JPS61217429A - Intemediate pressure set-up method for capsule transport - Google Patents

Intemediate pressure set-up method for capsule transport

Info

Publication number
JPS61217429A
JPS61217429A JP5784285A JP5784285A JPS61217429A JP S61217429 A JPS61217429 A JP S61217429A JP 5784285 A JP5784285 A JP 5784285A JP 5784285 A JP5784285 A JP 5784285A JP S61217429 A JPS61217429 A JP S61217429A
Authority
JP
Japan
Prior art keywords
capsule
gate valve
blowing
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5784285A
Other languages
Japanese (ja)
Other versions
JPH055730B2 (en
Inventor
Sanai Kosugi
佐内 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5784285A priority Critical patent/JPS61217429A/en
Publication of JPS61217429A publication Critical patent/JPS61217429A/en
Publication of JPH055730B2 publication Critical patent/JPH055730B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • De-Stacking Of Articles (AREA)

Abstract

PURPOSE:To improve allowable scope of design, by connecting a pressure set-up projection device consisting of upper and lower sluice valves, a suction blower, a main blower, and switch valves, in order to project for pressure set-up purpose, after arranging to connect a braking zone, link-up portions, a carrier device, and connection releasing devices. CONSTITUTION:A capsule 1d in a braking zone F is decelerated to strike and connect a capsule 1c await forward, and a capsule 1b is moved forward by a carrier device 4 to release the connection of capsules 1b and 1a. In this case, a sluice valve 7 is opened, a sluice valve 8 is closed, and a switch valve 11 is opened, to drive a suction blower 12, so that the capsule 1a is sucked and brought to the end of the suction and blowing portion D. The capsule 1a is braked by the air pressure between the capsule and the sluice valve 8. Then valves 7 and 11 are closed and valves 8 and 10 are opened, and a main blower 13 is driven to deliver the capsule la up to the front of the blowing and projection portion E, and the capsule 1a is projected after converting the switch valves 10 and 9. In such a composition, the allowable scope of design is widened and pressure set-up efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気カプセル輸送路の中間昇圧方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for increasing the intermediate pressure of an air capsule transport path.

[従来の技術] 空気カプセル輸送は、被輸送物を車輪付カプセルに積載
し、輸送路(パイプライン)内を気流にのせて輸送する
ものであるが、輸送路が長くなると輸送圧が低下するた
め、1m径のパイプで、被輸送物の荷重によっても異な
るが5〜6kmで中間昇圧が必要となる。この中間昇圧
方法として、次記(1)〜(4)のような方法が提案さ
れている。
[Prior art] Air capsule transportation involves loading objects to be transported into wheeled capsules and transporting them on air currents within a transportation route (pipeline), but the longer the transportation route, the lower the transportation pressure. Therefore, for a pipe with a diameter of 1 m, an intermediate pressure increase is required after 5 to 6 km, depending on the load of the transported object. As this intermediate boosting method, the following methods (1) to (4) have been proposed.

(1)エアバイパス・二連仕切弁方式(ソ連で唯一実用
化されている) これはエアバイパス区間を用いてカプセル間隔を保った
上で中間昇圧を行うものである。すなわち、カプセル間
隔より若干短い間隔でエアバイパスを設置し、このエア
バイパスは輸送路本管内の空気をある区間バイパスする
ことによりその区間のカプセルの推進力をなくし、カプ
セルを停止させようとするもので走行カプセルの自然惰
行距離より少し長い水平な木管とその区間のエアバイパ
スとから成る。(本管に仕切弁を設けることによりバイ
パス区長を短くしたものもある。)このエアバイパスは
直下流のエアバイパス区間の木管内を先行カプセルが通
過完了しない限り、後続カプセルをその区間内に停めて
おくことにより隣り合うエアバイパス間のカプセル数を
1以下にしてカプセル間隔をつねにエアバイパス間の距
離以上に保つ機能を有する。こうして輸送路中、いずれ
の場所においてもカプセルはある値以上の間隔で通過す
ることになる。このような措置がとられたシルテムにお
いて次のような中間昇圧が可能となる。すなわち第5図
(SL)〜(f)において、カプセルlが輸送路2の上
流側仕切弁Glに近づくと気流の放出口がSZから8里
に切替わり[(a)→(b)]、カプセルlが01を通
過すると01が閉じ下流側の仕切弁G2が開き[(b)
→(c)]、続いて気流の吹込口がDlからDlに切替
わり[(C)→(d)] 、カプセルが02を通過する
と吹込口がDlからDlに切替わり[(d)→Ce> 
1 、続いてG2が閉じ0里が開き、放出口が51から
52に切替わる[(e)→(f)]ようになっており中
中間圧が行われる。
(1) Air bypass/double gate valve system (the only one in practical use in the Soviet Union) This uses an air bypass section to maintain the capsule spacing and then performs intermediate pressurization. In other words, air bypasses are installed at intervals slightly shorter than the capsule spacing, and these air bypasses bypass the air in the main transportation route in a certain section, thereby eliminating the propulsive force of the capsule in that section and stopping the capsule. It consists of a horizontal wood pipe that is slightly longer than the natural coasting distance of the capsule and an air bypass in that section. (There are also systems that shorten the length of the bypass section by installing a gate valve in the main pipe.) This air bypass prevents subsequent capsules from stopping within the air bypass section until the preceding capsule has passed through the wood pipe of the air bypass section immediately downstream. By doing so, the number of capsules between adjacent air bypasses is set to 1 or less, and the capsule interval is always maintained at a distance greater than or equal to the distance between air bypasses. In this way, the capsules will pass at intervals of a certain value or more at any location along the transport route. At Siltem, where such measures are taken, the following intermediate pressure increases will be possible. That is, in FIGS. 5 (SL) to (f), when the capsule l approaches the upstream gate valve Gl of the transport path 2, the airflow outlet is switched from SZ to 8ri [(a) → (b)], When capsule l passes through 01, 01 closes and downstream gate valve G2 opens [(b)
→(c)], then the airflow inlet switches from Dl to Dl [(C)→(d)], and when the capsule passes 02, the airflow inlet switches from Dl to Dl [(d)→Ce >
1, then G2 is closed, 0ri is opened, and the discharge port is switched from 51 to 52 [(e)→(f)], so that intermediate pressure is applied.

(2)フラップ弁方式 これはイギリスで開発され実証テストが行なわれている
もので、第6図(&)〜(f)にその機構を示す、すな
わち、輸送路2を搬送されてきたカプセル1が気流の吸
込口Sの上流にあるとき。
(2) Flap valve system This has been developed in the UK and is being tested, and its mechanism is shown in Figures 6(&) to (f). is upstream of the airflow suction port S.

ブロアで発生する差圧により弁Nが閉じている[(a)
]、(b)はカプセルが吸込口Sを遮る位置に到達した
状態を示す、このときカプセルlとフラップ弁Nとの間
の空気が圧縮され、弁Nの前後の差圧が逆転して弁Nが
すみやかに開く。
Valve N is closed due to the differential pressure generated by the blower [(a)
], (b) shows the state in which the capsule has reached the position where it blocks the suction port S. At this time, the air between the capsule L and the flap valve N is compressed, and the differential pressure across the valve N is reversed, causing the valve to close. N opens quickly.

(C)は列車先頭カプセルlの前シールが弁Nを通過し
ようとしている時点のものである。カプセルlが弁Nを
通過する間、弁Nは対重の働きで開放状態に保たれる(
d)0列車の最i尾が吐出口Hを通過すると、気流が弁
の下方を逆流できるようになり、弁Nの上下の差圧が生
じて弁Nが閉じ[(e)→(f)]、カプセルlはブロ
アからの気流に押されて前進する。
(C) shows the moment when the front seal of the train's leading capsule l is about to pass through the valve N. While the capsule l passes through the valve N, the valve N is kept open by the action of the counterweight (
d) When the i-most tail of the 0 train passes through the discharge port H, the airflow becomes able to flow backwards under the valve, creating a pressure difference between the top and bottom of the valve N, which closes the valve [(e) → (f) ], the capsule l is pushed forward by the airflow from the blower.

(3)ジェットポンプ式 これは第7図に示すように、輸送路2内の気流の一部を
抜出し、ブロアによりジェットノズルPを介してジェッ
ト気流を輸送路z内に噴射し、走行カプセルを吸込圧に
より移行させて推進するものである。
(3) Jet pump type As shown in Fig. 7, this jet pump extracts a part of the airflow in the transportation path 2, uses a blower to inject the jet airflow into the transportation path z through the jet nozzle P, and moves the traveling capsule. It is moved and propelled by suction pressure.

(4)連続荷役装置流用式 これは1例えば特公昭59−45570号公報に開示さ
れているような連続荷役装置で、荷役を行なわずに中間
昇圧装置として利用する方法で既存技術の応用である。
(4) Continuous cargo handling system diversion type This is a continuous cargo handling system such as the one disclosed in Japanese Patent Publication No. 59-45570, which is used as an intermediate booster without cargo handling, and is an application of existing technology. .

第8図に示すように制動ゾーンF、カプセル相互の自動
連結装置3カプセル搬送装置4、連結解除装置5、スイ
ッチバック式発射筒16および吸引および主ブロア12
,13よりなる。制動ゾーンでは輸送路2内を高速で走
行してきたカプセルを所定速度に制御し、先行カプセル
に追突させ、カプセル前後に設けられている自動連結装
置3にてそれぞれを連結させ、搬送装置4でカプセルを
搬送し、連結解除装置5により連結を解き、発射筒21
に導き、発射筒21を発射用輸送路2′に方向変換しカ
プセルを主ブロア13からの気流により発射させるもの
である。この連続荷役装置流用式に関するそれぞれの装
置および速度制御方法について、いくつかの提案が開示
されている。たとえば、各装置に関しては実公昭59−
16342.同59−16346、同59−16374
.同59−16348号各公報が、速度制御方法に関し
ては特開昭57−145719、同57−164321
号各公報がある。
As shown in FIG. 8, there is a braking zone F, an automatic capsule coupling device 3, a capsule conveying device 4, a coupling release device 5, a switchback type launcher 16, and a suction and main blower 12.
, 13. In the braking zone, the capsule traveling at high speed on the transport route 2 is controlled to a predetermined speed, collides with the preceding capsule, is connected by the automatic coupling device 3 installed at the front and rear of the capsule, and the capsule is separated by the transport device 4. is transported, uncoupled by the uncoupling device 5, and released from the launch tube 21.
The main blower 13 directs the launch tube 21 to the launch transport path 2' and launches the capsule using the airflow from the main blower 13. Several proposals have been disclosed regarding devices and speed control methods related to this continuous cargo handling system. For example, regarding each device,
16342. 59-16346, 59-16374
.. Publications No. 59-16348 and JP-A No. 57-145719 and No. 57-164321 regarding the speed control method
There are various publications.

[発明が解決しようとする問題点] カプセル輸送の昇圧方法には以上のようなものがあるが
これらはいずれも以下のような問題点を有している。
[Problems to be Solved by the Invention] There are the above pressurization methods for transporting capsules, but they all have the following problems.

(イ)エフバイパス・二連仕切弁方式 この方法はカプセル間隔が一定以上に保たれるため、確
実な作動が保証されやすい利点をもつ反面、最も大きな
欠点としてカプセル間隔を制御するためにカプセル間隔
より短い間隔でエアバイパスを設けることが必要なこと
である。工゛アバイパスの長さは、カプセル速度10m
/S、ころがり抵抗係数p=0.005で設計して[i
を超す、このような長い水平区間をとることは我国の国
土事情から不可能に近く、このため、エアバイパスは本
管に仕切弁を設けた形式をとらざるを得ない、この場合
のバイパス区間の長さは本管φ1mのシステムでカプセ
ル重量W=9000kg、もれ率ψ= 0.03(シー
ル性を評価する特性値)で設計して200m近くになる
。この程度の長さの水平区間をとることは不可能ではな
いにしても短い間隔でとることは極めて困難となる0例
えば2に鵬程度の間隔でエアバイパスを設置することは
カプセル間隔をこれ以上大きくすることを意味し、ある
量の輸送量を確保するにはカプセルの編成両数を増すこ
とになる0例えば木管φ1mのシステムでカプセル速度
8m/Sとして15両編成前後となる。このようにカプ
セルを長大な編成にするとステーションでの制動・発射
が困難となり、積込や荷卸装置も大型となるため、コス
ト面で実用性が少ない。
(b) F-bypass/double gate valve system This method has the advantage of ensuring reliable operation because the capsule spacing is maintained above a certain level, but the biggest drawback is that the capsule spacing is It is necessary to provide air bypasses at shorter intervals. The length of the factory bypass is capsule speed 10m.
/S, designed with rolling resistance coefficient p = 0.005 [i
It is almost impossible to create such a long horizontal section due to the land situation of our country, so the air bypass has no choice but to have a gate valve installed in the main pipe.In this case, the bypass section The length of is approximately 200 m in a system with main pipe φ1 m, capsule weight W = 9000 kg, and leakage rate ψ = 0.03 (characteristic value for evaluating sealing performance). Although it is not impossible to take horizontal sections of this length, it is extremely difficult to take them at short intervals. This means increasing the number of capsules in order to secure a certain amount of transportation.For example, in a system with a woodwind diameter of 1 m, the capsule speed is 8 m/s, and the number of capsules is approximately 15 cars. If the capsules are formed into a long formation like this, it will be difficult to brake and launch at the station, and the loading and unloading equipment will also be large, making it less practical in terms of cost.

(ロ)フラップ弁方式 この方法は弁操作を加える必要がない利点をもつが、停
−電などでシルテムが停止した際にトラブルを起こす恐
れが大きい、すなわち、輸送路には起伏が避けられない
ので、この昇圧装置の下流側にとり傾斜がある場合、シ
ステムが停止して管内の気流がなくなるとカプセルは逆
流を始め、フラップ弁に右方から衝突する。この弁は左
方からのカプセル進入に対しては衝突を回避する構造と
なっているが右方からのカプセル進入に対しては何ら防
御策をもたず、弁破損あるいはカプセル破損を招く、こ
れを防止するためには、上り傾斜部と昇圧装置との間に
充分な距離をとらねばならずその距離を試算するとlk
膿となり我国でこのような制約を満足させることは一般
的に困難である。
(b) Flap valve method This method has the advantage of not requiring any valve operations, but there is a high risk of causing trouble when Siltem is stopped due to a power outage, etc. In other words, there are unavoidable ups and downs on the transportation route. Therefore, if there is a slope on the downstream side of this booster, when the system stops and the airflow in the pipe disappears, the capsule will start flowing backwards and collide with the flap valve from the right. This valve has a structure that avoids collisions when the capsule enters from the left, but it has no defense against capsule entry from the right, leading to damage to the valve or capsule. In order to prevent this, a sufficient distance must be provided between the uphill section and the booster.
It is generally difficult to satisfy such restrictions in our country.

(ハ)ジェットポンプ式 これは昇圧の効率が低いため、その設置間隔がlkm未
満と短く数多くの昇圧装置を要するためコスト面の実用
の可能性が低い。
(c) Jet pump type This type has low pressure boosting efficiency, and requires a large number of boosting devices with short installation intervals of less than 1 km, so it is unlikely to be practical in terms of cost.

(ニ)連続荷役装置流用方式 この方式は前記三方式の問題点を解決するが、中間昇圧
部に広大な空間を要するため実用に供することがきわめ
て困難である。すなわち発射筒は一点を支点にシリンダ
によりスイングされる方式が一般的であるため転回角度
が制約される。たとえ、この角度が90°まで可能とし
てもパイプラインの曲率半径は40D〜1000(D:
管内径)で700前後が一般的なため、発射筒を中心と
するパイプラインの線形は第9図に示す形状となり、D
=1mのものでは大略20mX100mの面積を要する
。一方、発射筒を回転式にして180”近く回転する機
構にすると所用時間が長くなり採用にあたっての大きな
制約となる。たとえばφ=1mのパイプラインにおいて
長さ15mの発射筒は積載カプセルが中に入ると約15
トンになりこれを10秒未満で反転しなくてはならない
(d) Continuous cargo handling device diversion method This method solves the problems of the three methods mentioned above, but it is extremely difficult to put it to practical use because it requires a large space in the intermediate pressurizing section. That is, since the firing tube is generally swung by a cylinder around one point, the rotation angle is restricted. Even if this angle is possible up to 90°, the radius of curvature of the pipeline is 40D to 1000 (D:
Since the pipe inner diameter is generally around 700, the shape of the pipeline centered on the launch tube is as shown in Figure 9, and D
=1m requires an area of approximately 20m x 100m. On the other hand, if the launcher is made into a rotary mechanism that rotates nearly 180", the required time will be longer and this will be a major constraint on adoption. For example, in a pipeline with φ = 1m, if the launcher is 15m long, the loading capsule will be inside. Approximately 15 when entering
tons and must be reversed in less than 10 seconds.

これら種々の問題点を解決すべく本発明においては、カ
プセルの間隔、カプセル編成両数、カプセル重量に拘束
されることなく自由に設計でき。
In order to solve these various problems, the present invention allows for free design without being restricted by the spacing between capsules, the number of capsules to be formed, or the weight of capsules.

またシステムの停電時におけるトラブルの発生を防ぐこ
とができ、任意のルート上に直線的に設置可能で、占有
面積も管径の二倍程度、しかも昇圧効率も極めて高いカ
プセル輸送における中間昇圧方法を提供することを目的
としている。
In addition, it is possible to prevent troubles during system power outages, can be installed in a straight line on any route, occupies an area approximately twice the pipe diameter, and has extremely high pressurization efficiency. is intended to provide.

[問題を解決するための手段] 上記問題点を解決するための本発明は、輸送路の制動ゾ
ーンにおいてカプセルを所定速度まで減速させて、自動
連結装置により当該後行カプセルを先行カプセルに追突
させて連結させ、連結したカプセルを搬送装置により前
方へ搬送し、搬送された連結カプセルから先頭部カプセ
ルの連結を連結解除装置により解除し、その後連結解除
後の先頭部カプセルを昇圧発射装置により昇圧し発射さ
せるものであって;前記昇圧発射装置は、連結解除装置
より下流側の発射用輸送路に設けられた上流側仕切弁お
よび下流側仕切弁と、上流側仕切弁より下流側の近傍に
おいて発射用輸送路に連通して配された空気の吸引吹込
部と、下流側仕切弁より下流側の近傍において発射用輸
送路に連通して配された空気の吹込発射部とを備え、上
流側仕切弁が開かつ下流側仕切弁が閉の状態で前記吸引
吹込部より空気を吸引し連結解除の先頭部カプセルを前
記吸引吹込部より下流まで吸引移送し、その後上流側仕
切弁が閉かつ下流仕切弁が開の状態で吸引吹込部より空
気を吹込み先頭部カプセルを吹込発射部より下流まで圧
送し、次いで下流側仕切弁が閉の状態で吹込発射部より
空気を吹込み先頭部カプセルを発射させる構成となって
いる。
[Means for Solving the Problems] The present invention for solving the above-mentioned problems decelerates the capsule to a predetermined speed in the braking zone of the transportation route, and causes the following capsule to collide with the leading capsule using an automatic coupling device. The connected capsules are conveyed forward by a conveyance device, the connection of the leading capsule is released from the conveyed connected capsule by a decoupling device, and the pressure of the leading capsule after the connection is released is increased by a booster firing device. The booster launcher is configured to fire at an upstream gate valve and a downstream gate valve provided in the launch transportation path downstream from the disconnection device, and near the downstream gate valve from the upstream gate valve. an air suction blowing section arranged in communication with the transport passage for air transport, and an air blowing and ejection part arranged in communication with the transport passage for firing in the vicinity of the downstream side of the downstream gate valve; With the valve open and the downstream gate valve closed, air is sucked through the suction blowing section and the uncoupled head capsule is sucked and transferred downstream from the suction blowing section, and then the upstream gate valve is closed and the downstream gate valve is closed. With the valve open, air is blown from the suction blowing section to force-feed the leading capsule downstream from the blowing and firing section, and then, with the downstream gate valve closed, air is blown from the blowing and firing section to fire the leading capsule. The configuration is such that

[作用] 本発明においては輸送路の制動ゾーンで低速まで減速し
たカプセルを先行カプセルに連結し、連結したカプセル
を搬送装置により所定速度で搬送し連結解除装置で解除
後、それぞれのカプセルを弁操作により昇圧発射させる
ものであるからカプセルの速度制御、カプセル間隙制御
するために、エアバイパス・二連仕切弁方式のように長
大な水平距離を必要とせず、また長編成カプセルおよび
大型装置を要することなく短編成カプセルにも適用可能
である。
[Operation] In the present invention, a capsule that has been decelerated to a low speed in a braking zone of a transportation route is connected to a preceding capsule, the connected capsule is transported at a predetermined speed by a conveyance device, and after being released by a disconnection device, each capsule is operated by a valve. Since this method is used to boost the pressure and launch the capsule, it does not require a long horizontal distance like the air bypass/double gate valve method, and also requires a long capsule and large equipment to control the speed of the capsule and the capsule gap. It is also applicable to short capsules.

また、フラップ弁方式では停電時にフラップ弁下流側に
勾配があるとカプセルが逆流を生じ、弁に衝突する恐れ
があったが本発明においては、停電時昇圧発射装置の各
弁が後述のように適切な位置にあるため、カプセルの逆
流や追突を防ぐことができる。
In addition, with the flap valve system, if there is a gradient downstream of the flap valve during a power outage, the capsule may cause backflow and collide with the valve, but in the present invention, each valve of the booster launcher during a power outage is operated as described below. The proper position prevents the capsule from flowing backwards or colliding with the enemy.

一方、本発明においては昇圧装置を直線的に配置するの
で連続荷役装置流用によるスイッチバッタ方式の発射筒
のような広大な面積を必要とせず、直線はもとより任意
のルート上に設置可能であり、占有幅も管径の二倍程度
で良く、カプセルの昇圧発射のためには通常の仕様形態
のブロアが使用できるので効率よく昇圧発射できる。
On the other hand, in the present invention, since the booster is arranged in a straight line, it does not require a large area like a switchbatter type launcher that uses continuous cargo handling equipment, and can be installed not only in a straight line but also on any route. The occupied width can be approximately twice the diameter of the tube, and a blower with normal specifications can be used for boosting and launching the capsule, allowing efficient boosting and launching.

[発明の具体例] さらに1本発明を詳述する。[Specific examples of the invention] Further, one aspect of the present invention will be explained in detail.

第1図は本発明の一実施例を示すカプセル輸送路におけ
る中間昇圧部近傍の概略図である。カプセル1dは輸送
用のブロア(図示せず)による気流により輸送路z内を
図中右方に走行する。カプセル1dの前後には自動連結
装置3が設けられている。輸送路2の排気口Aから調節
弁6の取付部Bまでの制動ゾーン下より下流側の輸送路
2の終端部には常時適宜数のカプセルlcが待機してい
る。これに対して後続カプセルldが走行してくると、
その走行に伴って待機カプセルlcの存在によって輸送
路2がシールされるため、カプセルlc、ld間の空気
が圧縮されて生じる圧力がカプセル1dの制動力として
作用し、その制動圧力を調節弁6で制御することによっ
て一定速度以下でカプセルldが待機カプセルlcに追
突し連結される。他方で、カプセルibは搬送装置4に
より搬送され、この結果これに連結されているカプセル
la、lcも移動する。先頭カプセルlaとカプセルl
bとの連結部が連結解除部Cに到達すると連結解除装置
5により連結が解かれる。
FIG. 1 is a schematic diagram of the vicinity of an intermediate pressurizing section in a capsule transportation path showing an embodiment of the present invention. The capsule 1d travels to the right in the figure within the transport path z due to airflow from a transport blower (not shown). An automatic coupling device 3 is provided before and after the capsule 1d. An appropriate number of capsules lc are always waiting at the terminal end of the transport path 2 downstream from below the braking zone from the exhaust port A of the transport path 2 to the mounting portion B of the control valve 6. On the other hand, when the following capsule ld runs,
As the transport path 2 is sealed by the presence of the standby capsule lc as it travels, the pressure generated by compressing the air between the capsules lc and ld acts as a braking force on the capsule 1d, and the braking pressure is transferred to the control valve 6. By controlling this, the capsule ld collides with the standby capsule lc at a speed below a certain speed and is connected to the waiting capsule lc. On the other hand, the capsule ib is transported by the transport device 4, so that the capsules la, lc connected thereto also move. Leading capsule la and capsule l
When the connecting portion with b reaches the disconnecting portion C, the disconnecting device 5 releases the connection.

一方、輸送路2は、搬送装置4および連結解除装置5の
部分において途切れており、その下流側には発射用輸送
路2°が配管されている。この輸送路2゛の基端部には
次のような昇圧発射装置が設けられている。   ゛ すなわち、輸送路2′の上流側および下流側に上流側お
よび下流側仕切弁7,8がそれぞれ設けられ、それらに
近接した下流側には吸引吹込部りおよび吹込発射部Eが
輸送路2′に連通して開口している。12は吸引ブロア
、13は主ブロアである。14は吸引吹込管、15は吸
引管で、その途中には切換弁11を有する。16は吹込
発射管で、その途中には切換弁9を有する。17は吹込
管、18は連絡管で、切換弁10を有する。
On the other hand, the transport path 2 is interrupted at a portion of the transport device 4 and the connection release device 5, and a firing transport path 2° is piped on the downstream side thereof. At the base end of this transport path 2', a boosting and firing device as described below is provided. That is, upstream and downstream gate valves 7 and 8 are provided on the upstream and downstream sides of the transportation path 2', respectively, and a suction blowing section and a blowing ejection section E are provided on the downstream side adjacent to these gate valves. It is open and communicates with '. 12 is a suction blower, and 13 is a main blower. 14 is a suction blowing pipe, 15 is a suction pipe, and a switching valve 11 is provided in the middle thereof. Reference numeral 16 denotes a blow-in launch tube, which has a switching valve 9 in its middle. 17 is a blowing pipe, 18 is a connecting pipe, and has a switching valve 10.

さて、かかる昇圧発射装置が設けられた設備では、前述
の連結解除後に先頭カプセルlaは、第2図(a)〜(
C)に示す移動を行う、まず、(L)図のように、仕切
弁7が開かつ仕切弁8が閉とし、かつ弁i1を開けて吸
引ブロア12により空気の吸引吹込口りより吸引するこ
とにより先頭カプセルlaを吸引吹込部りより下流側ま
で吸引移送する。カプセルlaが吸引吹込部りを通過し
た場合仕切弁8が閉じられているため、カプセル1aの
右方への移動により、それらの間の空気は圧縮されてカ
プセルlaに制動力として働き、カプセルlaは吸引吹
込部りと仕切弁8の間に停止する0次に仕切弁7が閉か
つ仕切弁8が開の状態とし、弁lOを開、弁9を閉とし
て主プロア13より空気を圧送して、(b)図のように
吸引吹込部りより空気を吹込み先頭カプセル1aを吹込
発射部Eの下流側まで、移送する。その後仕切弁8を閉
とし、しかも弁lOを閉、弁9を開とし主プロア13に
より吹込発射部Eから空気を吹込み、輸送路2′内を右
方に流れる気流によりカプセル1aを昇圧発射する。同
時に、続くカプセルlbの連結解除を待つ、以後このよ
うな操作が順次行なわれる。
Now, in a facility equipped with such a boost launcher, after the aforementioned connection is released, the leading capsule la is
Perform the movement shown in C). First, as shown in Figure (L), gate valve 7 is opened and gate valve 8 is closed, valve i1 is opened, and air is sucked from the suction blower 12 by suction blower 12. As a result, the leading capsule la is suction-transferred to the downstream side from the suction blowing section. When the capsule la passes through the suction blowing section, the gate valve 8 is closed, and as the capsule la moves to the right, the air between them is compressed and acts as a braking force on the capsule la. is stopped between the suction blowing part and the gate valve 8. Next, the gate valve 7 is closed and the gate valve 8 is open, and the air is pumped from the main blower 13 with the valve lO opened and the valve 9 closed. Then, air is blown from the suction blowing section to transport the leading capsule 1a to the downstream side of the blowing and firing section E, as shown in FIG. Thereafter, the gate valve 8 is closed, the valve 10 is closed, and the valve 9 is opened, and air is blown from the blowing and firing part E by the main blower 13, and the capsule 1a is pressurized and fired by the airflow flowing to the right in the transport path 2'. do. At the same time, the device waits for the subsequent capsule lb to be uncoupled, and thereafter such operations are performed sequentially.

ここで、搬送装置4は常に一定の速度でカプセルを右方
に搬送するが、もし連結解除点Cより若干の距離fLo
手前に到達しても、仕切弁7が開放(スタンバイ)状態
にない場合には、速かにカプセルを停止させ、その状態
になるのを待つ。
Here, the transport device 4 always transports the capsule to the right at a constant speed, but if the capsule is transported a certain distance fLo from the uncoupling point C.
If the gate valve 7 is not in the open (standby) state even when it reaches this side, the capsule is immediately stopped and waits for it to be in that state.

ところで、吸引ブロア12を廃して、第3図に示すよう
に、主プロア13のみの運転によって操作することもで
きる。すなわち、途中に弁11を設けた吸引吹込管14
を主プロア13の吸引側に接続し、主プロア13の吹出
管17を途中で分岐させて、一方はそのまま吹込発射部
Eに接続し、他方の連絡管1Bは吸引吹込管14に接続
しておく、これによって同図矢印の吸引、吹込操作がな
される。ここでカプセルの吸引移送の速度は輸送路中の
カプセルの送行速度より遅くてよいから吸引吹込部りよ
り吸引される空気量は吹込発射部Eより吹込まれる空気
量より少なくて良いので弁19が設けられる。弁19は
ストッパーを設けてアクチュエーターが閉止状態でもあ
る程度の開度を持たせるか、もしくは第4図に示すよう
に絞り20を弁19に並列に設け、弁19を閉止しても
絞り20のある配管からも吸引できるようにしても良い
By the way, the suction blower 12 can be eliminated and the main blower 13 alone can be operated as shown in FIG. That is, a suction blowing pipe 14 with a valve 11 provided in the middle
is connected to the suction side of the main proar 13, the blowing pipe 17 of the main proar 13 is branched in the middle, one is directly connected to the blowing ejection part E, and the other connecting pipe 1B is connected to the suction blowing pipe 14. This performs the suction and blowing operations shown by the arrows in the figure. Here, since the speed of suction and transfer of the capsule may be slower than the feeding speed of the capsule in the transport path, the amount of air sucked from the suction and blowing section may be smaller than the amount of air blown from the blowing and ejecting section E, so the valve 19 is provided. The valve 19 can be provided with a stopper so that it can be opened to a certain degree even when the actuator is closed, or a throttle 20 can be installed in parallel with the valve 19 as shown in Fig. 4 so that the throttle 20 remains open even when the valve 19 is closed. The suction may also be made possible through piping.

つぎに停電時の安全性について述べる。前記した実施例
とも以下に述べる対策をとることにより安全確保が可能
である。仕切弁7.8は通常電源OFFでもその直前の
状態を保持することができるから、第1図において弁9
,10.11が電源OFFの状態では閉となるべく設定
すれば良い、これは例えばこれらの弁を空気駆動形式と
し、電磁弁を上記目的に合致するように設定することに
より可能である。前述のように仕切弁7.仕切弁8の両
方が同時に開放されることはないため、停電時に弁9,
10.11が閉じれば、仕切弁8より右方の輸送路2°
では空気の流れが停止する。この状態で管路勾配により
昇圧装置の右方の輸送路2゛でカプセルが逆走しても、
急勾配が仕切弁2の下流側近傍にない限り、カプセルは
すみやかに停止するか逆走速度はきわめて低い値となり
、仕切弁に衝突することなく安全性は保たれる。
Next, we will discuss safety during power outages. In the embodiments described above, safety can be ensured by taking the measures described below. Since the gate valves 7 and 8 can normally maintain their previous state even when the power is turned off, the valves 9 and 8 in FIG.
, 10, 11 should be set to close when the power is off. This can be done, for example, by making these valves air-driven and setting the solenoid valves to meet the above purpose. As mentioned above, the gate valve7. Since both gate valves 8 will not be opened at the same time, valves 9 and 8 will not open at the same time.
10. If 11 is closed, the transport path 2° to the right of gate valve 8
Then the air flow stops. In this state, even if the capsule runs backwards in the transport path 2゜ to the right of the booster due to the pipe slope,
As long as there is no steep slope near the downstream side of the gate valve 2, the capsule will stop quickly or the reverse speed will be extremely low, and safety will be maintained without colliding with the gate valve.

なお、上記第1図例において、吸引吹込部りは単一であ
るが、これを吸引管と吹込管とに平行的に近接配置し、
吸引管を吸引ブロア12に、吹込管を主プロア13に接
続してもよい、また、上記例ではカプセルの連結、搬送
、解除および発射を1台ごと行う旨述べたが、複数台ご
と行うようにしてもよい。
In the example shown in FIG. 1, there is a single suction blowing section, but this is arranged in parallel and close to the suction pipe and the blowing pipe,
The suction pipe may be connected to the suction blower 12, and the blowing pipe may be connected to the main blower 13.Also, in the above example, the connection, transport, release, and firing of the capsule are performed for each unit, but it may be possible to connect the capsules for each unit, You can also do this.

[発明の効果] 以上のように本発明によれば、カプセルが制動ゾーン、
搬送装置、連結解除装置を経て移送されるため、カプセ
ルのsit両数、重量に関係なく自由な設計ができ、ま
たカプセル間隔制御のための複雑な操作を必要とせず、
さらに、昇圧発射装置に設けたそれぞれの弁の操作によ
り停電時のトラブルも防止でき、一方で、これらの装置
は任意のルート上に直線的に配置可能で、占有面積も輸
送路管径の二倍程度で良く、しかも昇圧発射のために通
常のブロアを使用できるので昇圧効率の高いものである
[Effects of the Invention] As described above, according to the present invention, the capsule has a braking zone,
Since the capsules are transferred via a conveying device and a uncoupling device, they can be designed freely regardless of the number of capsule sites or their weight, and there is no need for complicated operations to control the capsule spacing.
Furthermore, troubles in the event of a power outage can be prevented by operating the respective valves installed on the booster launcher.On the other hand, these devices can be placed linearly on any route, and the area occupied is only two times the diameter of the transport pipe. It only needs to be about twice as much, and it has high boosting efficiency because a normal blower can be used for boosting and firing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例を示す概略図、第2図(L
)〜(C)は本発明に係る昇圧発射装置部分におけるカ
プセル移動の説明図、第3図および第4図は他の空気吸
引吹込例のフロー図、第5図(a) 〜(f) 、第6
図(JL) 〜(f) 、第7図および第8図は従来方
法による中間昇圧方法を示す概略図、第9図は従来方法
である連続荷役装置流用式における発射筒近傍の輸送路
図である。 la、lb、lc、ld、、、、カプセル2 、、、、
輸送路     2”、。60発射用輸送路3、、、、
自動連結装置  4゜60.搬送装置5、。、、連結解
除装置  6゜。。、調節弁7、、、、上流側仕切弁 
 80.。、下流側仕切弁9.10,11,19.、、
、切換弁 12.13.。0.ブロア D。。。、吸引吹込部E、
、、、吹込発射部 特許出願人    住友金属工業株式会社第5図 第7図 /Lljj;’ノ 第6図
FIG. 1 is a schematic diagram showing an embodiment according to the present invention, and FIG. 2 (L
) to (C) are explanatory diagrams of capsule movement in the pressurized ejection device part according to the present invention, FIGS. 3 and 4 are flow diagrams of other examples of air suction and blowing, and FIGS. 5 (a) to (f), 6th
Figures (JL) to (f), Figures 7 and 8 are schematic diagrams showing the intermediate pressurization method according to the conventional method, and Figure 9 is a diagram of the transport route near the launcher in the conventional method, which is a type that utilizes continuous cargo handling equipment. be. la, lb, lc, ld,... Capsule 2...
Transport route 2”, .60 launch transport route 3,,,,
Automatic coupling device 4゜60. Conveying device 5. ,, Uncoupling device 6°. . , control valve 7, , upstream gate valve
80. . , downstream gate valve 9.10, 11, 19. ,,
, switching valve 12.13. . 0. Bloor D. . . , suction blowing section E,
,,,, Blow-in discharge part Patent applicant: Sumitomo Metal Industries, Ltd. Figure 5 Figure 7/Lljj;'ノFigure 6

Claims (1)

【特許請求の範囲】[Claims] (1)輸送路の制動ゾーンにおいてカプセルを所定速度
まで減速させて、自動連結装置により当該後行カプセル
を先行カプセルに追突させて連結させ、連結したカプセ
ルを搬送装置により前方へ搬送し、搬送された連結カプ
セルから先頭部カプセルの連結を連結解除装置により解
除し、その後連結解除後の先頭部カプセルを昇圧発射装
置により昇圧し発射させるものであって;前記昇圧発射
装置は、連結解除装置より下流側の発射用輸送路に設け
られた上流側仕切弁および下流側仕切弁と、上流側仕切
弁より下流側の近傍において発射用輸送路に連通して配
された空気の吸引吹込部と、下流側仕切弁より下流側の
近傍において発射用輸送路に連通して配された空気の吹
込発射部とを備え、上流側仕切弁が開かつ下流側仕切弁
が閉の状態で前記吸引吹込部より空気を吸引し連結解除
の先頭部カプセルを前記吸引吹込部より下流まで吸引移
送し、その後上流側仕切弁が閉かつ下流仕切弁が開の状
態で吸引吹込部より空気を吹込み先頭部カプセルを吹込
発射部より下流まで圧送し、次いで下流側仕切弁が閉の
状態で吹込発射部より空気を吹込み先頭部カプセルを発
射させることを特徴とするカプセル輸送の中間昇圧方法
(1) The capsule is decelerated to a predetermined speed in the braking zone of the transportation route, the following capsule is caused to collide with the leading capsule by an automatic coupling device, and the coupled capsule is coupled to the leading capsule.The coupled capsule is transported forward by the transportation device, and the capsule is transported. The first capsule is uncoupled from the first capsule by a coupling release device, and then the top capsule after the coupling is released is pressurized and launched by a boost firing device; an upstream gate valve and a downstream gate valve provided on the side launch transportation route; an air blowing and firing section disposed in communication with the discharge transportation path in the vicinity of the downstream side of the side gate valve, and when the upstream side gate valve is open and the downstream side gate valve is closed, The air is suctioned and the leading capsule to be disconnected is transferred to the downstream side from the suction blowing part, and then, with the upstream gate valve closed and the downstream gate valve open, air is blown from the suction blowing part to remove the leading capsule. 1. An intermediate pressurization method for transporting a capsule, the method comprising pressure-feeding the capsule to the downstream side from a blowing and firing section, and then blowing air from the blowing and firing section with a downstream side gate valve closed to cause the leading capsule to be fired.
JP5784285A 1985-03-20 1985-03-20 Intemediate pressure set-up method for capsule transport Granted JPS61217429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5784285A JPS61217429A (en) 1985-03-20 1985-03-20 Intemediate pressure set-up method for capsule transport

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5784285A JPS61217429A (en) 1985-03-20 1985-03-20 Intemediate pressure set-up method for capsule transport

Publications (2)

Publication Number Publication Date
JPS61217429A true JPS61217429A (en) 1986-09-27
JPH055730B2 JPH055730B2 (en) 1993-01-25

Family

ID=13067224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5784285A Granted JPS61217429A (en) 1985-03-20 1985-03-20 Intemediate pressure set-up method for capsule transport

Country Status (1)

Country Link
JP (1) JPS61217429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466325A (en) * 2012-06-08 2013-12-25 中国原子能科学研究院 Sample irradiation and transmission system and positive-negative pressure conversion device used for system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466325A (en) * 2012-06-08 2013-12-25 中国原子能科学研究院 Sample irradiation and transmission system and positive-negative pressure conversion device used for system

Also Published As

Publication number Publication date
JPH055730B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
US7326005B1 (en) Air powered storage device for pneumatic transport system
US8641329B2 (en) Pneumatic transport zone exchange system and method
EP3615858B1 (en) Pig trap fluid injector assembly and method
US5566620A (en) Levitated rail system
KR20120066235A (en) Transfer system using pressurized capsule
US3438337A (en) High-speed ground transportation system
JP2002046598A (en) Device for carrying passengers one by one
WO2018233431A1 (en) Emergency safety escape system of high-speed vactrain, and fire extinguishing method therefor
JPS61217429A (en) Intemediate pressure set-up method for capsule transport
US3829042A (en) Installation for pneumatic conveyance of containerized loads through a tube
EP0165473A2 (en) Workpiece transfer track
EP0824435B1 (en) Improvement in control circuit for operation of pneumatically propelled vehicles
JPS61217430A (en) Intermediate pressure set-up device in capsule transport
US3787006A (en) System for pneumatically advancing a container within a duct
CN111216742A (en) Pneumatic propulsion system for high-volume transport of passengers and/or goods
US3881425A (en) Pump for use in a capsule transport pipeline
KR101732545B1 (en) Closed-loop type transfer system using capsule
US4940368A (en) Propulsion system and process for pneumatic pipeline transport
US20120031295A1 (en) Train yard classification system
JPS63136622U (en)
JPS5856687B2 (en) Plant for pneumatic transport of container contents by pipeline
JPS604092B2 (en) Speed control method at the end of capsule transport
JPS5849451B2 (en) Kanronaiyu Sou Sochi
CN204775292U (en) Tram vehicle adds conveyor of sand
GB2045192A (en) Plant for pneumatic transport of loads in containers through a pipeline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees