, immediately stop the capsule and wait for it to reach that state.
なお、上記例では、lカプセル単位で、制動、連結、搬
送連結解除および昇圧発射を行うようになっているが、
複数台単位で各操作がなされるようであってもよい。In addition, in the above example, braking, connection, transport connection release, and pressurized firing are performed in units of 1 capsule.
Each operation may be performed in units of multiple devices.
また、上記例では、fljl動ゾーンFより左側と停止
発射部Hより右側とでl sinθの高低差がある。こ
の高低差が望ましくない場合には特機部や搬送装置4を
傾斜させることにより対応できる。Further, in the above example, there is a height difference of l sin θ between the left side of the fljl movement zone F and the right side of the stop and launch section H. If this height difference is undesirable, it can be dealt with by tilting the special equipment section or the conveying device 4.
すなわち、制動ゾーンは水平であることが望ましいが、
特機部や搬送装置4は水平である必要がない、そこで特
機部や搬送装置に傾斜を与えることにより、上記高低差
をなくしたり、必要な場合には所望の高低差を得ること
ができる。もちろん、得られる高低差には限界があり、
これは制動ゾーン、特機部、搬送装置、助走部において
これらの境界での折れ角により制約される。すなわちカ
プセル相互の連結部には(−編成中の車両相互の連結部
も含めて)折れ角の限界が存在するからである。In other words, it is desirable that the braking zone be horizontal;
The special equipment section and the transport device 4 do not need to be horizontal; therefore, by giving the special equipment section and the transport device an inclination, it is possible to eliminate the above height difference or obtain a desired height difference if necessary. . Of course, there is a limit to the height difference that can be obtained.
This is restricted by bending angles at the boundaries of the braking zone, special equipment section, conveyance device, and run-up section. That is, there is a limit to the bending angle at the joints between the capsules (including the joints between the vehicles in the formation).
次に本発明における停電時の安全性について述べる。Next, safety in the event of a power outage in the present invention will be described.
仕切弁7,8は通常、電源OFFでもその直前の状態を
保持することができるから弁16.17を電源OFFの
状態では閉となるべく設定すればよい、これは例えばこ
れらの弁を空気駆動形成とし、電磁弁を上記目的の合致
するように設定することにより可能である。すなわち上
記例の中で述べたようにいずれの時点においても仕切弁
7.仕切弁8の両方が同時に開放されることはないため
、停電時に弁16.17が閉じていれば仕切弁8より右
方の発射用輸送路2°では空気の流れが停止する。この
状態では、昇圧発射装置の右方の輸送路の勾配によりカ
プセルが逆走してきても、急勾配が仕切弁8の下流側近
傍にない限り、カプセルはすみやかに停止するかもしく
は逆走速度はきわめて低い値となり、仕切弁に衝突する
ことはない。Since the gate valves 7 and 8 can normally maintain their previous state even when the power is turned off, it is sufficient to set the valves 16 and 17 to close when the power is turned off. This is possible by setting the solenoid valve to meet the above objectives. That is, as mentioned in the above example, at any time the gate valve 7. Since both gate valves 8 are never opened at the same time, if valves 16 and 17 are closed during a power outage, the flow of air will stop in the launch transport path 2° to the right of gate valve 8. In this state, even if the capsule runs backwards due to the slope of the transport path to the right of the boost launcher, unless the steep slope is near the downstream side of the gate valve 8, the capsule will stop quickly or the reverse speed will be reduced. The value is extremely low and will not collide with the gate valve.
[発明の効果]
以上のように本発明によれば、カプセルが制動ゾーン、
搬送装置、連結解除装置を経て移送されるため、カプセ
ルの編成両数、重量に関係なく自由な設計ができ、また
カプセル間隔制御のための複雑な操作を必要とせず、さ
らに、昇圧発射装置に設けたそれぞれの弁の操作により
停電時のトラブルも防止でき、一方で、これらの装置は
任意のルート上に直線的に配置可能で、占有面積も輸送
路管径の2倍径度で良く、シかも昇圧発射のために通常
のブロアを使用できるので昇圧効率の高いものである。[Effects of the Invention] As described above, according to the present invention, the capsule has a braking zone,
Because the capsules are transferred via a transport device and a decoupling device, it is possible to design them freely regardless of the number of capsules to be formed or their weight, and there is no need for complicated operations to control the distance between capsules. Troubles during power outages can be prevented by operating the respective valves installed, and on the other hand, these devices can be placed in a straight line on any route, and the area they occupy only needs to be twice the diameter of the transport pipe. It also has high boost efficiency because it can use a normal blower for boost firing.
一方、本発明では特に、助走部を有し、連結解除後のカ
プセルを発射点まで重力により移動させるようにしたの
で、発射推進用のブロア1台で足り経済的であり、しか
も安定走行も達成できる。On the other hand, the present invention especially has a run-up part so that the capsule after uncoupling is moved by gravity to the launch point, so it is economical because only one blower for launch propulsion is required, and stable running is also achieved. can.
第1図は本発明の一実施例の概要図、第2図〜第5図は
従来例の概要図、第6図は第5図例における輸送経路図
、第7図および第8図は比較装置の概要図である。
la〜ld、、、、カプセル 2 、、、、輸送路2
’ 、、、、発射用輸送路 3 、、、、自動連結装
置4、、、、搬送装置 5゜11.連結解除装
置7.8゜09.仕切弁 13 、、、、主ブロ
ア16 、17.、、、切換弁 F、、、、制動ゾー
ンG、、、、助走部 Hl、。5発射停止部
特許出願人 住友金属工業株式会社代理人弁理士
永 井 義 久 1第2図
第4図
第3図Fig. 1 is a schematic diagram of an embodiment of the present invention, Figs. 2 to 5 are schematic diagrams of conventional examples, Fig. 6 is a transport route diagram in the example of Fig. 5, and Figs. 7 and 8 are comparisons. FIG. 2 is a schematic diagram of the device. la~ld... Capsule 2... Transport route 2
' , , Launch transport path 3 , Automatic coupling device 4 , Transport device 5゜11. Uncoupling device 7.8°09. Gate valve 13, , main blower 16, 17. ,,,Switching valve F,,,braking zone G,,,,run-up section Hl,. 5 Launch stop portion Patent applicant: Yoshihisa Nagai, Patent attorney, Sumitomo Metal Industries, Ltd. 1 Figure 2 Figure 4 Figure 3
Claims (1)
せる自動連結装置と、連結したカプセルを前方へ搬送す
る搬送装置と、連結カプセルから先頭部カプセルの連結
を解除する連結解除装置と、先頭部カプセルを昇圧状態
で発射する昇圧発射装置とを備え;前記昇圧発射装置は
、発射用輸送路と、この発射用輸送路において形成され
、前記連結が解除された先頭部カプセルをその重力によ
り移送される下り勾配の助走部と、助走後先頭部カプセ
ルの静止点より上流側位置において前記輸送路に連通し
て形成された圧気の発射用吹込口とを有することを特徴
とするカプセル輸送における中間昇圧装置。(1) An automatic coupling device that connects the trailing capsule to the leading capsule by colliding with the leading capsule, a conveyance device that transports the coupled capsules forward, a disconnection device that disconnects the leading capsule from the connecting capsule, and the leading capsule. and a boost launcher that launches the capsule in a pressurized state; the boost launcher includes a launch transport path, and a launch transport path that is formed in the launch transport path to transport the disconnected leading capsule by its gravity. intermediate pressurization in capsule transport, characterized by having a run-up section with a downward slope, and a pressurized air ejection inlet formed in communication with the transport path at a position upstream from a stationary point of the leading capsule after run-up; Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5784385A JPS61217430A (en) | 1985-03-20 | 1985-03-20 | Intermediate pressure set-up device in capsule transport |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5784385A JPS61217430A (en) | 1985-03-20 | 1985-03-20 | Intermediate pressure set-up device in capsule transport |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61217430A true JPS61217430A (en) | 1986-09-27 |
JPH055731B2 JPH055731B2 (en) | 1993-01-25 |
Family
ID=13067254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5784385A Granted JPS61217430A (en) | 1985-03-20 | 1985-03-20 | Intermediate pressure set-up device in capsule transport |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61217430A (en) |
-
1985
- 1985-03-20 JP JP5784385A patent/JPS61217430A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH055731B2 (en) | 1993-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4023500A (en) | High-speed ground transportation system | |
US7326005B1 (en) | Air powered storage device for pneumatic transport system | |
JP3860978B2 (en) | Passenger transport equipment | |
US5566620A (en) | Levitated rail system | |
US6068428A (en) | Capsule train separation system for fluid capsule pipeline transporation | |
JPS61217430A (en) | Intermediate pressure set-up device in capsule transport | |
US4573830A (en) | Chip decelerator | |
JPS61217429A (en) | Intemediate pressure set-up method for capsule transport | |
EP0824435B1 (en) | Improvement in control circuit for operation of pneumatically propelled vehicles | |
US3829042A (en) | Installation for pneumatic conveyance of containerized loads through a tube | |
CN111216742A (en) | Pneumatic propulsion system for high-volume transport of passengers and/or goods | |
CN209583045U (en) | A kind of rotary multidirectional sending device of railway Cold Chain Logistics pipeline | |
US20120031295A1 (en) | Train yard classification system | |
WO2001081146A1 (en) | Moebius train | |
CN204775292U (en) | Tram vehicle adds conveyor of sand | |
JPS5924048B2 (en) | Forced air flow conveyance equipment for transport vehicles | |
JPS63136622U (en) | ||
CN114718829B (en) | Multi-stage suction type electric propulsion device | |
WO2019140870A1 (en) | Pipe air pressure regulating device | |
CN109625973A (en) | A kind of overall structure and its control method of railway Cold Chain Logistics pipe-line system | |
JPS5915857B2 (en) | Forced air long-distance conveyance equipment | |
JPS6153600B2 (en) | ||
JPS5856687B2 (en) | Plant for pneumatic transport of container contents by pipeline | |
JPS604092B2 (en) | Speed control method at the end of capsule transport | |
JPS5849451B2 (en) | Kanronaiyu Sou Sochi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |