JPS6153600B2 - - Google Patents

Info

Publication number
JPS6153600B2
JPS6153600B2 JP975878A JP975878A JPS6153600B2 JP S6153600 B2 JPS6153600 B2 JP S6153600B2 JP 975878 A JP975878 A JP 975878A JP 975878 A JP975878 A JP 975878A JP S6153600 B2 JPS6153600 B2 JP S6153600B2
Authority
JP
Japan
Prior art keywords
pipeline
liquid
gas
pig
relay station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP975878A
Other languages
Japanese (ja)
Other versions
JPS54102613A (en
Inventor
Kenjiro Isobe
Teruo Suzuki
Koichi Tobo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP975878A priority Critical patent/JPS54102613A/en
Publication of JPS54102613A publication Critical patent/JPS54102613A/en
Publication of JPS6153600B2 publication Critical patent/JPS6153600B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は長距離パイプラインにおける気液混
合2相流の輸送方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for transporting a gas-liquid mixed two-phase flow in a long-distance pipeline.

〔従来の技術〕[Conventional technology]

例えば海底油田において採取した原油を海底パ
イプラインで製油基地に輸送する方法として、原
油と共に採取されるガスを原油と一緒に送る方法
があり、このような気液混合2相流の輸送におい
ては、気体と液体との輸送性の差により液体分が
遅れて輸送されるために、パイプラインに液送用
のピグを通して液体分を押出し輸送することが行
われている。
For example, one method of transporting crude oil extracted from an offshore oil field to an oil refinery via an underwater pipeline is to transport the gas extracted together with the crude oil.In such two-phase gas-liquid transport, Because the liquid portion is transported with a delay due to the difference in transportability between gas and liquid, the liquid portion is transported by extrusion through the pipeline through a liquid delivery pig.

ところで、このような気液混合2相流を長距離
パイプラインで輸送する場合、ピグによつて押出
される液長が長くなると、輸送抵抗が大きくなつ
て輸送能力が極端に低下することから、一般には
パイプラインをピグ輸送の可能な長さごとに分割
して各区域のパイプライン間に中継基地を介在さ
せ、中継基地において輸送流に圧力を与えて次区
域のパイプラインに送り出すことが行われてい
る。すなわち、第1図は海底油田と製油基地を結
ぶ長距離パイプラインを示したもので、採油基地
Aから海底パイプライン1を通して送られる原油
とガスとの気液混合2相流は、海上プラツトホー
ムにピグレシーバ及びピグランチヤーと輸送流昇
圧装置を設置した中継基地Bにおいて昇圧され、
次区域のパイプラインに乗継いで輸送される。
By the way, when such a gas-liquid mixed two-phase flow is transported by a long-distance pipeline, as the length of the liquid pushed out by the pig increases, the transport resistance increases and the transport capacity is extremely reduced. In general, the pipeline is divided into lengths that allow for pig transportation, a relay station is interposed between the pipelines in each zone, and the transfer station applies pressure to the transported flow and sends it to the pipeline in the next zone. It is being said. In other words, Figure 1 shows a long-distance pipeline that connects an offshore oil field and an oil refinery base.The gas-liquid mixed two-phase flow of crude oil and gas sent from the oil extraction base A through the submarine pipeline 1 is transferred to the offshore platform. The pressure is boosted at relay station B, where a pig receiver, pig launcher, and transport flow booster are installed.
It is transferred to the next area's pipeline and transported.

このような長距離パイプラインにおける気液混
合2相流の輸送方法として従来は、中継基地に第
2図に示すように、ピグレシーバ2とピグランチ
ヤー3及び気液分離機4と、気体分を昇圧させて
送出するコンプレツサ5及び液体分を昇圧させて
送出するポンプ6を備え、前区域のパイプライン
1aを通つて中継基地に到達した輸送流を気液分
離機4により気体分と液体分に分離しながら、気
体分はコンプレツサ5により、また液体分はポン
プ6によりそれぞれ昇圧して次区域のパイプライ
ン1bに送出する方法が採用されている。なお、
この方法においては、前区域のパイプライン1a
を通つてきたピグはバルブ7を閉じることにより
ピグレシーバ2に受け取られ、また次区域のパイ
プライン1bに通されるピグはピグランチヤー3
から発射される。
Conventionally, as a method of transporting a gas-liquid mixed two-phase flow in such a long-distance pipeline, as shown in FIG. The system is equipped with a compressor 5 that pumps up the pressure of the liquid and sends it out, and a gas-liquid separator 4 separates the transport flow that reaches the relay station through the pipeline 1a in the front area into gas and liquid. However, a method is adopted in which the pressure of the gas component is increased by the compressor 5, and the pressure of the liquid component is increased by the pump 6, and then sent to the pipeline 1b in the next area. In addition,
In this method, the pipeline 1a in the front area
The pigs passing through are received by the pig receiver 2 by closing the valve 7, and the pigs passing through the pipeline 1b in the next section are received by the pig receiver 2.
is fired from.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、気液混合2相流のパイプライン
輸送においては、前述したように気体分より液体
分が遅れて輸送されるために、中継基地に先に到
達する気体分を先に次区域のパイプライン1bに
送出してしまうと、遅れて到達する液体分を液体
のみの輸送の形で次区域のパイプライン1bに送
られなければならないことになり、これでは2相
流輸送の利点が全くなくなつてしまうし、このよ
うな中継を各中継基地で繰り返えしたのでは液体
分の輸送長が長くなつて輸送能力を低下させるこ
とになる。このため、従来の方法では、第2図に
示すようにコンプレツサ5の出側に流量調節弁8
を設けて、先に到達した気体分の送出を押え、液
体分の送出に合わせて気体分を送出するようにし
ているが、このように液体分の到達を待つて次区
域パイプラインへの送出を行うのではパイプライ
ン中の輸送が断続的となるために輸送能率が悪
く、このため1区域のパイプライン長が150Km以
下に制限されるし、また気体分の送出を一旦押え
るために、後続輸送流の輸送圧でもつて十分送り
得る気体分をわざわざコンプレツサによつて昇圧
送出しなければならないから、このコンプレツサ
の設置のために中継基地の設備費及び維持費が高
くなつて、多くの中継基地を必要とする長距離パ
イプラインに採用したのでは輸送コストの面で折
り合わなくなる問題があつた。
However, in pipeline transportation of gas-liquid mixed two-phase flow, as mentioned above, the liquid component is transported later than the gas component, so the gas component that reaches the relay station first is transferred to the next area's pipeline. If it is sent to pipeline 1b, the liquid that arrives late will have to be sent to the next area, pipeline 1b, in the form of liquid-only transport, which eliminates the advantage of two-phase flow transport. Moreover, if such relaying were to be repeated at each relay station, the transport length of the liquid would become long and the transport capacity would be reduced. Therefore, in the conventional method, a flow control valve 8 is installed on the outlet side of the compressor 5 as shown in FIG.
is installed to suppress the delivery of the gas that arrived first and to send out the gas in conjunction with the delivery of the liquid.In this way, the system waits for the liquid to arrive before sending it to the next area pipeline. If this method is used, transportation in the pipeline will be intermittent, resulting in poor transportation efficiency, and for this reason, the pipeline length in one area will be limited to 150 km or less. Since it is necessary to use a compressor to pressurize and send out the amount of gas that can be sufficiently sent under the transport pressure of the transport stream, the installation of this compressor increases the equipment and maintenance costs of the relay station, and many relay stations There was a problem in that if it was adopted for long-distance pipelines that require

この発明は上記のような実情にかんがみてなさ
れたものであつて、その目的とするところは、中
継基地に到達した気体分を液体分の到達を待たず
に後続輸送流の輸送圧で次区域のパイプラインに
送出するようにし、液体分はその次に到達する気
体分と一緒に次区域のパイプラインに送出するよ
うにして、連続的な能率の良い輸送を行えるよう
にすると共に、これによつて1区域のパイプライ
ン長をわずかずつでも長くできるようにして中継
基地数を削減し、かつ中継基地から気体分昇圧用
コンプレツサをなくして中継基地の設備費及び維
持費を低減させることにより、長距離パイプライ
ンにおける輸送を低コストで行うことができるよ
うにした、既設パイプラインにも中継設備を変え
るだけで採用することのできる長距離パイプライ
ンにおける気液混合2相流の輸送方法を提供する
ことにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to transfer the gas that has reached the relay station to the next area using the transport pressure of the subsequent transport flow without waiting for the liquid to arrive. The liquid component is sent to the pipeline of the next area together with the gas component that reaches the next area, so that continuous and efficient transportation can be carried out. Therefore, the number of relay stations can be reduced by increasing the length of the pipeline in one area even slightly, and the equipment cost and maintenance cost of the relay station can be reduced by eliminating compressors for boosting the gas pressure from the relay station. Provides a method for transporting gas-liquid mixed two-phase flow in long-distance pipelines, which enables transportation in long-distance pipelines at low cost and can be adopted in existing pipelines by simply changing the relay equipment. It's about doing.

〔問題点を解決する手段〕[Means to solve problems]

この発明は、気液混合の2層流を輸送する長距
離パイプラインの中継基地に、この中継基地の前
区域パイプラインを輸送されてきた輸送流の気体
分を次区域のパイプラインに導く気体分バイパス
管路と、上記前区域パイプラインを輸送されてき
た輸送流の液体分を蓄積す液分貯槽と、後続輸送
流の輸送圧により上記液体分を押出し輸送してき
たピグを収納するピグレシーバと、前記液分貯槽
と次区域のパイプラインとを接続する液体分送出
管路と、この液体分送出管路に設けられたポンプ
と、上記次区域のパイプラインにピグを押出すピ
グランチヤーとを備えた中継設備を設け、 上記前区域パイプラインを輸送されてきた輸送
流のうち先に中継基地に到達した気体分は後続輸
送流の輸送圧により前記バイパス管路を通してそ
のまま次区域のパイプラインに送り、気体分より
遅れて中継基地に到達した液体分は前記液分貯槽
に蓄積して、前記液体分を押出し輸送してきたピ
グが前記ピグレシーバに収納され上記後続輸送流
の先に中継基地に到達した気体分が前記バイパス
管路を通つて次区域のパイプラインに送られると
きに、前記液分貯槽内の液体分をポンプにより前
記液体分送出管路に送出して、この液体分と上記
後続輸送流の気体分とを一緒に次区域のパイプラ
インに送り、この後前記ピグランチヤーから次区
域のパイプラインにピグを押出すことを特徴とす
るものである。
This invention is directed to a relay station of a long-distance pipeline that transports a two-layer flow of gas-liquid mixture, and which directs the gas component of the transport flow that has been transported through the pipeline in the front area of the relay station to the pipeline in the next area. a liquid storage tank for accumulating the liquid component of the transport flow that has been transported through the front section pipeline, and a pig receiver that stores the pig that has pushed out and transported the liquid component using the transport pressure of the subsequent transport flow. , comprising: a liquid distribution pipe connecting the liquid storage tank and a pipeline in the next zone; a pump provided on the liquid distribution pipeline; and a pig launcher for pushing the pig into the pipeline in the next zone. A relay facility is installed, and the gas portion of the transport stream transported through the pipeline in the previous area that reaches the relay station first is sent directly to the pipeline in the next area through the bypass pipe by the transport pressure of the subsequent transport flow. The liquid component that arrived at the relay station later than the gas component was accumulated in the liquid storage tank, and the pig that had pushed out and transported the liquid component was stored in the pig receiver and reached the relay station ahead of the subsequent transport stream. When the gaseous component is sent to the pipeline of the next section through the bypass pipeline, the liquid component in the liquid component storage tank is sent to the liquid component delivery pipeline by a pump, and this liquid component and the above-mentioned subsequent transportation are carried out. The method is characterized in that the gaseous portion of the stream is sent together with the pipeline of the next section, and then the pig is pushed out from the pig launcher to the pipeline of the next section.

〔作 用〕[Effect]

すなわち、この発明は、前区域パイプラインを
輸送されてきた輸送流のうち先に中継基地に到達
した気体分は遅れて中継基地に到達する液体分の
到達を待たずにバイパス管路を通してそのまま次
区域のパイプラインに送り、気体分より遅れて中
継基地に到達した液体分は一旦液分貯槽に蓄積し
て、続いて中継基地に到達した後続輸送流の気体
分を前記バイパス管路を通して次区域のパイプラ
インに送るときに、前記液分貯槽に貯槽した液体
分をポンプにより昇圧させて後続輸送流の気体分
と一緒に次区域のパイプラインに送るようにした
ものであり、この発明によれば、輸送流を次区域
のパイプラインに中継する際に、遅れて中継基地
に到達する液体分の到達を待つ必要はないから、
連続的な能率の良い輸送を行なうことができる
し、また、輸送流のうちの気体分は後続輸送流の
輸送圧により次区域のパイプラインに送るように
しているために、中継基地に気体分の昇圧用コン
プレツサを設ける必要がなくなるから、中継基地
の設備費及び維持費を低減することができる。
In other words, in this invention, the gas portion of the transport flow that has been transported through the front area pipeline, which reaches the relay station first, is directly passed through the bypass pipe to the next without waiting for the liquid portion, which is delayed to arrive at the relay station. The liquid component that is sent to the pipeline in the zone and arrives at the relay station later than the gas component is temporarily accumulated in a liquid storage tank, and then the gas component of the subsequent transport flow that reaches the relay station is passed through the bypass pipe and transferred to the next zone. When sending the liquid to the pipeline in the next area, the liquid stored in the liquid storage tank is pressurized by a pump and sent to the pipeline in the next area together with the gas in the subsequent transport stream. For example, when relaying a transport flow to a pipeline in the next area, there is no need to wait for the liquid to arrive at the relay station late.
Continuous and efficient transport can be performed, and since the gas component of the transport flow is sent to the next pipeline by the transport pressure of the subsequent transport flow, the gas component is not transferred to the relay station. Since there is no need to provide a boost compressor, the equipment cost and maintenance cost of the relay station can be reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面を参照して説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発明において採用される中継設備
の一例を示したもので、図中2はピグレシーバ、
3はピグランチヤー、6は液送用のポンプ、9は
密閉構造の液分貯槽であり、中継基地の前区域パ
イプライン1aは上記ピグレシーバ2と液分貯槽
9とに分岐導入されており、前記パイプライン1
aを輸送されてきた輸送流は、重力差によつて気
体分はピグレシーバ2の入側に流れ、液体分は液
分貯槽9に流れ込むようになつている。10は上
記ピグレシーバ2の入側とピグランチヤー3の出
側を結ぶバイパス管路、11〜16は気体分流路
切換弁、17は上記液分貯槽9に接続された液体
分送出管路であり、この管路17には前記ポンプ
6と流量調節弁18及び逆止弁19が介在させて
あり、この管路17と上記ピグランチヤー3の出
側は次区域のパイプライン1bに接続されてい
る。
Figure 3 shows an example of relay equipment employed in this invention, in which 2 is a pig receiver;
3 is a pig launcher, 6 is a pump for liquid delivery, and 9 is a liquid storage tank with a closed structure. The front area pipeline 1a of the relay station is branched into the pig receiver 2 and the liquid storage tank 9, and the pipe line 1
Due to the difference in gravity, the gas component of the transport stream that has been transported a flows into the inlet side of the pig receiver 2, and the liquid component flows into the liquid storage tank 9. 10 is a bypass pipe connecting the inlet side of the pig receiver 2 and the outlet side of the pig launcher 3; 11 to 16 are gas branch flow switching valves; 17 is a liquid branch delivery pipe connected to the liquid storage tank 9; The pump 6, a flow control valve 18, and a check valve 19 are interposed in the pipeline 17, and the outlet side of the pipeline 17 and the pig launcher 3 are connected to the pipeline 1b of the next section.

次に、上記のような中継設備を中継基地に備え
て行われる気液混合2相流の輸送について説明す
る。
Next, a description will be given of transportation of a gas-liquid mixed two-phase flow carried out by equipping a relay station with the above-mentioned relay equipment.

今、仮りに前区域のパイプライン1aを輸送さ
れてきた気液2相流のうち輸送速度の速い気体分
が中継基地に到達したとする。前記流路切換弁1
1〜16はこの時点においては切換弁11,14
が開かれ、他の切換弁12,13及び15,16
は閉じられた状態となるように切換えられてお
り、従つて前記気体分はバイパス管路10を通つ
て次区域のパイプライン1bに送られ、後続輸送
流の輸送圧によつてそのまま次区域パイプライン
1bを輸送される。一方、前区域のパイプライン
1aを送られてくるピグが中継基地に近ずくのに
ともなつて、ピグにより押出し輸送されてくる液
体分が中継基地に到達すると、この液体分はその
重力と後方からの押圧によつて液分貯槽9内に流
れ込み、この貯槽9内に蓄積される。なお、上記
液分貯槽9への分岐管路はピグが入り込まないよ
うに設計されており、これにより中継基地に到達
したピグはピグレシーバ2に向つて送られる。し
かして上記液分貯槽9への液体分の蓄積が開始さ
れると、前記切換弁11〜16は自動的に切換弁
11が閉、切換弁12,13が開の状態となるよ
うに切換えられ(他の切換弁はそれまでの状態を
維持する………以下同じ)、前区域のパイプライ
ン1aを輸送されてきた液体分が全て液分貯槽9
に蓄積されると、ピグが後続輸送流(気体分)に
押されて切換弁12を通つてピグレシーバ2内に
収納される。こうしてピグが収納されると、上記
切換弁11,12,13はそれまでの状態と逆に
切換えられ(ピグレシーバに収納されたピグはこ
の後に取出される)、これによつて気体分はバイ
パス管路10を通つて次区域のパイプライン1b
に送出される。この気体分の中継輸送が始まる
と、前区域のパイプライン1aを送られてくる気
体分の送圧は上記液分貯槽9にも作用し、この気
体分の送圧により貯槽9内の液体分がサイホンの
原理で液体分送出管路17に送出される。なお、
上記貯槽9を中継基地の上方に高く位置させ、中
継基地に到達した液体分を後方の押圧により貯槽
9内に送り込むようにすれば、貯槽9内の液頭圧
によつて液体分を送出管路17に送出することが
できる。そしてこの液体分は、前記ピグの収納と
同時に駆動されるポンプ6によつて昇圧送出さ
れ、流量調節弁18により流量を一定に制御され
ながら、逆止弁19を介して送出された後、前記
バイパス管路10を通つて送出されてくる気体分
と合流して次区域のパイプライン1bに送られ
る。このようにして貯槽9に蓄積された液体分が
次区域のパイプライン1bに送出されると、その
送出完了と同時に切換弁14が閉じられ、同時に
切換弁15,16が開かれて、バイパス管路10
を通つてきた気体分がピグランチヤー3を通つて
流れることにより、この気体分の送圧によりピグ
ランチヤー3からピグが押出されて次区域のパイ
プライン1bに送られる。なお、上記切換弁1
4,15,16はピグの押出しが終了した後に再
び逆に切換えられ、これを待つてピグランチヤー
3内に次に送られるピグが装入される。また上記
ピグランチヤー3からピグが押出される時期とピ
グレシーバ2にピグが収納される時期はほぼ同時
であり、前述の中継動作を繰り返すことにより、
中継基地に気体分より遅れて到達する液体分を後
続の気体分との2相流として次区域のパイプライ
ン1bに輸送する気液混合2相流の中継が行われ
る。
Now, let us assume that the gas component with a high transport speed among the gas-liquid two-phase flow transported through the pipeline 1a in the front area has reached the relay station. Said flow path switching valve 1
1 to 16 are switching valves 11 and 14 at this point.
is opened, and the other switching valves 12, 13 and 15, 16 are opened.
is switched to a closed state, so that the gaseous portion is sent through the bypass line 10 to the pipeline 1b of the next section, and is directly transferred to the next section pipe by the transport pressure of the subsequent transport flow. It is transported along line 1b. On the other hand, as the pig sent through pipeline 1a in the front area approaches the relay station, the liquid pushed out and transported by the pig reaches the relay station. The liquid flows into the liquid storage tank 9 under pressure from the liquid storage tank 9 and is accumulated therein. The branch pipe to the liquid storage tank 9 is designed to prevent pigs from entering, so that the pigs that reach the relay station are sent toward the pig receiver 2. When accumulation of liquid in the liquid storage tank 9 is started, the switching valves 11 to 16 are automatically switched so that the switching valve 11 is closed and the switching valves 12 and 13 are opened. (Other switching valves maintain their previous states...the same applies hereafter), all the liquid transported through the pipeline 1a in the previous area is transferred to the liquid storage tank 9.
Once accumulated, the pig is pushed by the subsequent transport flow (gas content) and is received into the pig receiver 2 through the switching valve 12. When the pig is stored in this way, the switching valves 11, 12, and 13 are switched in the opposite direction to the previous state (the pig stored in the pig receiver is then taken out), and thereby the gas is transferred to the bypass pipe. Pipeline 1b in the next area through route 10
will be sent to. When the relay transportation of this gas starts, the pressure of the gas sent through the pipeline 1a in the front section also acts on the liquid storage tank 9, and the pressure of this gas causes the liquid in the storage tank 9 to is delivered to the liquid delivery line 17 using the siphon principle. In addition,
If the storage tank 9 is located high above the relay station and the liquid that has reached the relay station is sent into the storage tank 9 by pressure from the rear, the liquid head pressure in the storage tank 9 will cause the liquid to be transferred to the delivery pipe. 17. Then, this liquid is pumped out by the pump 6 which is driven at the same time as the pig is housed, and is sent out through the check valve 19 while the flow rate is controlled to be constant by the flow rate regulating valve 18. It joins with the gas delivered through the bypass pipe line 10 and is sent to the next section, the pipeline 1b. When the liquid accumulated in the storage tank 9 is sent to the pipeline 1b of the next area, the switching valve 14 is closed at the same time as the sending is completed, and the switching valves 15 and 16 are simultaneously opened and the bypass pipe is opened. Road 10
As the gas that has passed through flows through the pig launcher 3, the pressure of the gas causes the pig to be pushed out of the pig launcher 3 and sent to the pipeline 1b in the next area. In addition, the above switching valve 1
4, 15, and 16 are reversely switched again after the extrusion of the pig ends, and after this, the next pig to be sent into the pig launcher 3 is charged. Furthermore, the time when the pig is pushed out from the pig launcher 3 and the time when the pig is stored in the pig receiver 2 are almost the same, and by repeating the above-mentioned relay operation,
A gas-liquid mixed two-phase flow is relayed in which the liquid component, which arrives at the relay station later than the gas component, is transported to the next area, the pipeline 1b, as a two-phase flow with the subsequent gas component.

なお、上記ポンプ6の送出圧はパイプラインを
送られる2相流の液体分と気体分の混合率に応じ
て決定され、例えば海底油田から採取された原油
とガスとの混合2相流を1区間200Kmのパイプラ
インで輸送する場合は70Kg/cm2程度の送出圧とさ
れる(この場合、中継基地に到達した2相流の送
圧は、油分が多い場合で50Kg/cm2程度に、ガス分
が多い場合で40Kg/cm2程度に低下する)。
Note that the delivery pressure of the pump 6 is determined according to the mixing ratio of liquid and gas in the two-phase flow sent through the pipeline. When transporting by a pipeline with a length of 200km, the delivery pressure is approximately 70Kg/ cm2 (in this case, the pressure of the two-phase flow that reaches the relay station is approximately 50Kg/ cm2 if the oil content is high). (If the gas content is high, it will drop to about 40Kg/ cm2 ).

〔発明の効果〕〔Effect of the invention〕

この発明は、前区域パイプラインを輸送されて
きた輸送流のうち先に中継基地に到達した気体分
は遅れて中継基地に到達する液体分の到達を待た
ずに後続輸送流の輸送圧によりバイパス管路を通
してそのまま次区域のパイプラインに送り、気体
分より遅れて中継基地に到達した液体分は一旦液
分貯槽に蓄積して、続いて中継基地に到達した後
続輸送流の気体分を前記バイパス管路を通して次
区域のパイプラインに送るときに、前記液分貯槽
に貯蓄した液体分をポンプにより昇圧させて後続
輸送流の気体分と一緒に次区域のパイプラインに
送るようにしたものであり、この発明によれば、
中継基地に到達した気体分を液体分の到達を待た
ずに後続輸送流の輸送圧で次区域のパイプライン
に送出するようにし、液体分はその次に到達する
気体分と一緒に次区域のパイプラインに送出する
ようにしたことにより、連続的な能率の良い輸送
を行うことができるし、またこのようにすること
によつて1区域のパイプライン長をわずかずつで
も長くすることができるから、中継基地数を削減
することができ、かつ中継基地から気体分昇圧用
コンプレツサをなくして中継基地の設備費及び維
持費を低減させ、長距離パイプラインにおける気
液混合2相流の輸送を低コストで行うことができ
る。なお、この輸送方法は既設のパイプラインに
も中継設備を変えるだけで実施することができ
る。
In this invention, the gas portion of the transport flow that has been transported through the front area pipeline, which reached the relay station first, is bypassed by the transport pressure of the subsequent transport flow without waiting for the liquid portion that reaches the relay station later. The liquid component that reaches the relay station later than the gas component is sent as it is to the pipeline in the next area through the pipe, and is temporarily accumulated in the liquid storage tank. When sending the liquid through the pipe to the pipeline in the next area, the liquid stored in the liquid storage tank is pressurized by a pump and sent to the pipeline in the next area along with the gas in the subsequent transport flow. , according to this invention,
The gas that has reached the relay station is sent to the pipeline in the next area using the transport pressure of the subsequent transport flow without waiting for the liquid to arrive, and the liquid is transferred to the next area along with the gas that arrives next. By sending out to the pipeline, continuous and efficient transportation can be carried out, and by doing so, the length of the pipeline in one area can be lengthened even slightly. , the number of relay stations can be reduced, and compressors for boosting the gas content can be eliminated from the relay stations, reducing the equipment costs and maintenance costs of the relay stations, and the transportation of gas-liquid mixed two-phase flow in long-distance pipelines can be reduced. It can be done at a cost. Note that this transportation method can also be implemented on existing pipelines by simply changing the relay equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中継基地を介して気液混合2相流を輸
送するパイプラインの一例を示す配管図、第2図
は従来の中継設備を示す中継系統図、第3図はこ
の発明において採用される中継設備の一例を示す
中継系統図である。 1a……前区域パイプライン、1b……次区域
パイプライン、2……ピグレシーバ、3……ピグ
ランチヤー、6……ポンプ、9……液分貯槽、1
0……バイパス管路、18……流量調節弁。
Fig. 1 is a piping diagram showing an example of a pipeline that transports a gas-liquid mixed two-phase flow via a relay station, Fig. 2 is a relay system diagram showing conventional relay equipment, and Fig. 3 is a piping diagram showing an example of a pipeline that transports a gas-liquid mixed two-phase flow through a relay station. FIG. 2 is a relay system diagram showing an example of relay equipment. 1a...Previous area pipeline, 1b...Next area pipeline, 2...Pig receiver, 3...Pig launcher, 6...Pump, 9...Liquid storage tank, 1
0... Bypass pipe line, 18... Flow rate control valve.

Claims (1)

【特許請求の範囲】 1 気液混合の2層流を輸送する長距離パイプラ
インの中継基地に、この中継基地の前区域パイプ
ラインを輸送されてきた輸送流の気体分を次区域
のパイプラインに導く気体分バイパス管路と、上
記前区域パイプラインを輸送されてきた輸送流の
液体分を蓄積す液分貯槽と、後続輸送流の輸送圧
により上記液体分を押出し輸送してきたピグを収
納するピグレシーバと、前記液分貯槽と次区域の
パイプラインとを接続する液体分送出管路と、こ
の液体分送出管路に設けられたポンプと、上記次
区域のパイプラインにピグを押出すピグランチヤ
ーとを備えた中継設備を設け、 上記前区域パイプラインを輸送されてきた輸送
流のうち先に中継基地に到達した気体分は後続輸
送流の輸送圧により前記バイパス管路を通してそ
のまま次区域のパイプラインに送り、気体分より
遅れて中継基地に到達した液体分は前記液分貯槽
に蓄積して、前記液体分を押出し輸送してきたピ
グが前記ピグレシーバに収納され上記後続輸送流
の先に中継基地に到達した気体分が前記バイパス
管路を通つて次区域のパイプラインに送られると
きに、前記液分貯槽内の液体分をポンプにより前
記液体分送出管路に送出して、この液体分と上記
後続輸送流の気体分とを一緒に次区域のパイプラ
インに送り、この後前記ピグランチヤーから次区
域のパイプラインにピグを押出すことを特徴とす
る長距離パイプラインにおける気液混合2相流の
輸送方法。
[Scope of Claims] 1. To a relay station of a long-distance pipeline that transports a two-layer flow of gas-liquid mixture, the gas portion of the transport flow that has been transported through the pipeline in the previous area of this relay station is transferred to the pipeline in the next area. A gas bypass pipe leading to the front area, a liquid storage tank that accumulates the liquid part of the transport flow that has been transported through the pipeline in the previous area, and a pig that has pushed out and transported the liquid part using the transport pressure of the subsequent transport flow. a pig receiver, a liquid delivery pipe that connects the liquid storage tank with a pipeline in the next area, a pump installed in the liquid delivery pipe, and a pig launcher that pushes the pig into the pipeline in the next area. A relay facility is installed, and the gas portion of the transport stream transported through the pipeline in the previous area that reaches the relay station first is transferred directly to the pipe in the next area through the bypass pipeline due to the transport pressure of the subsequent transport flow. The liquid component that is sent to the line and reaches the relay station later than the gas component is accumulated in the liquid storage tank, and the pig that has pushed out and transported the liquid component is stored in the pig receiver and sent to the relay station ahead of the subsequent transport flow. When the gas that has reached the area is sent to the pipeline of the next area through the bypass pipe, the liquid in the liquid storage tank is sent to the liquid delivery pipe by a pump, and this liquid and A gas-liquid mixed two-phase flow in a long-distance pipeline, characterized in that the gas component of the subsequent transport flow is sent together to the pipeline in the next zone, and then the pig is pushed out from the pig launcher to the pipeline in the next zone. transportation method.
JP975878A 1978-01-31 1978-01-31 Transfer method for gas-liquid two-phase flow in long- distance pipeline Granted JPS54102613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP975878A JPS54102613A (en) 1978-01-31 1978-01-31 Transfer method for gas-liquid two-phase flow in long- distance pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP975878A JPS54102613A (en) 1978-01-31 1978-01-31 Transfer method for gas-liquid two-phase flow in long- distance pipeline

Publications (2)

Publication Number Publication Date
JPS54102613A JPS54102613A (en) 1979-08-13
JPS6153600B2 true JPS6153600B2 (en) 1986-11-18

Family

ID=11729174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP975878A Granted JPS54102613A (en) 1978-01-31 1978-01-31 Transfer method for gas-liquid two-phase flow in long- distance pipeline

Country Status (1)

Country Link
JP (1) JPS54102613A (en)

Also Published As

Publication number Publication date
JPS54102613A (en) 1979-08-13

Similar Documents

Publication Publication Date Title
US5842816A (en) Pig delivery and transport system for subsea wells
US4160652A (en) Method and apparatus for handling the fluids in a two-phase flow pipeline system
US3486297A (en) Liquid and gas pumping unit
AU2008251130B2 (en) Method for liquid control in multiphase fluid pipelines
CN109138965B (en) Slug flow trapping system and method based on low-pressure liquid storage
GB2559149A (en) Offshore CO2 transport system
US3135278A (en) Loading pipeline pigging system and method
JPS6153600B2 (en)
CN105814277A (en) Subsea filler line system and method for transporting various fluids through a master flow conduit
RU2341723C2 (en) System for reducing liquid collection in pipeline with polyphase flow
EP2895247A2 (en) Subsea processing
WO2002044601A3 (en) Pigging method and apparatus
KR930701716A (en) Single and Multistage Refrigerators Using Hydrocarbons and Such Refrigeration Methods
CN105151791A (en) Novel pipeline logistics conveying system for solid goods in metro region and conveying method of novel pipeline logistics conveying system
US2672371A (en) Transportation of solids through pipe lines
RU2016349C1 (en) Pre-repair procedures for main pipeline
CA2069542C (en) Underground pipe storage loop
SU1070376A1 (en) Method for transferring small batches of liquid
CN207005703U (en) The two-way handler of liquefied natural gas harbour
US3339984A (en) Pump bypass method and apparatus for pipeline transportation systems
RU2281239C2 (en) Automated rail cement storage facility
SU1006348A1 (en) Container stopping station of pipeline transport systems
RU2133865C1 (en) Propellant supply system for power plant of space orbital complex
CN85102392A (en) Fluid vibration apparatus
RU2196258C1 (en) Intermediate supply station